

Elliptic pursuit

Problem 1. (25 pts) We will work with the elliptic curve $E : Y^2 = X(X+1)(X+4)$ defined over \mathbb{R} . (a) Explain why the discriminant is not zero.¹

(b) Check that the points $\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}} = (-4, 0)$ and $\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}} = (-2, 2)$ are on E.

¹**Hint:** no calculations are necessary, see the definition

- (c) Find the coordinates of the point $\mathcal{W}_{\mathcal{V}} = \mathcal{V} \oplus \mathcal{V}_{\mathcal{V}}$. **Step 1.** Find the equation of the line ℓ through the points \mathcal{V} and $\mathcal{V}_{\mathcal{V}}$ in the form Y = mX + b.
- **Step 2.** Plug the equation obtained on the previous step into the equation of E and find the third point of intersection of ℓ and E.²
- Step 3. Find the coordinates of the point $\mathcal{F} = \mathcal{F} \oplus \mathcal{F}$ as reflection of the third point of intersection of ℓ and E with respect to the x-axis.
- **Step 4.** What are the coordinates of the point $\Re \ominus \Re$?
- (d) Find the coordinates of the point $2 \cdot \sum_{i=1}^{n} = \sum_{i=1}^{n} \oplus \sum_{i=1}^{n}$. **Step 1.** Find the equation of the line ℓ_{∞} tangent to E at the point $\sum_{i=1}^{n} (in \text{ the form } Y = mX + b).$

Step 2. Plug the equation obtained on the previous step into the equation of E and find the second point of intersection of ℓ_{Res} and E.³

²**Hint:** you will get a polynomial of degree 3 in X (the restriction of the defining equation of E to ℓ), two roots of which are $\frac{4}{3}$ and $\frac{4}{3}$. ³**Hint:** you will get a polynomial of degree 3 in X (the restriction of the defining equation of E to ℓ_{∞}) with $\frac{4}{3}$ a zero of multiplicity two.

- Step 3. Find the coordinates of the point $2 \cdot \sum_{k=1}^{\infty} k$ as reflection of the second point of intersection of ℓ_{figure} and E with respect to the x-axis.
- (e) What is the point $2 \cdot \frac{4}{3}$?

Figure 2: Addition of points on a singular elliptic curve

Problem 2. (25 pts) We will work with the elliptic curve $E : Y^2 = X^2(X+3)$ defined over \mathbb{R} . (a) Explain why the discriminant is zero.⁴

(b) Check that the points $\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}} = (-2,2)$ and $\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}} = (0,0)$ are on E.

⁴Hint: no calculations are necessary, see the definition

(c) Next we will show that \oplus does not provide a group structure on E.

Step 1. Find equation of the line ℓ through the points \Re and \Re in the form Y = mX + b.

- **Step 2.** Plug Y = mX + b into the equation of E and find the third point of intersection of ℓ and E.⁵ Then find coordinates of the point $\mathcal{G} \oplus \mathcal{G}_{\mathcal{G}}$.
- **Step 3.** Choose any other point P on E and find the point $P \oplus \mathcal{F}$. Conclude that operation \oplus does not give rise to a group structure on E.

Problem 3. (25 pts) Consider the elliptic curve $E: Y^2 = X^3 + 2X + 3$ over \mathbb{F}_7 .

(a) Check that the discriminant is nonzero (use the formula) and list the set of points $E(\mathbb{F}_7)$.

(b) Make an addition table for the group $E(\mathbb{F}_7)$.

⁵**Hint:** nobody said it must be different from the first two.

- (c) Which abelian group did you get in (b)?
- (d) What is the order of the point P = (3, 1)?

Problem 4. (10 pts) Let E be the elliptic curve

$$E: y^2 = x^3 + x + 1$$

and let P = (4, 2) and Q = (0, 1) be points on E modulo 5. Solve the elliptic curve discrete logarithm problem for P and Q, that is, find a positive integer n such that Q = nP.

Elliptic Diffie-Hellman key exchange

Problem 5. (15 pts) Alice and Bob agree to use elliptic Diffie-Hellman key exchange with a prime number p, elliptic curve E, and point P being

$$p = 2671, E: y^2 = x^3 + 171x + 853, P = (1980, 431) \in E(\mathbb{F}_{2671}).$$

(a) Alice's public key is the point $Q_A = (2110, 543)$. Bob decides to use the secret multiplier $k_B = 1943$. Use the programs at http://tsvboris.pythonanywhere.com/IntrotoCryptography and find the point $Q_B \in E$, which is Bob's public key.

(b) Find the point on E which is the shared key of Alice and Bob.