MATH 1025: Introduction to Cryptography

Final Review

Solutions

Problem 1. Let n be a positive odd integer.

(a) Prove that there is a 1-to-1 correspondence between the divisors of n which are $\langle \sqrt{n} \rangle$ and those that are $\langle \sqrt{n} \rangle$. (This part does not require n to be odd.)

Solution: let $a < \sqrt{n}$ be a divisor of n, then there is a number $b \in \mathbb{Z}_{>0}$, s.t. $ab = n$. Moreover, we must have b > \sqrt{n} , since otherwise ab < $(\sqrt{n})^2$ = n. Clearly, a determines b uniquely, as b = $\frac{n}{n}$ $\frac{1}{a}$.

(b) Prove that there is a 1-to-1 correspondence between all of the divisors of n which are $\geq \sqrt{n}$ and all the ways of writing n as a difference $s^2 - t^2$ of two squares of nonnegative integers. (For instance, 15 has two divisors 5 and 15 that are ≥ √ $\overline{15}$, and $15 = 4^2 - 1 = 8^2 - 7^2$.

Solution: let $n = ab$ with $b \ge \sqrt{n}$, then one would like to find s and t, s.t. $n = ab = s^2 - t^2$:

$$
\begin{cases} s-t=a \\ s+t=b, \end{cases}
$$

giving $s = \frac{1}{2}$ $\frac{1}{2}$ (a + b) and t = $\frac{1}{2}$ $\frac{1}{2}$ (b – a), furthermore, both s and t are integers, since n is odd (implying a and b are odd as well). The correspondence between the pairs (a, b) and (s, t) is clearly bijective.

Problem 2. Prove that $n^5 - n$ is always divisible by 30.

Solution: we have $n^5 - n = n(n^4 - 1) = n(n^2 + 1)(n^2 - 1) = (n - 1)n(n + 1)(n^2 + 1)$, while $30 = 2 \cdot 3 \cdot 5$. Notice, that $n - 1$, n and $n + 1$ are three consecutive integers, hence, their product is divisible by $2 \cdot 3 = 6$. It remains to show that the number $(n-1)n(n+1)(n^2+1)$ is divisible by 5. If $n \equiv 0, 1$ or 4 (mod 5), then one of the numbers $n-1$, n or $n+1$ is divisible by 5. In case $n \equiv 2$ or 3 (mod 5), we get $2^2 + 1 \equiv 3^2 + 1 \equiv 0 \pmod{5}$. The result follows.

Problem 3. Suppose that in tiling a floor that is 8×9 ft², you bought 72 tiles at a price you cannot remember. Your receipt gives the total cost as some amount under \$100, but the first and last digits are illegible. It reads '\$?0.6?'. How much did the tiles cost?

Solution: the number $n = a0.6b$ (here $0 \le a \le 9$ and $0 \le b \le 9$ stand for the missing digits) representing the price must be divisible by $72 = 8 \cdot 9$. Therefore

$$
\begin{cases} a + 0 + 6 + b \equiv 0 \pmod{9} \\ 6b \equiv 0 \pmod{8}. \end{cases}
$$

It follows that $b = 4$, $a = 8$ and the price was \$80.64.

Problem 4. Let p be an odd prime. Prove that -3 is a quadratic residue in \mathbb{F}_p if and only if $p \equiv 1 \pmod{3}$.

Solution: by definition of the Legendre symbol, -3 is a quadratic residue in \mathbb{F}_p if and only if $\left(-\frac{3}{4}\right)$ p $= 1.$ Using the properties of the Legendre symbol, we compute

$$
\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) = (-1)^{\frac{(p-1)(3-1)}{4}}\left(\frac{-1}{p}\right)\left(\frac{p}{3}\right) = (-1)^{\frac{p-1}{2}} \cdot (-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right) = \left(\frac{p}{3}\right).
$$

The assertion follows.

Problem 5. Show that if p and $2p - 1$ are both prime, and $n = p(2p - 1)$, then n is a pseudoprime (gcd(b, n) = 1 and $b^{n-1} \equiv 1 \pmod{n}$ for 50% of the possible bases b, namely for all b which are quadratic residues modulo 2p – 1.

Solution: $b^{n-1} \equiv b^{p(2p-1)-1} \equiv b^{(p-1)(2p+1)}$. Next, the Legendre symbol $\begin{pmatrix} b & b \\ c & c \end{pmatrix}$ 2p − 1 $= b$ 2p − 2 $2 = b^{p-1} \pmod{2p-1}$ 1) (Euler's property). On the other hand, $b^{p-1} \pmod{p}$ due to FLT. Hence, $\left(\frac{b}{p}\right)$ $2p - 1$ $= b^{p-1} \equiv 1 \pmod{2p-1}$ gives $b^{n-1} \equiv b^{(p-1)(2p+1)} \equiv 1 \pmod{n}$, while $\left(\frac{b}{2p}\right)$ $2p-1$ $= b^{p-1} \equiv -1 \pmod{2p-1}$ gives $b^{n-1} \equiv b^{(p-1)(2p+1)} \equiv$ −1 (mod n).

Problem 6. Compute the Legendre symbol $\left(\frac{3}{2729}\right)$ (the number 2729 is prime).

Solution: using law of quadratic reciprocity, we get $\left(\frac{3}{2729}\right) = (-1)^{1364} \cdot \left(\frac{2729}{3}\right)$ 3 $\bigg) = \bigg(\frac{2}{5}$ 3 $= -1.$

Problem 7. Let P be a point on a smooth elliptic curve over \mathbb{R} . Suppose that P is not the point at infinity.

(a) Give a geometric condition that is equivalent to P being a point of order 2.

Solution: the tangent line to E at P is vertical, hence these are the points of intersection of the graph of E with the x-axis (the graph of E is symmetric w.r.t. the x-axis and, as $-P$ is the reflection of P w.r.t. the x-axis, P = $-P$ only for P on the x -axis).

(b) Give a geometric condition (justify your answer) that is equivalent to P being a point of order 3.

Solution: such a point P satisfies $P \oplus P \oplus P = \mathcal{O}$ or $P \oplus P = -P$, which implies that the third point of intersection of the tangent line to E at P with the graph of E is P. Let $F_\ell(x)$ be the restriction of the defining polynomial of E to the tangent line to E at P. Then $F_{\ell}(x)$ vanishes at P with multiplicity 3, meaning that $F_{\ell}(x(P)) = F'_{\ell}(x(P)) = F''_{\ell}(x(P)) = 0$ (here $x(P)$ is the x-coordinate of P), thus P is an inflection point.

Problem 8. Let E be a smooth elliptic curve over \mathbb{R} .

(a) How many points (elements) of order 2 can $G(E)$ have? (justify your answer)

Solution: the cubic polynomial in the defining equation of E has either one or three real zeros and those are precisely the elements of order 2.

(b) Find the equation $\psi(x)$ that the x-coordinate of a point (element) satisfies if and only if it has order 3 ?^{[1](#page-2-0)} (justify your answer)

Solution: using implicit differentiation, we find $2y \frac{dy}{dx} = 3x^2 + a$, thus, $\frac{dy}{dx} = \frac{3x^2 + a}{2y}$ $\frac{1}{2y}$. Differentiating implicitly one more time gives

$$
\frac{d^2y}{dx^2}=\frac{d\left(\frac{3x^2+a}{2y}\right)}{dx}=\frac{6x\cdot 2y-2\frac{dy}{dx}(3x^2+a)}{4y^2}=\frac{12xy^2-(3x^2+a)^2}{4y^3}=\frac{12x(x^3+a x+b)-(3x^2+a)^2}{4y^3},
$$
so $\psi(x)=12x(x^3+a x+b)-(3x^2+a)^2=3x^4+6ax^2+12bx-a^2$.

(c) Let's pick a concrete example with $b = 0$, $a = 1$, i.e. the defining equation of E is $y^2 = x^3 + x$. Find the inflection points (give both coordinates).

Solution: we have $\psi(x) = 3x^4 + 6x^2 - 1$ and using the substitution $t = x^2 \ge 0$, get the quadratic equation $\psi(t) = 3t^2 + 6t - 1$, which has the zeros $t_{1,2} = \frac{-6 \pm 4\sqrt{3}}{6}$ $\frac{\pm 4\sqrt{3}}{6}$. Notice that $t_2 = \frac{-6 - 4\sqrt{3}}{6}$ $\frac{1}{6}$ is less than 0, while $t_1 = \frac{-6 + 4\sqrt{3}}{6}$ √
√ ∕ √ ∕ ∕ ∕ ∕ ∕ ∕ ∕ $\frac{-4\sqrt{3}}{6} = \frac{-3 + 2\sqrt{3}}{3}$ $\frac{2\sqrt{3}}{3}$ is greater. Notice that the domain of E is $x \ge 0$, hence, the only possible value of the x- coordinate is $\sqrt{\frac{-3 + 2\sqrt{3}}{2}}$ √ $\frac{200}{3}$. The inflection points are

$$
P_1 = \left(\sqrt{\frac{-3 + 2\sqrt{3}}{3}}, \frac{2\sqrt{-3 + 2\sqrt{3}}}{3}\right)
$$

$$
P_2 = \left(\sqrt{\frac{-3 + 2\sqrt{3}}{3}}, -\frac{2\sqrt{-3 + 2\sqrt{3}}}{3}\right).
$$

¹**Hint:** hopefully, you found out that the answer in 6(b) is 'inflection points'. That means a point P = (P_x, P_y) has order 3 iff y''(P) = $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} = 0.$ Find the second derivative using implicit differentiation of $y^2 = x^3 + ax + b$, the defining equation of E, twice. Then use the defining equation of E again to get rid of the y terms.