MATH 1025: Introduction to Cryptography

Homework 2

48188848188848

ring of arithmetic

Problem 1. Find the orders of the multiplicative groups¹

(a) [5 **pts**] $(\mathbb{Z}/37\mathbb{Z})^{\times}$.

(b) [5 pts] $(\mathbb{Z}/20\mathbb{Z})^{\times}$.

Problem 2. Find solutions of the following congruences ²

(a) $[5 \text{ pts}] 33x + 12 \equiv 48 \pmod{5}$

Hint: the number of elements in $(\mathbb{Z}/m\mathbb{Z})^{\times}$ is equal to the number of elements $0 < \alpha \le m-1$, coprime to m. ²Hint: if you can't figure out a clever way to find the solution(s), just substitute each value $x = 1, x = 2, \dots, x = m-1$ and see which ones work.

(b) [5 **pts**]
$$x^2 \equiv 3 \pmod{11}$$

(c) [5 **pts**]
$$x^2 \equiv 1 \pmod{8}$$

Problem 3. Find a single value x that simultaneously solves the two congruences:

(a) [10 **pts**]
$$x \equiv 3 \pmod{7}$$
 and $x \equiv 4 \pmod{9}^3$

(b) [10 **pts**]
$$x \equiv 4 \pmod{7}$$
 and $x \equiv 5 \pmod{8}$

³**Hint:** note that every solution of the first congruence looks like x = 3 + 7y for some y. Substitute this into the second congruence and solve for y; then use that to get x.

Problem 4. Crazy Frog⁴ jumps on rectangular grid according to the following rule: from point (a, b) he jumps to the point $(a + 1 \pmod{m}, b + 1 \pmod{n})$. For each of the examples below answer the following questions. Assuming the frog starts at the origin

- give the list of the points he will 'visit' (jump on) prior to returning;
- answer the questions: will he visit all points on the rectangular grid? Would your answer change if the starting point was any other point (a, b)? (explain)
- (a) [5 **pts**] (m, n) = (6, 4)

⁴Crazy Frog, originally known as The Annoying Thing, is a Swedish CGI-animated character and musician created in 2003 by actor and playwright Erik Wernquist.

(b) [5 pts] (m, n) = (7, 5)

(c) [15 **pts**] Now let $(m, n) \in \mathbb{Z}_{>1} \times \mathbb{Z}_{>1}$ be arbitrary numbers. How many vertices inside the $(m \times n)$ -rectangle will the frog be able to visit? What is the condition on (m, n), so that he visits all grid points inside the rectangle?

 $^{^{5}}$ The answer is a simple expression in m and n.

Baby-step giant-step algorithm

Problem 5. Consider the multiplicative group $(\mathbb{Z}/13\mathbb{Z})^{\times}$ and elements $g=7, h=4$ in it.
(a) [5 pts] Find the order N of g .
(b) [5 pts] Write down the elements of lists L_1 and L_2 .
(c) [5 pts] Pick an element in the intersection $L_1 \cap L_2$ and use it to find s with $7^s = 4$.
Pohlig-Hellman algorithm
Problem 6. Again, we will work the multiplicative group $(\mathbb{Z}/13\mathbb{Z})^{\times}$ and elements $g=7, h=4$ in it.
(a) [5 pts] Write the order N of g as the minimal product of pairwise coprime positive integers. Use this factorization and CRT to write the cyclic group $\langle g \rangle \simeq \mathbb{Z}/N\mathbb{Z}$ as a product of cyclic groups of smaller order.
(b) [5 pts] Your answer in (a) should be a product of two groups. Find the corresponding pairs of elements (g_1, g_2) and (h_1, h_2) .

(c) [5 **pts**] Write down the system of two congruences $\begin{cases} g_1^{s_1} \equiv h_1 \pmod{13} \\ g_2^{s_2} \equiv h_2 \pmod{13} \end{cases}$ and use it to deduce the system of congruences on (s_1, s_2) (here $N = n_1 \cdot n_2$ is the decomposition that you obtained in (α)). Then find s as the solution of the system.