## MATH 1025: Introduction to Cryptography

Homework 4

## \*\*\*\*\*\*\*\*\*\*\*\*

elliptic pursuit



Figure 1: Addition of points on elliptic curve  $E: \mathbb{R}^2 \to \mathbb{R}^2$ 

**Problem 1.** We will work with the elliptic curve  $E := \{(X,Y) \mid Y^2 = X(X+1)(X+4)\}$  defined over  $\mathbb{R}$ .

(a) [3 **pts**] Explain why the discriminant of the polynomial f(X) = X(X+1)(X+4) is not zero.

<sup>&</sup>lt;sup>1</sup>**Hint:** no calculations are necessary, see the definition

(b) [2 **pts**] Check that the points  $\P = (-4,0)$  and  $\P = (-2,2)$  are on E.

(c) Find the coordinates of the point = =  $\oplus$   $\oplus$ .

**Step 1.** [2 **pts**] Find equation of the line  $\ell$  through the points  $\P$  and  $\P$  in the form Y = mX + b.

Step 2. [5 pts] Plug the equation obtained on the previous step into the equation of E and find the third point of intersection of  $\ell$  and E.<sup>2</sup>

**Step 3.** [3 **pts**] Find the coordinates of the point  $\mathbb{Z}_{\ell} = \mathbb{Z}_{\ell} \oplus \mathbb{Z}_{\ell}$  as reflection of the third point of intersection of  $\ell$  and E with respect to the x-axis.

**Step 4.** [5 **pts**] What are the coordinates of the point  $\P \ominus \mathbb{R}$ ?

<sup>&</sup>lt;sup>2</sup>Hint: you will get a polynomial of degree 3 in X (the restriction of the defining equation of E to  $\ell$ ), two roots of which are the x-coordinates of points and  $\mathcal{L}_{\ell}$ .

(d) Find the coordinates of the point  $2 \cdot \frac{1}{2}$ .

**Step 1.** [2 **pts**] Find equation of the line  $\ell_{\infty}$  tangent to E at the point in the form Y = mX + b.

Step 2. [5 pts] Plug the equation obtained on the previous step into the equation of E and find the second point of intersection of  $\ell_{\text{max}}$  and E.<sup>3</sup>

Step 3. [3 pts] Find the coordinates of the point  $2 \cdot \frac{1}{2}$  as reflection of the second point of intersection of  $\ell_{\infty}$  and E with respect to the x-axis.

(e) [5 **pts**] What is the point  $2 \cdot$  ?

<sup>&</sup>lt;sup>3</sup>**Hint:** you will get a polynomial of degree 3 in X (the restriction of the defining equation of E to  $\ell_{\infty}$ ) with  $\ell_{\infty}$  a zero of multiplicity two.



Figure 2: Addition of points on a singular elliptic curve

**Problem 2.** We will work with the elliptic curve  $E:Y^2=X^2(X+3)$  defined over  $\mathbb{R}$ .

(a) [3 **pts**] Explain why the discriminant of the polynomial  $f(X) = X^2(X+3)$  is zero.<sup>4</sup>

(b) [2 **pts**] Check that the points  $\P = (-2, 2)$  and  $\P = (0, 0)$  are on E.

<sup>&</sup>lt;sup>4</sup>**Hint:** no calculations are necessary, see the definition

(c) Next we will show that  $\oplus$  does not provide a group structure on E.

**Step 1.** [2 **pts**] Find equation of the line  $\ell$  through the points  $\P$  and  $\P$  in the form Y = mX + b.

**Step 2.** [3 **pts**] Plug Y = mX + b into the equation of E and find the third point of intersection of  $\ell$  and E.<sup>5</sup> Then find coordinates of the point  $\mathfrak{P} \oplus \mathfrak{P}$ .

Step 3. [5 pts] Choose any other point P on E and find the point P ⊕ . Conclude that operation ⊕ does not give rise to a group structure on E.

**Problem 3.** Consider the elliptic curve  $E: Y^2 = X^3 + 2X + 3$  over  $\mathbb{F}_7$ .

(a) [5 **pts**] Check that the discriminant is nonzero (use the formula) and list the set of points  $E(\mathbb{F}_7)$ .

<sup>&</sup>lt;sup>5</sup>**Hint:** nobody said it must be different from the first two.

(b) [10 **pts**] Make an addition table for the group  $E(\mathbb{F}_7)$ .

(c) [5 pts] Which abelian group did you get in (b)?

(d) [5 **pts**] What is the order of the point P = (3, 1)?

**Problem** 4. [10 pts] Let E be the elliptic curve

$$E: y^2 = x^3 + x + 1$$

and let P = (4, 2) and Q = (0, 1) be points on E modulo 5. Solve the elliptic curve discrete logarithm problem for P and Q, that is, find a positive integer n such that Q = nP.

## **Collision Algorithm**

**Problem 5.** Consider the elliptic curve  $E: Y^2 = X^3 - 7X + 13$  over  $\mathbb{F}_{137}$ .

- (a) [2 pts] Check that the discriminant of E is not zero (use the formula).
- (b) [3 pts] Use Hasse's theorem to find an estimate of the number of points on E.
- (c) [5 pts] Let P = (4,7), Q = (38,97) and check that both points lie on E.

(d) [5 **pts**] The order of P is N = 138 (it is a generator). Our next goal is to solve the DLP, for P and Q, that is, find a positive integer s such that Q = sP. We will use the collision algorithm. Using part (b) of the theorem on page 3 of 'Lectures 17 - 19' notes (with  $1 \le n = m \le N = 138$ ), choose n so that you are happy with the lower bound on the probability of collision (**find the value of this lower bound**).

(e) [10 **pts**] Create two sets of numbers  $A = \{a_1, a_2, ..., a_n\}$  and  $B = \{b_1, b_2, ..., b_n\}$  with  $1 \le a_i, b_j \le 137$ . Use programs (http://tsvboris.pythonanywhere.com/IntrotoCryptography) to find the lists

$$\begin{split} L_1 &= \{a_1 P, a_2 P, \dots, a_n P\} \\ L_2 &= \{b_1 P + Q, b_2 P + Q, \dots, b_n P + Q\} \end{split}$$

