Lecture 10

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▼

Outline

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$ Polynomials of low degrees

2 Operations on polynomials

3 Zeros of a polynomial

(4) The behavior of a polynomial near $\pm \infty$

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial near $\pm \infty$

In this lecture we will go over examples and properties of polynomials as well as their graphs.

Lecture 10 MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial In this lecture we will go over examples and properties of polynomials as well as their graphs.

Definition

A **polynomial** P(x) in a single variable (indeterminate) x is an expression of *(possibly after substitution of variable)* the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

where a_0, a_1, \ldots, a_n are numbers, $n \ge 0$ and $a_n \ne 0$.

Lecture 10 MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial near $+\infty$

In this lecture we will go over examples and properties of polynomials as well as their graphs.

Definition

A **polynomial** P(x) in a single variable (indeterminate) x is an expression of *(possibly after substitution of variable)* the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where a_0, a_1, \ldots, a_n are numbers, $n \ge 0$ and $a_n \ne 0$. The number n is called the **degree** of P(x) and is denoted by $\deg(P)$.

うして ふゆ く 山 マ ふ し マ う く し マ

Lecture 10 MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial near $+\infty$

In this lecture we will go over examples and properties of polynomials as well as their graphs.

Definition

A **polynomial** P(x) in a single variable (indeterminate) x is an expression of *(possibly after substitution of variable)* the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where a_0, a_1, \ldots, a_n are numbers, $n \ge 0$ and $a_n \ne 0$. The number *n* is called the **degree** of P(x) and is denoted by deg(P).

Interesting fact: the word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name".

Polynomials of degree 0 and 1 $\,$

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial near $\pm \infty$

Example

• A polynomial of degree n = 0 is of the form P(x) = c.

Polynomials of degree 0 and 1 $\,$

Lecture 10

MATH 0200

Example

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial

• A polynomial of degree n = 0 is of the form P(x) = c. y_{\uparrow} P(x) = c -7 - 6 - 5 - 4 - 3 - 2 - 1 = 0 1 = 2 = 3 = 4 = 5 = 6 = 7 = x

Polynomials of degree 0 and 1

Lecture 10

MATH 0200

Example

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial

• A polynomial of degree n = 0 is of the form P(x) = c. y_{\uparrow} P(x) = c -7 - 6 - 5 - 4 - 3 - 2 - 1 = 0 1 = 2 3 = 4 5 = 6 7 x

A polynomial of degree n = 1 is a linear function
 P(x) = mx + b.

Polynomials of degree 0 and 1 $\,$

Lecture 10

MATH 0200

Example

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial

• A polynomial of degree n = 0 is of the form P(x) = c. y_{\uparrow} P(x) = c -7 - 6 - 5 - 4 - 3 - 2 - 1 = 0 1 = 2 3 = 4 3 = 5 3 = 7 x

2 A polynomial of degree n = 1 is a linear function P(x) = mx + b. y = p(x) = mx + b p(x) = mx + b y = p(x) = mx + b p(x) = mx + b p(x) = mx + b y = 1 p(x) = mx + b p(x) = mx + b

 $\cdot 2$

Polynomials of degree 2

Example

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial

• A polynomial of degree n = 2 is a quadratic function $P(x) = ax^2 + bx + c.$

イロト 不得 トイヨト イヨト

ъ

Polynomials of degree 2

Example

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial • A polynomial of degree n = 2 is a quadratic function $P(x) = ax^2 + bx + c.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial near $\pm \infty$

Let P(x) and Q(x) be polynomials. We can perform the following operations to obtain new polynomials.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial near $\pm \infty$

Let P(x) and Q(x) be polynomials. We can perform the following operations to obtain new polynomials. • Addition (subtraction): $P(x) \pm Q(x)$.

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia

The behavior of a polynomial near $\pm \infty$

Let P(x) and Q(x) be polynomials. We can perform the following operations to obtain new polynomials. • Addition (subtraction): $P(x) \pm Q(x)$.

Example

•
$$P(x) = 2 + x - x^2$$
 and $Q(x) = 4x^3 - 7x$, then
 $P(x) + Q(x) = 4x^3 - x^2 - 6x + 2$ and $\deg(P + Q) = 3$.

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomia:

The behavior of a polynomial near $\pm \infty$

Let P(x) and Q(x) be polynomials. We can perform the following operations to obtain new polynomials. • Addition (subtraction): $P(x) \pm Q(x)$.

Example

•
$$P(x) = 2 + x - x^2$$
 and $Q(x) = 4x^3 - 7x$, then
 $P(x) + Q(x) = 4x^3 - x^2 - 6x + 2$ and $\deg(P + Q) = 3$.

•
$$P(x) = 2 + 6x - x^2$$
 and $Q(x) = x^2 - 7x$, then
 $P(x) + Q(x) = 2 - x$ and $\deg(P + Q) = 1$.

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Let P(x) and Q(x) be polynomials. We can perform the following operations to obtain new polynomials. • Addition (subtraction): $P(x) \pm Q(x)$.

Example

•
$$P(x) = 2 + x - x^2$$
 and $Q(x) = 4x^3 - 7x$, then
 $P(x) + Q(x) = 4x^3 - x^2 - 6x + 2$ and $\deg(P + Q) = 3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

•
$$P(x) = 2 + 6x - x^2$$
 and $Q(x) = x^2 - 7x$, then $P(x) + Q(x) = 2 - x$ and $\deg(P + Q) = 1$.

2 Multiplication: P(x)Q(x).

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Let P(x) and Q(x) be polynomials. We can perform the following operations to obtain new polynomials. • Addition (subtraction): $P(x) \pm Q(x)$.

Example

•
$$P(x) = 2 + x - x^2$$
 and $Q(x) = 4x^3 - 7x$, then
 $P(x) + Q(x) = 4x^3 - x^2 - 6x + 2$ and $\deg(P + Q) = 3$

•
$$P(x) = 2 + 6x - x^2$$
 and $Q(x) = x^2 - 7x$, then $P(x) + Q(x) = 2 - x$ and $\deg(P + Q) = 1$.

• Multiplication: P(x)Q(x). Example

$$P(x) = 2 - x^2$$
 and $Q(x) = 4x^3 - 7x$, then $P(x)Q(x) = (2 - x^2)(4x^3 - 7x) = 8x^3 - 14x - 4x^5 - 7x^3 = x^3 - 14x - 4x^5$
and $\deg(PQ) = \deg(P) + \deg(Q) = 2 + 3 = 5$.

イロト イヨト イヨト

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

We conclude that

• $\deg(P \pm Q) \le \max(\deg(P), \deg(Q));$

Lecture 10

MATH 0200

- Polynomials of low degrees
- Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm\infty$

We conclude that

• $\deg(P \pm Q) \le \max(\deg(P), \deg(Q));$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

• $\deg(PQ) = \deg(P) + \deg(Q)$.

Lecture 10

MATH 0200

- Polynomials of low degrees
- Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm\infty$

We conclude that

- $\deg(P \pm Q) \le \max(\deg(P), \deg(Q));$
- $\deg(PQ) = \deg(P) + \deg(Q)$.

Definition

A number a is called a zero of a function f if f(a) = 0.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Lecture 10

MATH 0200

- Polynomials of low degrees
- Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm\infty$

We conclude that

- $\deg(P \pm Q) \le \max(\deg(P), \deg(Q));$
- $\deg(PQ) = \deg(P) + \deg(Q)$.

Definition

A number a is called a zero of a function f if f(a) = 0.

Example

The zeros of polynomial $p(x) = x^2 - 4x + 3$ are 1 and 3:

うして ふゆ く 山 マ ふ し マ う く し マ

Lecture 10

MATH 0200

- Polynomials of low degrees
- Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm\infty$

We conclude that

- $\deg(P \pm Q) \le \max(\deg(P), \deg(Q));$
- $\deg(PQ) = \deg(P) + \deg(Q).$

Definition

A number a is called a zero of a function f if f(a) = 0.

Example

The zeros of polynomial $p(x) = x^2 - 4x + 3$ are 1 and 3:

うして ふゆ く 山 マ ふ し マ う く し マ

•
$$p(1) = 1^2 - 4 \cdot 1 + 3 = 1 - 4 + 3 = 0$$
 and

Lecture 10

MATH 0200

- Polynomials of low degrees
- Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm\infty$

We conclude that

- $\deg(P \pm Q) \le \max(\deg(P), \deg(Q));$
- $\deg(PQ) = \deg(P) + \deg(Q).$

Definition

A number a is called a zero of a function f if f(a) = 0.

Example

The zeros of polynomial $p(x) = x^2 - 4x + 3$ are 1 and 3:

- $p(1) = 1^2 4 \cdot 1 + 3 = 1 4 + 3 = 0$ and
- $p(3) = 3^2 4 \cdot 3 + 3 = 9 12 + 3 = 0.$

Lecture 10

MATH 0200

- Polynomials of low degrees
- Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm\infty$

We conclude that

- $\deg(P \pm Q) \le \max(\deg(P), \deg(Q));$
- $\deg(PQ) = \deg(P) + \deg(Q)$.

Definition

A number a is called a zero of a function f if f(a) = 0.

Example

The zeros of polynomial $p(x) = x^2 - 4x + 3$ are 1 and 3:

- $p(1) = 1^2 4 \cdot 1 + 3 = 1 4 + 3 = 0$ and
- $p(3) = 3^2 4 \cdot 3 + 3 = 9 12 + 3 = 0.$

Theorem

Let p(x) be a polynomial, then a is a zero of p if and only if x - a is a **factor** of p, i.e. p(x) = (x - a)q(x) for some polynomial q(x) (notice that deg(q) = deg(p) - 1).

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Remark

The number of zeros of a nonzero polynomial p(x) is less than or equal to $\deg(p)$.

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Remark

The number of zeros of a nonzero polynomial p(x) is less than or equal to $\deg(p)$.

The behavior of a polynomial p(x) for very large positive or negative values of x is determined by its **leading term** (monomial with exponent equal to the degree of p).

うして ふゆ く 山 マ ふ し マ う く し マ

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Remark

The number of zeros of a nonzero polynomial p(x) is less than or equal to $\deg(p)$.

The behavior of a polynomial p(x) for very large positive or negative values of x is determined by its **leading term** (monomial with exponent equal to the degree of p). Let p(x)be a polynomial and $n = \deg(p)$. The table below describes possible behavior types of p(x).

うして ふゆ く 山 マ ふ し マ う く し マ

Lecture 10

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Remark

The number of zeros of a nonzero polynomial p(x) is less than or equal to $\deg(p)$.

The behavior of a polynomial p(x) for very large positive or negative values of x is determined by its **leading term** (monomial with exponent equal to the degree of p). Let p(x)be a polynomial and $n = \deg(p)$. The table below describes possible behavior types of p(x).

	$n ext{ is even}, a_n > 0$	n is even, $a_n < 0$	$n \text{ is odd}, a_n > 0$	$n ext{ is odd}, a_n < 0$
$x \to \infty$	$P(x) \to \infty$	$P(x) \to -\infty$	$P(x) \to \infty$	$P(x) \to -\infty$
$x \to -\infty$	$P(x) \to \infty$	$P(x) \to -\infty$	$P(x) \to -\infty$	$P(x) \to \infty$

うつう 山田 エル・エー・ エー・ショー

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Example

Consider the polynomial $p(x) = 3 - 8x^2 - 10x^5$. The leading term of p is $-10x^5$ with the leading coefficient -10 < 0. We conclude that $p(x) \to -\infty$ as $x \to \infty$ and $p(x) \to \infty$ as $x \to -\infty$.

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Question

Consider the polynomial $q(x) = 2x^4 - 8 + 9x^6 - x^3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Question

Consider the polynomial $q(x) = 2x^4 - 8 + 9x^6 - x^3$.

• What is the degree of q(x)?

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Question

Consider the polynomial $q(x) = 2x^4 - 8 + 9x^6 - x^3$.

- What is the degree of q(x)?
- **2** What is the leading coefficient of q(x)?

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Question

Consider the polynomial $q(x) = 2x^4 - 8 + 9x^6 - x^3$.

- What is the degree of q(x)?
- **2** What is the leading coefficient of q(x)?
- What happens to q(x) as x approaches ∞ ?

MATH 0200

Polynomials of low degrees

Operations on polynomials

Zeros of a polynomial

The behavior of a polynomial near $\pm \infty$

Question

Consider the polynomial $q(x) = 2x^4 - 8 + 9x^6 - x^3$.

- What is the degree of q(x)?
- **2** What is the leading coefficient of q(x)?
- **(3)** What happens to q(x) as x approaches ∞ ?

Answer: the leading term of q(x) is the monomial $9x^6$. It follows that $\deg(q) = 6$, the leading coefficient is 9 and $q(x) \to \infty$ when $x \to \infty$.

うして ふゆ く 山 マ ふ し マ う く し マ