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Lecture 10 In this lecture we will go over examples and properties of
e polynomials as well as their graphs.

A polynomial P(z) in a single variable (indeterminate) x is
an expression of (possibly after substitution of variable) the
form

P(z) = apz™ + an_12" 1+ ...+ a1z + ao,

where ag, a, . ..,a, are numbers, n > 0 and a, # 0. The
number n is called the degree of P(x) and is denoted by
deg(P).

Interesting fact: the word polynomial joins two diverse
roots: the Greek poly, meaning "many", and the Latin
nomen, or "name".
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Polynomials @ A polynomial of degree n = 2 is a quadratic function
of low P(z) = ax® + bz + c.

degrees
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@ Multiplication: P(z)Q(x).

P(z) =2 — 2% and Q(z) = 423 — 7z, then P(2)Q(z) =
(2 — 2?) (423 — Tx) = 823 — 14z — 42° — 723 = 23 — 14z — 42°
and deg(PQ) = deg(P) + deg(Q) =2+3 =5.
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A number a is called a zero of a function f if f(a) =0.

The zeros of polynomial p(x) = 22 — 42 + 3 are 1 and 3:
op(1)=12—-4-14+3=1-4+3=0and
p(3)=32-4.3+3=9-12+3=0.

Let p(z) be a polynomial, then a is a zero of p if and only if

x — a 1s a factor of p, i.e. p(x) = (x — a)q(x) for some
polynomial q(x) (notice that deg(q) = deg(p) — 1).

Zeros of a
polynomial

.
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The behavior of a polynomial near £oo

than or equal to deg(p).

The number of zeros of a nonzero polynomial p(x) is less

The behavior of a polynomial p(x) for very large positive or
negative values of x is determined by its leading term

(monomial with exponent equal to the degree of p). Let p(z)
be a polynomial and n = deg(p). The table below describes
possible behavior types of p(z).

n is even, a, >0

n is even, a, < 0

n is odd, a, >0

n is odd, a, <0

T — o0

P(z) » >

P(z) - —oo

P(z) —» o0

P(z) - —oo

T —r —o0

P(z) = o0

P(z) - —c0

P(z) - —o0

P(z) —» o0
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Consider the polynomial p(z) = 3 — 822 — 102°. The leading
term of p is —102° with the leading coefficient —10 < 0. We
e conclude that p(x) — —oo as x — oo and p(z) — oo as
behavior of Tr — —00.
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Consider the polynomial ¢(z) = 22% — 8 4+ 926 — 3.
@ What is the degree of ¢(z)?
@ What is the leading coefficient of g(x)?
@ What happens to ¢(x) as = approaches co?

The
behavior of
a

polynomial Answer: the leading term of ¢(z) is the monomial 925. Tt
ear o2 follows that deg(q) = 6, the leading coefficient is 9 and
q(x) — oo when x — oc.
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