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Recall that the numbers Z = {...,—2,-1,0,1,2,...} are

called integers (whole numbers).
The numbers Q = {% | a,b integers} are called rational

numbers.
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@ The domain of the rational function
5x — 22
1@ = 5w =)@+
or, in the interval notation,
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p(z)

is the set
q(z)

W The domain of a rational function g(x) =

Rational {flf S R ‘ q(.f) 7é O}

functions

@ The domain of the rational function
5x — 22

1@ = 5w =)@+
or, in the interval notation,
(=00, =7)U (=7,1.5) U (1.5,5) U (5,00).

@ The domain of the rational function

16 —

g(z) = @ +615)(32x_ . is the set x # 2or, in the
interval notation, (—oo,2) U (2, 00).

is the set « # —7,1.5,5
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Similar to long division of numbers (which we now recall),
there is long division of polynomials.

Division of
polynomials

Let’s divide 623 by 13:
47

13)623
520

103
91

12
We conclude that 623 = 13 - 47 + 12.
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e Let p(2) = 323 — 122 + 2 and divide it by x — 3.

N 322 49z +15
pOl)';]Ol]]ialS €Xr — 3 ) 3I3 —12$ +2
3z —9x2
922 —122 42
922 —27x
15z +2
_ 15z —45
47

We get p(x) = (322 4 9z + 15)(x — 3) + 47. Notice that
p(3)=3-33—-12-3+2=81-36+2=4T.
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then p(x) = q(x)h(x) + r(x) for some polynomials h(x)
Division of and r(x) with deg(r) < deg(q).

polynomials
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p(x) = (z — a)h(x) for some polynomial h(z) with
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of p(x).

e More generally, the value of p(a) is equal to the residue
of division of p(z) by x — a:
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e Let p and ¢ be two polynomials with deg(p) > deg(q),

; then p(x) = q(x)h(x) + r(x) for some polynomials h(x)

Division of and r(z) with deg(r) < deg(q).

polynomials

e A real number a is a zero of p(z) if and only if
p(x) = (z — a)h(x) for some polynomial h(z) with
deg(h) = deg(p) — 1. In other words, (x — a) is a factor
of p(x).

e More generally, the value of p(a) is equal to the residue
of division of p(z) by x — a:

p(z) = h(z)(x —a) +r=pla) =h(a)(a—a)+r=r.
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and ¢ by « and the difference deg(p) — deg(q) by s.

is determined by the (ratio of) leading terms of

Behavior of
a rational
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Similar to polynomials, the behavior of a rational function

MATH 0200 f(l‘) _ p(x)

is determined by the (ratio of) leading terms of

p and q. We will denote the ratio of leading coefficients of p
and ¢ by « and the difference deg(p) — deg(q) by s.

n |
Behavior of deg(p) > deg(q) | deg(p) = deg(q) | deg(p) < deg(q)
a rational x—o00 | f(z) = az® = +oo flz) =« f(z)—=0

function

near +oo T — —00 f(x) — azr® — oo f(m) -« f(I) —0
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Similar to polynomials, the behavior of a rational function

v G

is determined by the (ratio of) leading terms of

p and q. We will denote the ratio of leading coefficients of p
and ¢ by « and the difference deg(p) — deg(q) by s.

Behavior of deg(p) > deg(q) deg(p) = deg(q) | deg(p) < deg(q)

Fumetion z—=oo | f@) aa® 500 |  f(z) 2a f(x) =0
BGET 5562 x— —0 | f(z) = az® — +oo flz) = o flx) =0

A line is called an asymptote if the distance between the
graph of f(z) and the line approaches zero as one or both of
the x or y coordinates tends to infinity.
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Similar to polynomials, the behavior of a rational function

v G

is determined by the (ratio of) leading terms of

p and q. We will denote the ratio of leading coefficients of p
and ¢ by « and the difference deg(p) — deg(q) by s.

Behavior of deg(p) > deg(q) deg(p) = deg(q) | deg(p) < deg(q)

Fumetion z—=oo | f@) aa® 500 |  f(z) 2a f(x) =0
BGET 5562 x— —0 | f(z) = az® — +oo flz) = o flx) =0

A line is called an asymptote if the distance between the
graph of f(z) and the line approaches zero as one or both of
the x or y coordinates tends to infinity.

For instance, the lines y = o and y = 0 appearing in the
table above are (horizontal) asymptotes.
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o f(x)= T . The ratio of leading terms is
(10 + z)(2z + 5)
3
—z
Behavior of 2$2 = —0.52 and deg(p) =3 > 2= deg(q)

a rational
function
near +oo
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near +oo

27 3
o f(x)= T . The ratio of leading terms is
(10 + z)(2x + 5)

.3
a: 0.5z and deg(p) = 3 > 2 = deg(q).As

212

x — too, we get f(x) — Foo.
2
-7
o f(x)= (10 —xx)(?)x 5 The ratio of leading terms is

2
1
L~ and deg(p) = deg(q) = 2.

—322 3
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Behavior of
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function
near +oo

° J@) = G0 =@ 1)

27 3
o f(x)= T . The ratio of leading terms is
(10 + z)(2x + 5)
.3
2—5:2 = —0.5z and deg(p) = 3 > 2 = deg(q).As

x — too, we get f(x) — Foo.

G2 =7 . . .
. The ratio of leading terms is

2
1
—3233332 =3 and deg(p) = deg(q) = 2.As = — oo or

1 1
x — —oo, we get f(z) — ~3 and the line y = ~3 is a

horizontal asymptote of f(x).
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Question

s What is the horizontal asymptote of the graph of the
“““ _ _ (5—x)(222+7)

ehavior o rati 11 t h = ?
L?rla‘tiona‘l ! onat tuhetion ($) 71' - 4.’,6'3
function
near +oo
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Question

s What is the horizontal asymptote of the graph of the
= 5—x)(222+7

Behavior of rational function h(x) = ( 7m)£ 13 )?
function
near oo

Answer: the degrees of the polynomials in numerator and
denominator are both equal to three. The leading terms are
—223 and —422, hence, the ratio of leading coefficients is

-2
o= = 0.5. The horizontal asymptote is the line y = 0.5.
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Let f(z) = p(z) be a rational function and {aq,...,a;} the

q(z)

set of zeros of the denominator ¢(z).

Graphs of
rational
functions
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Let f(z) = p(z) be a rational function and {aq,...,a;} the

q(z)

set of zeros of the denominator ¢(z).

@ Domain of f consists of all numbers except {a1,...,ar}.

Graphs of
rational
functions
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Let f(z) = p(z) be a rational function and {aq,...,a;} the

q(z)

set of zeros of the denominator ¢(z).
@ Domain of f consists of all numbers except {a1,...,ar}.

@ The lines x = aq,...,x = ai are vertical asymptotes of

f ().
Graphs of
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functions
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Let f(z) = p(z) be a rational function and {aq,...,a;} the

q(z)

set of zeros of the denominator ¢(z).

@ Domain of f consists of all numbers except {a1,...,ar}.
@ The lines x = aq,...,x = ai are vertical asymptotes of
().

Graphs of

rational @ If deg(p) < deg(q), then the line y = 0 is a horizontal
e asymptote of f(x).
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Let f(x) = —/=
f(z) )
set of zeros of the denominator ¢(z).

be a rational function and {aq,...,a;} the

@ Domain of f consists of all numbers except {a1,...,ar}.
@ The lines x = aq,...,x = ai are vertical asymptotes of
().

Graphs of

rational @ If deg(p) < deg(q), then the line y = 0 is a horizontal
e asymptote of f(x).
(9)
(x)

Q If deg(p) = deg(q), then the line y = « is a horizontal
asymptote of f(x).
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Let us sketch the graph of the function
0.32% + 0.1z
fz) =

(x+2)3—x)

Graphs of
rational
functions
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Let us sketch the graph of the function
@) = 0.32% + 0.1z

T (z+2)(B-2)
1. Domain: x # —2 and = # 3.

Graphs of
rational
functions
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Let us sketch the graph of the function

0.3z% + 0.1z
)= ——"—".
f(@) (x+2)(3—1x)
1. Domain: x # —2 and = # 3.
Graphs of 2. Vertical asymptotes: © = —2 and x = 3.

rational
functions
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Let us sketch the graph of the function

0.3z% + 0.1z
)= ——"—".
f(@) (x+2)(3—1x)
1. Domain: x # —2 and = # 3.
Graphs of 2. Vertical asymptotes: © = —2 and x = 3.

rational
functions

3. deg(numerator)=deg(denominator)= 2, so the

horizontal asymptote is y = —1 = —0.3.
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