

Lecture 11 Rational functions

MATH 0200

Dr. Boris Tsvelikhovskiy

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Outline

[Lecture 11](#page-0-0)

MATH 0200

[Rational functions](#page-2-0)

2 [Division of polynomials](#page-11-0)

3 [Behavior of a rational function near](#page-20-0) $\pm \infty$

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

Definition

Let $p(x)$ and $q(x) \neq 0$ be two polynomials. A function $g(x) = \dfrac{p(x)}{q(x)}$ is called a **rational function**.

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

Definition

Let $p(x)$ and $q(x) \neq 0$ be two polynomials. A function $g(x) = \dfrac{p(x)}{q(x)}$ is called a **rational function**.

Recall that the numbers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ are called integers (whole numbers).

Definition

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

Let $p(x)$ and $q(x) \neq 0$ be two polynomials. A function $g(x) = \dfrac{p(x)}{q(x)}$ is called a **rational function**.

Recall that the numbers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ are called integers (whole numbers). The numbers $\mathbb{Q} = \left\{ \frac{a}{b} \right\}$ $\left\{ \frac{a}{b} \mid a,b \text{ integers} \right\}$ are called $\texttt{rational}$ numbers.

Definition

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

Let $p(x)$ and $q(x) \neq 0$ be two polynomials. A function $g(x) = \dfrac{p(x)}{q(x)}$ is called a **rational function**.

Recall that the numbers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ are called integers (whole numbers). The numbers $\mathbb{Q} = \left\{ \frac{a}{b} \right\}$ $\left\{ \frac{a}{b} \mid a,b \text{ integers} \right\}$ are called $\texttt{rational}$ numbers.

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

The domain of a rational function $g(x) = \frac{p(x)}{q(x)}$ is the set ${x \in \mathbb{R} \mid q(x) \neq 0}.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

The domain of a rational function $g(x) = \frac{p(x)}{q(x)}$ is the set ${x \in \mathbb{R} \mid q(x) \neq 0}.$

Example

The domain of the rational function

$$
f(x) = \frac{75x - 22}{3(5 - x)(2x - 3)(x + 7)}
$$
 is the set $x \neq -7, 1.5, 5$

 $\mathbf{1} \qquad \mathbf{1} \qquad \mathbf{$

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

The domain of a rational function $g(x) = \frac{p(x)}{q(x)}$ is the set ${x \in \mathbb{R} \mid q(x) \neq 0}.$

Example

The domain of the rational function

$$
f(x) = \frac{75x - 22}{3(5 - x)(2x - 3)(x + 7)}
$$
 is the set $x \neq -7, 1.5, 5$
or, in the interval notation,
 $(-\infty, -7) \cup (-7, 1.5) \cup (1.5, 5) \cup (5, \infty).$

 $\mathbf{1} \qquad \mathbf{1} \qquad \mathbf{$

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

The domain of a rational function $g(x) = \frac{p(x)}{q(x)}$ is the set ${x \in \mathbb{R} \mid q(x) \neq 0}.$

Example

The domain of the rational function

$$
f(x) = \frac{75x - 22}{3(5 - x)(2x - 3)(x + 7)}
$$
 is the set $x \neq -7, 1.5, 5$
or, in the interval notation,
 $(-\infty, -7) \cup (-7, 1.5) \cup (1.5, 5) \cup (5, \infty).$

KOD KAD KED KED E YOUR

• The domain of the rational function

$$
g(x) = \frac{16 - 3x}{(x^2 + 15)(2 - x)}
$$
 is the set $x \neq 2$

[Lecture 11](#page-0-0)

MATH 0200

Rational [functions](#page-2-0)

The domain of a rational function $g(x) = \frac{p(x)}{q(x)}$ is the set ${x \in \mathbb{R} \mid q(x) \neq 0}.$

Example

The domain of the rational function

$$
f(x) = \frac{75x - 22}{3(5 - x)(2x - 3)(x + 7)}
$$
 is the set $x \neq -7, 1.5, 5$
or, in the interval notation,
 $(-\infty, -7) \cup (-7, 1.5) \cup (1.5, 5) \cup (5, \infty).$

• The domain of the rational function

 $g(x) = \frac{16 - 3x}{(x^2 + 15)(2 - x)}$ is the set $x \neq 2$ or, in the interval notation, $(-\infty, 2) \cup (2, \infty)$.

[Lecture 11](#page-0-0)

MATH 0200

Division of [polynomials](#page-11-0)

Similar to long division of numbers (which we now recall), there is long division of polynomials.

[Lecture 11](#page-0-0)

MATH 0200

Division of [polynomials](#page-11-0)

Similar to long division of numbers (which we now recall), there is long division of polynomials.

KORK SERVER ORA

Example

Let's divide 623 by 13:

[Lecture 11](#page-0-0)

MATH 0200

Division of [polynomials](#page-11-0)

Similar to long division of numbers (which we now recall), there is long division of polynomials.

[Lecture 11](#page-0-0)

MATH 0200

Division of [polynomials](#page-11-0)

Similar to long division of numbers (which we now recall), there is long division of polynomials.

Long division of polynomials

[Lecture 11](#page-0-0)

MATH 0200 Division of [polynomials](#page-11-0) Let $p(x) = 3x^3 - 12x + 2$ and divide it by $x - 3$. $3x^2$ +9x +15 $(x-3)$ 3 x^3 -12x +2 $3x^3 - 9x^2$ $9x^2 - 12x + 2$ $9x^2 - 27x$ $15x + 2$ $15x - 45$ 47

> We get $p(x) = (3x^2 + 9x + 15)(x - 3) + 47$. Notice that $p(3) = 3 \cdot 3^3 - 12 \cdot 3 + 2 = 81 - 36 + 2 = 47.$

MATH 0200

Division of [polynomials](#page-11-0)

-
-

• Let p and q be two polynomials with deg(p) \geq deg(q), then $p(x) = q(x)h(x) + r(x)$ for some polynomials $h(x)$ and $r(x)$ with $\deg(r) < \deg(q)$.

MATH 0200

Division of [polynomials](#page-11-0)

- Let p and q be two polynomials with $deg(p) \geq deg(q)$, then $p(x) = q(x)h(x) + r(x)$ for some polynomials $h(x)$ and $r(x)$ with $\deg(r) < \deg(q)$.
- A real number a is a zero of $p(x)$ if and only if $p(x) = (x - a)h(x)$ for some polynomial $h(x)$ with $deg(h) = deg(p) - 1$. In other words, $(x - a)$ is a factor of $p(x)$.

MATH 0200

Division of [polynomials](#page-11-0)

-
-
- Let p and q be two polynomials with $deg(p) \geq deg(q)$, then $p(x) = q(x)h(x) + r(x)$ for some polynomials $h(x)$ and $r(x)$ with $\deg(r) < \deg(q)$.
- A real number a is a zero of $p(x)$ if and only if $p(x) = (x - a)h(x)$ for some polynomial $h(x)$ with $\deg(h) = \deg(p) - 1$. In other words, $(x - a)$ is a factor of $p(x)$.
- More generally, the value of $p(a)$ is equal to the residue of division of $p(x)$ by $x - a$.

KORK EXTERNE PROPER

MATH 0200

Division of [polynomials](#page-11-0)

- Let p and q be two polynomials with $deg(p) \geq deg(q)$, then $p(x) = q(x)h(x) + r(x)$ for some polynomials $h(x)$ and $r(x)$ with $\deg(r) < \deg(q)$.
- A real number a is a zero of $p(x)$ if and only if $p(x) = (x - a)h(x)$ for some polynomial $h(x)$ with $\deg(h) = \deg(p) - 1$. In other words, $(x - a)$ is a factor of $p(x)$.
- More generally, the value of $p(a)$ is equal to the residue of division of $p(x)$ by $x - a$.

$$
p(x) = h(x)(x - a) + r \Rightarrow p(a) = h(a)(a - a) + r = r.
$$

KORK EXTERNE PROPER

[Lecture 11](#page-0-0)

MATH 0200

[Behavior of](#page-20-0) a rational function near ±∞

Similar to polynomials, the behavior of a rational function $f(x) = \frac{p(x)}{q(x)}$ is determined by the (ratio of) leading terms of p and q . We will denote the ratio of leading coefficients of p and q by α and the difference deg(p) – deg(q) by s.

K ロ K K 제8 K X 제공 X X 제공 X 및 및 X 9 Q Q X

[Lecture 11](#page-0-0)

MATH 0200

[Behavior of](#page-20-0) a rational function near ±∞

Similar to polynomials, the behavior of a rational function $f(x) = \frac{p(x)}{q(x)}$ is determined by the (ratio of) leading terms of

p and q . We will denote the ratio of leading coefficients of p and q by α and the difference deg(p) – deg(q) by s.

K ロ K K 제8 K X 제공 X X 제공 X 및 및 X 9 Q Q X

[Lecture 11](#page-0-0)

MATH 0200

[Behavior of](#page-20-0) a rational function near ±∞

Similar to polynomials, the behavior of a rational function $f(x) = \frac{p(x)}{q(x)}$ is determined by the (ratio of) leading terms of

p and q . We will denote the ratio of leading coefficients of p and q by α and the difference $\deg(p) - \deg(q)$ by s.

Definition

A line is called an asymptote if the distance between the graph of $f(x)$ and the line approaches zero as one or both of the x or y coordinates tends to infinity.

[Lecture 11](#page-0-0)

MATH 0200

[Behavior of](#page-20-0) a rational function near ±∞

Similar to polynomials, the behavior of a rational function $f(x) = \frac{p(x)}{q(x)}$ is determined by the (ratio of) leading terms of

p and q . We will denote the ratio of leading coefficients of p and q by α and the difference $\deg(p) - \deg(q)$ by s.

Definition

A line is called an asymptote if the distance between the graph of $f(x)$ and the line approaches zero as one or both of the x or y coordinates tends to infinity.

For instance, the lines $y = \alpha$ and $y = 0$ appearing in the table above are (horizontal) asymptotes.

MATH 0200

Example

•
$$
f(x) = \frac{27 - x^3}{(10 + x)(2x + 5)}
$$
. The ratio of leading terms is
$$
\frac{-x^3}{2x^2} = -0.5x
$$
 and
$$
deg(p) = 3 > 2 = deg(q).
$$

メロト メタトメ ミトメ ミトリ (音)

 2990

near ±∞

[Behavior of](#page-20-0) a rational function

MATH 0200

Example

[Behavior of](#page-20-0) a rational function near ±∞

$$
f(x) = \frac{27 - x^3}{(10 + x)(2x + 5)}
$$
. The ratio of leading terms is

$$
\frac{-x^3}{2x^2} = -0.5x
$$
 and deg(p) = 3 > 2 = deg(q). As
 $x \to \pm \infty$, we get $f(x) \to \mp \infty$.

メロト メタトメ ミトメ ミトリ (音)

MATH 0200

Example

[Behavior of](#page-20-0) a rational function near ±∞

$f(x) = \frac{27 - x^3}{(10 + x)^2}$ $\frac{1}{(10+x)(2x+5)}$. The ratio of leading terms is $-x^3$ $\frac{a}{2x^2} = -0.5x$ and $\deg(p) = 3 > 2 = \deg(q)$. As $x \to \pm \infty$, we get $f(x) \to \mp \infty$. $f(x) = \frac{x^2 - 7}{(10-x)(2)}$ $\frac{1}{(10-x)(3x+5)}$. The ratio of leading terms is x^2 $\frac{x^2}{-3x^2} = -\frac{1}{3}$ $\frac{1}{3}$ and $\deg(p) = \deg(q) = 2$.

KOD KAD KED KED E YOUR

MATH 0200

Example

[Behavior of](#page-20-0) a rational function near ±∞

\n- \n
$$
f(x) = \frac{27 - x^3}{(10 + x)(2x + 5)}
$$
. The ratio of leading terms is\n $\frac{-x^3}{2x^2} = -0.5x$ and $\deg(p) = 3 > 2 = \deg(q)$. As\n $x \to \pm \infty$, we get\n $f(x) \to \mp \infty$.\n
\n- \n $f(x) = \frac{x^2 - 7}{(10 - x)(3x + 5)}$. The ratio of leading terms is\n $\frac{x^2}{-3x^2} = -\frac{1}{3}$ and\n $\deg(p) = \deg(q) = 2$. As\n $x \to \infty$ or\n $x \to -\infty$, we get\n $f(x) \to -\frac{1}{3}$ and the line\n $y = -\frac{1}{3}$ is a horizontal asymptote of\n $f(x)$.\n
\n

メロト メタトメ ミトメ ミトリ (音) 2990

MATH 0200

[Behavior of](#page-20-0) a rational function near ±∞

Question

What is the horizontal asymptote of the graph of the rational function $h(x) = \frac{(5-x)(2x^2+7)}{7}$ $\frac{x}{7x-4x^3}$?

MATH 0200

[Behavior of](#page-20-0) a rational function near ±∞

Question

What is the horizontal asymptote of the graph of the rational function $h(x) = \frac{(5-x)(2x^2+7)}{7}$ $\frac{x}{7x-4x^3}$?

Answer: the degrees of the polynomials in numerator and denominator are both equal to three. The leading terms are $-2x^3$ and $-4x^3$, hence, the ratio of leading coefficients is $\alpha = \frac{-2}{4}$ $\frac{-2}{-4} = 0.5$. The horizontal asymptote is the line $y = 0.5$.

[Lecture 11](#page-0-0)

[Graphs of](#page-30-0) rational functions

Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function and $\{a_1, \ldots, a_k\}$ the set of zeros of the denominator $q(x)$.

KORKARKKERKER POLO

[Lecture 11](#page-0-0)

MATH 0200

[Graphs of](#page-30-0) rational functions

Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function and $\{a_1, \ldots, a_k\}$ the set of zeros of the denominator $q(x)$.

1 Domain of f consists of all numbers except $\{a_1, \ldots, a_k\}$.

KID KIN KEX KEX E YORA

[Lecture 11](#page-0-0)

MATH 0200

[Graphs of](#page-30-0) rational functions

Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function and $\{a_1, \ldots, a_k\}$ the set of zeros of the denominator $q(x)$.

1 Domain of f consists of all numbers except $\{a_1, \ldots, a_k\}$.

2 The lines $x = a_1, \ldots, x = a_k$ are vertical asymptotes of $f(x)$.

[Lecture 11](#page-0-0)

MATH 0200

[Graphs of](#page-30-0) rational functions

Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function and $\{a_1, \ldots, a_k\}$ the set of zeros of the denominator $q(x)$.

- **1** Domain of f consists of all numbers except $\{a_1, \ldots, a_k\}$.
- **2** The lines $x = a_1, \ldots, x = a_k$ are vertical asymptotes of $f(x)$.
- **3** If deg(p) \lt deg(q), then the line $y = 0$ is a horizontal asymptote of $f(x)$.

[Lecture 11](#page-0-0)

MATH 0200

[Graphs of](#page-30-0) rational functions

Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function and $\{a_1, \ldots, a_k\}$ the set of zeros of the denominator $q(x)$.

- **1** Domain of f consists of all numbers except $\{a_1, \ldots, a_k\}$.
- **2** The lines $x = a_1, \ldots, x = a_k$ are vertical asymptotes of $f(x)$.
- **3** If deg(p) \lt deg(q), then the line $y = 0$ is a horizontal asymptote of $f(x)$.
- **4** If deg(p) = deg(q), then the line $y = \alpha$ is a horizontal asymptote of $f(x)$.

MATH 0200

[Graphs of](#page-30-0) rational functions

Example

Let us sketch the graph of the function $f(x) = \frac{0.3x^2 + 0.1x}{(x + 2)(3)}$ $\frac{3.3x + 3.1x}{(x+2)(3-x)}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

MATH 0200

[Graphs of](#page-30-0) rational functions

Example

Let us sketch the graph of the function $f(x) = \frac{0.3x^2 + 0.1x}{(x + 2)(3)}$ $\frac{3.3x + 3.1x}{(x+2)(3-x)}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

1. Domain:
$$
x \neq -2
$$
 and $x \neq 3$.

MATH 0200

[Graphs of](#page-30-0) rational functions

Example

- Let us sketch the graph of the function $f(x) = \frac{0.3x^2 + 0.1x}{(x + 2)(3)}$ $\frac{3.3x + 3.1x}{(x+2)(3-x)}$
	- 1. Domain: $x \neq -2$ and $x \neq 3$.
	- 2. Vertical asymptotes: $x = -2$ and $x = 3$.

KORKARKKERKER POLO

MATH 0200

[Graphs of](#page-30-0) rational functions

Example

- Let us sketch the graph of the function $f(x) = \frac{0.3x^2 + 0.1x}{(x + 2)(3)}$ $\frac{3.3x + 3.1x}{(x+2)(3-x)}$
	- 1. Domain: $x \neq -2$ and $x \neq 3$.
	- 2. Vertical asymptotes: $x = -2$ and $x = 3$.
	- **3.** deg(numerator)=deg(denominator)= 2, so the horizontal asymptote is $y = \frac{0.3}{1}$ $\frac{0.0}{-1} = -0.3$.

