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Special bases

ℓn(a) = ℓoge(a) is called the natural logarithm (here

e = 2.7182 . . . is the Euler's number);

ℓg(a) = ℓog10(a) is called the common logarithm.

Remark

In computer science, the most frequently appearing

logarithm base is two.
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Properties of logarithm

1 ℓoga(b
k) = kℓoga(b) for any a > 0, b > 0, a ̸= 1 and any

real number k;

2 ℓogak(b) =
1
k ℓoga(b) for any a > 0, b > 0, a ̸= 1 and any

real number k;

3 ℓoga(bc) = ℓoga(b) + ℓoga(c) for any a, b, c > 0, a ̸= 1;

4 ℓoga(b/c) = ℓoga(b)− ℓoga(c) for any a, b, c > 0, a ̸= 1;

5 ℓoga(b) =
1

ℓogb(a)
;
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Example

Given that ℓog3(u) = −2 and ℓog3(v) = 7, compute

ℓog3

(
u5

v2

)
.

We �rst use the fourth property to get

ℓog3

(
u5

v2

)
= ℓog3(u

5)− ℓog3(v
2) and then the �rst property

asserts ℓog3(u
5)− ℓog3(v

2) = 5ℓog3(u)− 2ℓog3(v) =
5 · (−2)− 2 · 7 = −10− 14 = −24.
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Question

Given that ℓn(u) = −1 and ℓn(v) = 3, compute ℓn((v2u)10).
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Change of base

Let b > 0, b ̸= 1 and c > 0 be two numbers, then for any

number a > 0, a ̸= 1 there is an identity

ℓogb(c) =
ℓoga(c)

ℓoga(b)

known as the change of base formula.

Remark

The change of base formula is very useful, since it allows to

express logarithm with any base in terms of a ratio of two

logarithms of some convenient base.
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Example

Let's �nd the approximate value of ℓog2022(1000) using
a calculator, which can only evaluate the natural

logarithm of any positive number.

Using the change of

base formula, we write

ℓog2022(1000) =
ℓn(2022)

ℓn(1000)
≈ 1.012.

This time we �nd the approximate value of

ℓog2022(1000) using a calculator, which can only

evaluate the common logarithm (with base 10) of any
positive number:

ℓog2022(1000) =
ℓg(2022)

ℓg(1000)
≈ 1.012.

Notice that we do get the same answer!
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1 Solve the equation ℓn(x2 − 3x) = ℓn(4).

Solution: we have eℓn(x
2−3x) = eℓn(4) ⇔ x2 − 3x = 4 ⇔

x2 − 3x− 4 = (x− 4)(x+ 1) = 0, so x = 4 and x = −1
are the solutions.

2 Solve the equation ex − 5 = 14e−x.

Solution:

ex−5 = 14e−x ⇔ ex−5−14e−x = 0 ⇔ e2x−5ex−14 = 0.
Let t = ex > 0 and solve

t2 − 5t− 14 = (t− 7)(t+ 2) = 0, giving t = 7 (as −2 ≤ 0
we disregard this answer) with ex = 7 and x = ℓn(7).
Check: eℓn(7) − 5 = 7− 5 = 2 = 14 · 1

7 = 14e−ℓn(7) ✓



Lecture 13

MATH 0200

Special
bases

Properties
of logarithm

Change of
base

Example

1 Solve the equation ℓn(x2 − 3x) = ℓn(4).
Solution: we have eℓn(x

2−3x) = eℓn(4) ⇔ x2 − 3x = 4 ⇔
x2 − 3x− 4 = (x− 4)(x+ 1) = 0, so x = 4 and x = −1
are the solutions.

2 Solve the equation ex − 5 = 14e−x.

Solution:

ex−5 = 14e−x ⇔ ex−5−14e−x = 0 ⇔ e2x−5ex−14 = 0.
Let t = ex > 0 and solve

t2 − 5t− 14 = (t− 7)(t+ 2) = 0, giving t = 7 (as −2 ≤ 0
we disregard this answer) with ex = 7 and x = ℓn(7).
Check: eℓn(7) − 5 = 7− 5 = 2 = 14 · 1

7 = 14e−ℓn(7) ✓



Lecture 13

MATH 0200

Special
bases

Properties
of logarithm

Change of
base

Example

1 Solve the equation ℓn(x2 − 3x) = ℓn(4).
Solution: we have eℓn(x

2−3x) = eℓn(4) ⇔ x2 − 3x = 4 ⇔
x2 − 3x− 4 = (x− 4)(x+ 1) = 0, so x = 4 and x = −1
are the solutions.

2 Solve the equation ex − 5 = 14e−x.

Solution:

ex−5 = 14e−x ⇔ ex−5−14e−x = 0 ⇔ e2x−5ex−14 = 0.
Let t = ex > 0 and solve

t2 − 5t− 14 = (t− 7)(t+ 2) = 0, giving t = 7 (as −2 ≤ 0
we disregard this answer) with ex = 7 and x = ℓn(7).
Check: eℓn(7) − 5 = 7− 5 = 2 = 14 · 1

7 = 14e−ℓn(7) ✓



Lecture 13

MATH 0200

Special
bases

Properties
of logarithm

Change of
base

Example

1 Solve the equation ℓn(x2 − 3x) = ℓn(4).
Solution: we have eℓn(x

2−3x) = eℓn(4) ⇔ x2 − 3x = 4 ⇔
x2 − 3x− 4 = (x− 4)(x+ 1) = 0, so x = 4 and x = −1
are the solutions.

2 Solve the equation ex − 5 = 14e−x.

Solution:

ex−5 = 14e−x ⇔ ex−5−14e−x = 0 ⇔ e2x−5ex−14 = 0.

Let t = ex > 0 and solve

t2 − 5t− 14 = (t− 7)(t+ 2) = 0, giving t = 7 (as −2 ≤ 0
we disregard this answer) with ex = 7 and x = ℓn(7).
Check: eℓn(7) − 5 = 7− 5 = 2 = 14 · 1

7 = 14e−ℓn(7) ✓



Lecture 13

MATH 0200

Special
bases

Properties
of logarithm

Change of
base

Example

1 Solve the equation ℓn(x2 − 3x) = ℓn(4).
Solution: we have eℓn(x

2−3x) = eℓn(4) ⇔ x2 − 3x = 4 ⇔
x2 − 3x− 4 = (x− 4)(x+ 1) = 0, so x = 4 and x = −1
are the solutions.

2 Solve the equation ex − 5 = 14e−x.

Solution:

ex−5 = 14e−x ⇔ ex−5−14e−x = 0 ⇔ e2x−5ex−14 = 0.
Let t = ex > 0 and solve

t2 − 5t− 14 = (t− 7)(t+ 2) = 0, giving t = 7 (as −2 ≤ 0
we disregard this answer) with ex = 7 and x = ℓn(7).

Check: eℓn(7) − 5 = 7− 5 = 2 = 14 · 1
7 = 14e−ℓn(7) ✓



Lecture 13

MATH 0200

Special
bases

Properties
of logarithm

Change of
base

Example

1 Solve the equation ℓn(x2 − 3x) = ℓn(4).
Solution: we have eℓn(x

2−3x) = eℓn(4) ⇔ x2 − 3x = 4 ⇔
x2 − 3x− 4 = (x− 4)(x+ 1) = 0, so x = 4 and x = −1
are the solutions.

2 Solve the equation ex − 5 = 14e−x.

Solution:

ex−5 = 14e−x ⇔ ex−5−14e−x = 0 ⇔ e2x−5ex−14 = 0.
Let t = ex > 0 and solve

t2 − 5t− 14 = (t− 7)(t+ 2) = 0, giving t = 7 (as −2 ≤ 0
we disregard this answer) with ex = 7 and x = ℓn(7).
Check: eℓn(7) − 5 = 7− 5 = 2 = 14 · 1

7 = 14e−ℓn(7) ✓


	Special bases
	Properties of logarithm
	Change of base

