Lec	ture	13

MATH 0200

Special bases

Properties of logarithm

Change of base

Lecture 13 Rules for logarithms

MATH 0200

Dr. Boris Tsvelikhovskiy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base

2 Properties of logarithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Special bases

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base • $ln(a) = log_e(a)$ is called the **natural logarithm** (here e = 2.7182... is the Euler's number);

Special bases

Lecture 13

MATH 0200

Special bases

- Properties of logarithm
- Change of base

• $ln(a) = log_e(a)$ is called the **natural logarithm** (here e = 2.7182... is the Euler's number);

• $lg(a) = log_{10}(a)$ is called the **common logarithm**.

Special bases

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base • $ln(a) = log_e(a)$ is called the **natural logarithm** (here e = 2.7182... is the Euler's number);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• $lg(a) = log_{10}(a)$ is called the **common logarithm**.

Remark

In computer science, the most frequently appearing logarithm base is two.

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base • $log_a(b^k) = klog_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base

- $log_a(b^k) = klog_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;
- ② $log_{a^k}(b) = \frac{1}{k}log_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base

- $log_a(b^k) = klog_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;
- ② $log_{a^k}(b) = \frac{1}{k} log_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base

- $log_a(b^k) = klog_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;
- ② $log_{a^k}(b) = \frac{1}{k} log_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base

- $log_a(b^k) = klog_a(b)$ for any $a > 0, b > 0, a \neq 1$ and any real number k;

- log_a(b/c) = log_a(b) log_a(c) for any a, b, c > 0, a ≠ 1;
 log_a(b) = 1/(log_b(a);

うして ふゆ く は く は く む く し く

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

Given that $log_3(u) = -2$ and $log_3(v) = 7$, compute $log_3\left(\frac{u^5}{v^2}\right)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

MATH 0200

Special bases

Properties of logarithm

Example

Change of base Given that $log_3(u) = -2$ and $log_3(v) = 7$, compute $log_3\left(\frac{u^5}{v^2}\right)$. We first use the fourth property to get $log_3\left(\frac{u^5}{v^2}\right) = log_3(u^5) - log_3(v^2)$ and then the first property asserts $log_3(u^5) - log_3(v^2) = 5log_3(u) - 2log_3(v) =$ $5 \cdot (-2) - 2 \cdot 7 = -10 - 14 = -24$.

MATH 0200

Special bases

Properties of logarithm

Change of base

Question

Given that $\ell n(u) = -1$ and $\ell n(v) = 3$, compute $\ell n((v^2 u)^{10})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Change of base

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base Let $b > 0, b \neq 1$ and c > 0 be two numbers, then for any number $a > 0, a \neq 1$ there is an identity

Change of base

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base

Let $b > 0, b \neq 1$ and c > 0 be two numbers, then for any number $a > 0, a \neq 1$ there is an identity

$$\ell og_b(c) = \frac{\ell og_a(c)}{\ell og_a(b)}$$

known as the change of base formula.

Change of base

Lecture 13

MATH 0200

Special bases

Properties of logarithm

Change of base

Let $b > 0, b \neq 1$ and c > 0 be two numbers, then for any number $a > 0, a \neq 1$ there is an identity

$$\ell og_b(c) = \frac{\ell og_a(c)}{\ell og_a(b)}$$

known as the change of base formula.

Remark

The change of base formula is very useful, since it allows to express logarithm with any base in terms of a ratio of two logarithms of some convenient base.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

• Let's find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the natural logarithm of any positive number.

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

• Let's find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the natural logarithm of any positive number. Using the change of base formula, we write

$$log_{2022}(1000) = \frac{ln(2022)}{ln(1000)} \approx 1.012.$$

MATH 0200

- Special bases
- Properties of logarithm
- Change of base

Example

• Let's find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the natural logarithm of any positive number. Using the change of base formula, we write

$$log_{2022}(1000) = \frac{ln(2022)}{ln(1000)} \approx 1.012.$$

• This time we find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the common logarithm (with base 10) of any positive number:

うして ふゆ く は く は く む く し く

MATH 0200

- Special bases
- Properties of logarithm

Change of base

Example

• Let's find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the natural logarithm of any positive number. Using the change of base formula, we write

$$log_{2022}(1000) = \frac{ln(2022)}{ln(1000)} \approx 1.012.$$

• This time we find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the common logarithm (with base 10) of any positive number:

 $\ell og_{2022}(1000) = \frac{\ell g(2022)}{\ell g(1000)} \approx 1.012.$

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

• Let's find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the natural logarithm of any positive number. Using the change of base formula, we write

$$log_{2022}(1000) = \frac{ln(2022)}{ln(1000)} \approx 1.012.$$

• This time we find the approximate value of $log_{2022}(1000)$ using a calculator, which can only evaluate the common logarithm (with base 10) of any positive number:

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

$$\log_{2022}(1000) = \frac{\ell g(2022)}{\ell g(1000)} \approx 1.012.$$

Notice that we do get the same answer!

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

• Solve the equation
$$\ell n(x^2 - 3x) = \ell n(4)$$
.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

• Solve the equation $\ell n(x^2 - 3x) = \ell n(4)$. Solution: we have $e^{\ell n(x^2 - 3x)} = e^{\ell n(4)} \Leftrightarrow x^2 - 3x = 4 \Leftrightarrow x^2 - 3x - 4 = (x - 4)(x + 1) = 0$, so x = 4 and x = -1 are the solutions.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

MATH 0200

Example

Special bases

Properties of logarithm

Change of base • Solve the equation $ln(x^2 - 3x) = ln(4)$. Solution: we have $e^{ln(x^2 - 3x)} = e^{ln(4)} \Leftrightarrow x^2 - 3x = 4 \Leftrightarrow x^2 - 3x - 4 = (x - 4)(x + 1) = 0$, so x = 4 and x = -1 are the solutions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Solve the equation $e^x - 5 = 14e^{-x}$.

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

- Solve the equation $\ell n(x^2 3x) = \ell n(4)$. Solution: we have $e^{\ell n(x^2 - 3x)} = e^{\ell n(4)} \Leftrightarrow x^2 - 3x = 4 \Leftrightarrow x^2 - 3x - 4 = (x - 4)(x + 1) = 0$, so x = 4 and x = -1 are the solutions.
- 2 Solve the equation $e^x 5 = 14e^{-x}$. Solution:
 - $e^x 5 = 14e^{-x} \Leftrightarrow e^x 5 14e^{-x} = 0 \Leftrightarrow e^{2x} 5e^x 14 = 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

- Solve the equation $ln(x^2 3x) = ln(4)$. Solution: we have $e^{ln(x^2 - 3x)} = e^{ln(4)} \Leftrightarrow x^2 - 3x = 4 \Leftrightarrow x^2 - 3x - 4 = (x - 4)(x + 1) = 0$, so x = 4 and x = -1 are the solutions.
- Solve the equation $e^x 5 = 14e^{-x}$. Solution: $e^x - 5 = 14e^{-x} \Leftrightarrow e^x - 5 - 14e^{-x} = 0 \Leftrightarrow e^{2x} - 5e^x - 14 = 0$. Let $t = e^x > 0$ and solve $t^2 - 5t - 14 = (t - 7)(t + 2) = 0$, giving t = 7 (as $-2 \le 0$ we disregard this answer) with $e^x = 7$ and x = ln(7).

MATH 0200

Special bases

Properties of logarithm

Change of base

Example

- Solve the equation $\ell n(x^2 3x) = \ell n(4)$. Solution: we have $e^{\ell n(x^2 - 3x)} = e^{\ell n(4)} \Leftrightarrow x^2 - 3x = 4 \Leftrightarrow x^2 - 3x - 4 = (x - 4)(x + 1) = 0$, so x = 4 and x = -1 are the solutions.
- Solve the equation e^x 5 = 14e^{-x}. Solution: e^x-5 = 14e^{-x} ⇔ e^x-5-14e^{-x} = 0 ⇔ e^{2x}-5e^x-14 = 0. Let t = e^x > 0 and solve t²-5t-14 = (t-7)(t+2) = 0, giving t = 7 (as -2 ≤ 0 we disregard this answer) with e^x = 7 and x = ln(7). Check: e^{ln(7)} - 5 = 7 - 5 = 2 = 14 ⋅ 1/7 = 14e^{-ln(7)} ✓