

MATH 0200

Lecture 14 Exponential growth

MATH 0200

Dr. Boris Tsvelikhovskiy

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Outline

[Lecture 14](#page-0-0)

- MATH 0200
-
-
-
- 1 [A story of an imaginary trader](#page-2-0)
- 2 [Exponential growth](#page-11-0)

- - 3 [Simple and compound interest](#page-24-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

KORK SERVER ORA

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

KORK SERVER ORA

Start: 1 cent;

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- Start: 1 cent;
- Week 1: $2^1 = 2$ cents;

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

KO KARA KE KA EK GRA

- Start: 1 cent;
- Week 1: $2^1 = 2$ cents;
- Week 2: $2^2 = 4$ cents;

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

- Start: 1 cent;
- Week 1: $2^1 = 2$ cents;
- Week 2: $2^2 = 4$ cents;
- Week 20: $2^{20} = $10,485.76$ cents;

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

- Start: 1 cent;
- Week 1: $2^1 = 2$ cents;
- Week 2: $2^2 = 4$ cents;
- Week 20: $2^{20} = $10,485.76$ cents;
- Week 21: $2^{21} = $20,971.52 \text{ cents};$

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

- Start: 1 cent;
- Week 1: $2^1 = 2$ cents;
- Week 2: $2^2 = 4$ cents;
- Week 20: $2^{20} = $10,485.76$ cents;
- Week 21: $2^{21} = $20,971.52 \text{ cents};$
- Week 30: $2^{30} = $10, 737, 418.24$ cents.

MATH 0200

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

- Start: 1 cent;
- Week 1: $2^1 = 2$ cents;
- Week 2: $2^2 = 4$ cents;
- Week 20: $2^{20} = $10,485.76$ cents;
- Week 21: $2^{21} = $20,971.52 \text{ cents};$
- Week 30: $2^{30} = $10, 737, 418.24$ cents.

Looks like he might be able to open a chain of grocery stores

[A story of](#page-2-0) an imaginary trader

A young entrepreneur Joe made the following agreement: he has only one cent, but each week the amount of money he has doubles:

- Start: 1 cent;
- Week 1: $2^1 = 2$ cents;
- Week 2: $2^2 = 4$ cents;
- Week 20: $2^{20} = $10,485.76$ cents;
- Week 21: $2^{21} = $20,971.52 \text{ cents};$
- Week 30: $2^{30} = $10, 737, 418.24$ cents.

Looks like he might be able to open a chain of grocery stores

KOD KOD KED KED E VAN

[Lecture 14](#page-0-0)

MATH 0200

[Exponential](#page-11-0) growth

Definition

A function f is said to have **exponential growth** if f is of the form $f(x) = cb^x$ with $c > 0$ and $b > 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Lecture 14](#page-0-0)

MATH 0200

[Exponential](#page-11-0) growth

Definition

A function f is said to have **exponential growth** if f is of the form $f(x) = cb^x$ with $c > 0$ and $b > 1$.

Example

Suppose f is a function with exponential growth such that $f(1) = 1$ and $f(4) = 27$.

[Lecture 14](#page-0-0)

MATH 0200

[Exponential](#page-11-0) growth

Definition

A function f is said to have **exponential growth** if f is of the form $f(x) = cb^x$ with $c > 0$ and $b > 1$.

Example

Suppose f is a function with exponential growth such that $f(1) = 1$ and $f(4) = 27$. Find the formula for $f(x)$.

[Lecture 14](#page-0-0)

MATH 0200

[Exponential](#page-11-0) growth

Definition

A function f is said to have **exponential growth** if f is of the form $f(x) = cb^x$ with $c > 0$ and $b > 1$.

Example

Suppose f is a function with exponential growth such that $f(1) = 1$ and $f(4) = 27$. Find the formula for $f(x)$. We need to solve the following system of 2 equations with two unknown parameters b and c :

[Lecture 14](#page-0-0)

MATH 0200

[Exponential](#page-11-0) growth

Definition

A function f is said to have **exponential growth** if f is of the form $f(x) = cb^x$ with $c > 0$ and $b > 1$.

Example

Suppose f is a function with exponential growth such that $f(1) = 1$ and $f(4) = 27$. Find the formula for $f(x)$. We need to solve the following system of 2 equations with two unknown parameters b and c :

$$
\begin{cases}\nf(1) = cb^1 = cb = 1 \\
f(4) = cb^4 = 27.\n\end{cases}
$$

[Lecture 14](#page-0-0)

MATH 0200

[Exponential](#page-11-0) growth

Definition

A function f is said to have **exponential growth** if f is of the form $f(x) = cb^x$ with $c > 0$ and $b > 1$.

Example

Suppose f is a function with exponential growth such that $f(1) = 1$ and $f(4) = 27$. Find the formula for $f(x)$. We need to solve the following system of 2 equations with two unknown parameters b and c :

 $\int f(1) = cb^1 = cb = 1$ $f(4) = cb^4 = 27.$ The first equality gives $b = 1/c$.

which implies $cb^4 = \frac{c}{c^4}$ $\frac{c}{c^4} = \frac{1}{c^3}$ $\frac{1}{c^3} = 27 \Leftrightarrow c = 1/3$ and $b = 1/c = 3$ with $f(x) = \frac{1}{3}3^x = 3^{x-1}$.

MATH 0200

[Exponential](#page-11-0) growth

Example

Suppose a colony of bacteria starts with 100 cells and triples in size every two hours.

MATH 0200

[Exponential](#page-11-0) growth

Example

Suppose a colony of bacteria starts with 100 cells and triples in size every two hours.

(a) Find a function that models the population growth of this colony of bacteria.

MATH 0200

[Exponential](#page-11-0) growth

Example

Suppose a colony of bacteria starts with 100 cells and triples in size every two hours.

(a) Find a function that models the population growth of this colony of bacteria. Notice that the starting value is $f(0)$, the value of f at 0, which is exactly the value of c $(f(0) = cb^0 = c)$, hence, $c = 100$.

MATH 0200

[Exponential](#page-11-0) growth

Example

Suppose a colony of bacteria starts with 100 cells and triples in size every two hours.

(a) Find a function that models the population growth of this colony of bacteria. Notice that the starting value is $f(0)$, the value of f at 0, which is exactly the value of c $(f(0) = cb^0 = c)$, hence, $c = 100$. The condition that 'the colony triples in size every two hours' gives √ $f(2) = 3f(0) \Leftrightarrow 100b^2 = 300 \Leftrightarrow b^2 = 3 \Leftrightarrow b = \sqrt{3}.$

(ロ) (個) (差) (差)

 \Rightarrow

 2990

MATH 0200

[Exponential](#page-11-0) growth

Example

Suppose a colony of bacteria starts with 100 cells and triples in size every two hours.

(a) Find a function that models the population growth of this colony of bacteria. Notice that the starting value is $f(0)$, the value of f at 0, which is exactly the value of c $(f(0) = cb^0 = c)$, hence, $c = 100$. The condition that 'the colony triples in size every two hours' gives √ $f(2) = 3f(0) \Leftrightarrow 100b^2 = 300 \Leftrightarrow b^2 = 3 \Leftrightarrow b = \sqrt{3}.$ The function is $f(x) = 100(\sqrt{3})^x$.

MATH 0200

[Exponential](#page-11-0) growth

Example

Suppose a colony of bacteria starts with 100 cells and triples in size every two hours.

- (a) Find a function that models the population growth of this colony of bacteria. Notice that the starting value is $f(0)$, the value of f at 0, which is exactly the value of c $(f(0) = cb^0 = c)$, hence, $c = 100$. The condition that 'the colony triples in size every two hours' gives √ $f(2) = 3f(0) \Leftrightarrow 100b^2 = 300 \Leftrightarrow b^2 = 3 \Leftrightarrow b = \sqrt{3}.$ The function is $f(x) = 100(\sqrt{3})^x$.
- (b) Approximately how many cells will be in the colony after one hour?

MATH 0200

[Exponential](#page-11-0) growth

Example

Suppose a colony of bacteria starts with 100 cells and triples in size every two hours.

- (a) Find a function that models the population growth of this colony of bacteria. Notice that the starting value is $f(0)$, the value of f at 0, which is exactly the value of c $(f(0) = cb^0 = c)$, hence, $c = 100$. The condition that 'the colony triples in size every two hours' gives √ $f(2) = 3f(0) \Leftrightarrow 100b^2 = 300 \Leftrightarrow b^2 = 3 \Leftrightarrow b = \sqrt{3}.$ The function is $f(x) = 100(\sqrt{3})^x$.
- (b) Approximately how many cells will be in the colony after one hour?

$$
f(1) = 100(\sqrt{3})^1 = 100\sqrt{3} \approx 173.
$$

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

Definition

An interest is a payment from a borrower or deposit-taking financial institution to a lender or depositor of an amount above repayment of the principal sum (that is, the amount borrowed), at a particular rate.

KID X イヨト K ミト K ミト / ミー めんぐ

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

Definition

An interest is a payment from a borrower or deposit-taking financial institution to a lender or depositor of an amount above repayment of the principal sum (that is, the amount borrowed), at a particular rate.

Suppose you have a deposit of P dollars in a bank, and the bank pays interest r once per year at the end of the year. Then the amount of money you will have after t years is

KOL E KELKELKAPI KOLA

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

Definition

An interest is a payment from a borrower or deposit-taking financial institution to a lender or depositor of an amount above repayment of the principal sum (that is, the amount borrowed), at a particular rate.

Suppose you have a deposit of P dollars in a bank, and the bank pays interest r once per year at the end of the year. Then the amount of money you will have after t years is $P(1 + rt)$ dollars. Such an interest is called simple.

KOL E KELKELKAPI KOLA

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

Definition

An interest is a payment from a borrower or deposit-taking financial institution to a lender or depositor of an amount above repayment of the principal sum (that is, the amount borrowed), at a particular rate.

Suppose you have a deposit of P dollars in a bank, and the bank pays interest r once per year at the end of the year. Then the amount of money you will have after t years is $P(1 + rt)$ dollars. Such an interest is called simple.

Example

Suppose you deposit \$3000 in a bank account that pays 5% annual interest. How much money will be on your account after 4 years?

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

Definition

An interest is a payment from a borrower or deposit-taking financial institution to a lender or depositor of an amount above repayment of the principal sum (that is, the amount borrowed), at a particular rate.

Suppose you have a deposit of P dollars in a bank, and the bank pays interest r once per year at the end of the year. Then the amount of money you will have after t years is $P(1 + rt)$ dollars. Such an interest is called simple.

Example

Suppose you deposit \$3000 in a bank account that pays 5% annual interest. How much money will be on your account after 4 years? Here $P = 3000$, $r = 0.05$ and $t = 4$, giving $3000(1 + 0.05 \cdot 3) = 3000 \cdot 1.15 = 3450$ dollars.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 000

Compound interest

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

A principal amount of P dollars is deposited in a bank account that pays annual interest at rate r .

1 Balance after first quarter: $P_1 = P\left(1 + \frac{r}{4}\right)$ 4 , withdraw and deposit again;

KOL E KELKELKAPI KOLA

Compound interest

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

A principal amount of P dollars is deposited in a bank account that pays annual interest at rate r .

- **1** Balance after first quarter: $P_1 = P\left(1 + \frac{r}{4}\right)$ 4 , withdraw and deposit again;
- Balance after second quarter (now principal sum is P_1): $P_2 = P_1 \left(1 + \frac{r}{4} \right)$ 4 $= P\left(1 + \frac{r}{4}\right)$ 4 $\big)^2$, withdraw and deposit again...

KORKA SERKER ORA

Compound interest

[Lecture 14](#page-0-0)

MATH 0200

[Simple and](#page-24-0) compound interest

A principal amount of P dollars is deposited in a bank account that pays annual interest at rate r .

1 Balance after first quarter: $P_1 = P\left(1 + \frac{r}{4}\right)$ 4 , withdraw and deposit again;

2 Balance after second quarter (now principal sum is P_1): $P_2 = P_1 \left(1 + \frac{r}{4} \right)$ 4 $= P\left(1 + \frac{r}{4}\right)$ 4 $\big)^2$, withdraw and deposit again...

After t years the amount of money on the account is

$$
P\left(1+\frac{r}{4}\right)^{4t}, \text{ where}
$$

t is the number of years and $4t$ the total number of compounds ('automatic withdrawal and deposit').

MATH 0200

[Simple and](#page-24-0) compound interest

Generalizing the formula on previous slide, we get that the total accumulated value (principal sum plus compounded interest) after t years, is given by the formula

$$
P\left(1+\frac{r}{n}\right)^{nt}, \text{ where}
$$

- \bullet P is the original principal sum;
- \bullet r is the nominal annual interest rate;
- \bullet *n* is the compounding frequency (per year);
- \bullet t is the overall length of time the interest is applied (in years).

KORKA SERKER ORA

MATH 0200

[Simple and](#page-24-0) compound interest

Example

Suppose a savings account pays 3% interest per year, compounded quarterly. If the savings account starts with \$500, how many years would it take for the savings account to exceed \$900?

 $\mathbf{1} \qquad \mathbf{1} \qquad \mathbf{$

 2990

MATH 0200

[Simple and](#page-24-0) compound interest

Example

Suppose a savings account pays 3% interest per year, compounded quarterly. If the savings account starts with \$500, how many years would it take for the savings account to exceed \$900? We use the formula on the previous slide with $r = 0.03, P = 500$ and $n = 4$ to get the inequality

MATH 0200

[Simple and](#page-24-0) compound interest

Example

Suppose a savings account pays 3% interest per year, compounded quarterly. If the savings account starts with \$500, how many years would it take for the savings account to exceed \$900? We use the formula on the previous slide with $r = 0.03, P = 500$ and $n = 4$ to get the inequality

$$
500\left(1+\frac{0.03}{4}\right)^{4t} > 900.
$$

Next we find the smallest value of t satisfying the inequality: $500\left(1+\frac{0.03}{4}\right)^{4t} > 900 \Leftrightarrow 5(1.0075)^{4t} > 9 \Leftrightarrow (1.0075)^{4t} \ge$ $1.8 \Leftrightarrow 4t > \log_{1.0075} 1.8 \approx 78.665 \Leftrightarrow t > \frac{78.665}{4} \approx 19.67$. The minimal number of years is 20.

MATH 0200

[Simple and](#page-24-0) compound interest

Question

Suppose a savings account pays 6% interest per year, compounded monthly. If the savings account starts with \$1000, how much money is on the account after 2 years? (round your answer to the nearest cent)

KID X イヨト K ミト K ミト / ミー めんぐ

MATH 0200

[Simple and](#page-24-0) compound interest

Question

Suppose a savings account pays 6% interest per year, compounded monthly. If the savings account starts with \$1000, how much money is on the account after 2 years? (round your answer to the nearest cent)

Answer: $1000\left(1+\frac{0.06}{12}\right)^{12\cdot2} = 1000(1.005)^{24} \approx 1127.16 .

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

MATH 0200

[Simple and](#page-24-0) compound interest

Question

Suppose a savings account pays 6% interest per year, compounded monthly. If the savings account starts with \$1000, how much money is on the account after 2 years? (round your answer to the nearest cent)

Answer: $1000\left(1+\frac{0.06}{12}\right)^{12\cdot2} = 1000(1.005)^{24} \approx 1127.16 .

Remark

Notice that the simple interest (with same interest rate) would give $1000(1 + 0.06 \cdot 2) = 1120 .

K ロ K K 제8 K X 제공 X X 제공 X 및 및 X 9 Q Q X