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A function f is said to have exponential growth if f is of
the form f(x) = ¢b® with ¢ > 0 and b > 1.

.

Exponential
growth

e Suppose f is a function with exponential growth such that
S /(1) = 1 and f(4) = 27. Find the formula for f(z).

' We need to solve the following system of 2 equations with
two unknown parameters b and c:

{f(l):cblzcbzl

The first equality gives b = 1/¢,
F(4) = cbt = 27. ety e /

which implies cb? = § = 5 =27 c=1/3and b=1/c=3
with f(z) = $3% = 3771,
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Suppose a colony of bacteria starts with 100 cells and triples

in size every two hours.

rader (a) Find a function that models the population growth of
Exponential this colony of bacteria. Notice that the starting value is
srowh f(0), the value of f at 0, which is exactly the value of ¢
ompound (f(0) = cb® = ¢), hence, ¢ = 100. The condition that
e 'the colony triples in size every two hours’ gives

f(2) =3f(0) & 1000*> = 300 < b> =3 < b= /3.

The function is f(x) = 100(1/3)7.

(b) Approximately how many cells will be in the colony
after one hour?

£(1) = 100(v/3)! = 100v/3 ~ 173.
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above repayment of the principal sum (that is, the amount
borrowed), at a particular rate.

Suppose you have a deposit of P dollars in a bank, and the

Simple and

e —— bank pays interest r once per year at the end of the year.
Then the amount of money you will have after ¢ years is
P(1+ rt) dollars. Such an interest is called simple.

interest

Suppose you deposit $3000 in a bank account that pays 5%
annual interest. How much money will be on your account
after 4 years? Here P = 3000, » = 0.05 and ¢ = 4, giving
3000(1 + 0.05 - 3) = 3000 - 1.15 = 3450 dollars.
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@ Balance after second quarter (now principal sum is P ):

Simple an r r 2 - .
?Olnfplmmdd P=D (1 + Z) =P (1 + Z> , withdraw and deposit
interest again_._

After t years the amount of money on the account is

r 4t
P (1 + 1) , where

t is the number of years and 4t the total number of
compounds ("automatic withdrawal and deposit’).
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Generalizing the formula on previous slide, we get that the
total accumulated value (principal sum plus compounded
interest) after ¢ years, is given by the formula

r\ nt
P (1 + 7> , where
Simple and n
compound
interest

P is the original principal sum;

r is the nominal annual interest rate;

n is the compounding frequency (per year);

t is the overall length of time the interest is applied (in
years).
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Suppose a savings account pays 3% interest per year,
compounded quarterly. If the savings account starts with
$500, how many years would it take for the savings account
to exceed $9007 We use the formula on the previous slide
with r = 0.03, P = 500 and n = 4 to get the inequality

4t
500 <1 aF OT‘EB) > 900.

Next we find the smallest value of ¢ satisfying the inequality:
500 (1 + O'Tf?’)zlt > 900 < 5(1.0075)% > 9 < (1.0075)4 >

1.8 < 4t > ogy.00751.8 ~ 78.665 < t > 8855 ~ 19.67. The
minimal number of years is 20.
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Answer: 1000 (1+ %%8)""" = 1000(1.005)*! ~ $1127.16.
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Suppose a savings account pays 6% interest per year,
compounded monthly. If the savings account starts with
$1000, how much money is on the account after 2 years?
(round your answer to the nearest cent)

Simple and
compound
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)12~2

Answer: 1000 (1+ %%8)""" = 1000(1.005)*! ~ $1127.16.

Notice that the simple interest (with same interest rate)
would give 1000(1 4 0.06 - 2) = $1120.
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