Lecture	15

Continuousl; compounded interest

Lecture 15 Exponential growth (part II)

MATH 0200

Dr. Boris Tsvelikhovskiy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Outline

Lecture 15

1 Continuous growth rate

2 Continuously compounded interest

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest

Definition

If a quantity has a **continuous growth rate** (exponential growth rate) of r per unit time, then after t time units an initial amount P grows to Pe^{rt} units.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest

Definition

If a quantity has a **continuous growth rate** (exponential growth rate) of r per unit time, then after t time units an initial amount P grows to Pe^{rt} units.

Example

Suppose a colony of bacteria has a continuous growth rate of 20% per hour.

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest

Definition

If a quantity has a **continuous growth rate** (exponential growth rate) of r per unit time, then after t time units an initial amount P grows to Pe^{rt} units.

Example

Suppose a colony of bacteria has a continuous growth rate of 20% per hour.

• By what percent will the colony have grown after seven hours?

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest

Definition

If a quantity has a **continuous growth rate** (exponential growth rate) of r per unit time, then after t time units an initial amount P grows to Pe^{rt} units.

Example

Suppose a colony of bacteria has a continuous growth rate of 20% per hour.

• By what percent will the colony have grown after seven hours?

After seven hours the size of the colony is $Pe^{0.2 \cdot 7}$, the answer is $(\frac{Pe^{0.2 \cdot 7}}{P} - 1) \cdot 100\% \approx 306\%$

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest

Definition

If a quantity has a **continuous growth rate** (exponential growth rate) of r per unit time, then after t time units an initial amount P grows to Pe^{rt} units.

Example

Suppose a colony of bacteria has a continuous growth rate of 20% per hour.

• By what percent will the colony have grown after seven hours?

After seven hours the size of the colony is $Pe^{0.2\cdot7}$, the answer is $(\frac{Pe^{0.2\cdot7}}{P}-1)\cdot100\% \approx 306\%$

If the colony contains 3000 cells now, how many did it contain three hours ago?

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest

Definition

If a quantity has a **continuous growth rate** (exponential growth rate) of r per unit time, then after t time units an initial amount P grows to Pe^{rt} units.

Example

Suppose a colony of bacteria has a continuous growth rate of 20% per hour.

• By what percent will the colony have grown after seven hours?

After seven hours the size of the colony is $Pe^{0.2\cdot7}$, the answer is $(\frac{Pe^{0.2\cdot7}}{P}-1)\cdot 100\% \approx 306\%$

② If the colony contains 3000 cells now, how many did it contain three hours ago? Pe^{0.2·3} = 3000 ⇔ P = $\frac{3000}{e^{0.6}} ≈ 1646.$

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest As we have already observed in the previous lecture, an increasing frequency of interest compounds leads to a greater accumulation of interest earned.

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest As we have already observed in the previous lecture, an increasing frequency of interest compounds leads to a greater accumulation of interest earned.

Question

How many times a year can the interest be compounded?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest As we have already observed in the previous lecture, an increasing frequency of interest compounds leads to a greater accumulation of interest earned.

Question

How many times a year can the interest be compounded?

There seems to be no upper bound. The formula for the interest of rate r compounded continuously is

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lecture 15

MATH 0200

Continuous growth rate

Continuously compounded interest As we have already observed in the previous lecture, an increasing frequency of interest compounds leads to a greater accumulation of interest earned.

Question

How many times a year can the interest be compounded?

There seems to be no upper bound. The formula for the interest of rate r compounded continuously is

$$P\left(1+\frac{r}{n}\right)^{nt} \xrightarrow{n \to \infty} Pe^{rt}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Continuous growth rate

Continuously compounded interest

Example

Suppose 10,000 is placed in a bank account that pays 5% annual interest.

• How much money will be in the bank account after 10 years?

Continuous growth rate

Continuously compounded interest

Example

Suppose \$10,000 is placed in a bank account that pays 5% annual interest.

• How much money will be in the bank account after 10 years?

 $10000(1+0.05\cdot 10) = \$15,000.$

Continuous growth rate

Continuously compounded interest

Example

Suppose \$10,000 is placed in a bank account that pays 5% annual interest.

• How much money will be in the bank account after 10 years?

 $10000(1+0.05\cdot 10) = \$15,000.$

If interest is compounded quarterly, how much will be in the bank account after 10 years?

Continuous growth rate

Continuously compounded interest

Example

Suppose \$10,000 is placed in a bank account that pays 5% annual interest.

• How much money will be in the bank account after 10 years?

 $10000(1+0.05\cdot 10) = \$15,000.$

If interest is compounded quarterly, how much will be in the bank account after 10 years? $10000 \left(1 + \frac{0.05}{10000}\right)^{4 \cdot 10} \approx $16,436.19.$

$$0000\left(1+\frac{3133}{4}\right) \approx \$16,436.19$$

Continuous growth rate

Continuously compounded interest

Example

Suppose \$10,000 is placed in a bank account that pays 5% annual interest.

• How much money will be in the bank account after 10 years?

 $10000(1+0.05\cdot 10) = \$15,000.$

- If interest is compounded quarterly, how much will be in the bank account after 10 years? $10000 \left(1 + \frac{0.05}{4}\right)^{4 \cdot 10} \approx \$16, 436.19.$
- If interest is compounded continuously, how much will be in the bank account after 10 years?

Continuously pounded interest

Example

Suppose 10,000 is placed in a bank account that pays 5% annual interest.

• How much money will be in the bank account after 10 years?

 $10000(1 + 0.05 \cdot 10) = $15,000.$

- 2 If interest is compounded quarterly, how much will be in the bank account after 10 years? $10000\left(1+\frac{0.05}{4}\right)^{4\cdot10} \approx \$16,436.19.$

If interest is compounded continuously, how much will be in the bank account after 10 years? $10000e^{0.05 \cdot 10} = 10000e^{0.5} \approx \$16, 487.21.$

MATH 0200

Continuous growth rate

Continuously compounded interest

Example

• How many years does it take for money to double at 3% annual interest compounded continuously?

MATH 0200

Continuous growth rate

Continuously compounded interest Example

• How many years does it take for money to double at 3% annual interest compounded continuously? $Pe^{0.03t} = 2P \Leftrightarrow e^{0.03t} = 2 \Leftrightarrow 0.03t = \ell n(2) \Leftrightarrow t = \frac{\ell n(2)}{0.03} \approx 23$ years.

うして ふゆ く 山 マ ふ し マ う く し マ

MATH 0200

- Continuous growth rate
- Continuously compounded interest

Example

- How many years does it take for money to double at 3% annual interest compounded continuously? $Pe^{0.03t} = 2P \Leftrightarrow e^{0.03t} = 2 \Leftrightarrow 0.03t = \ell n(2) \Leftrightarrow t = \frac{\ell n(2)}{0.03} \approx 23$ years.
- How many years does it take for money to quadruple at 3% annual interest compounded continuously?

うして ふゆ く 山 マ ふ し マ う く し マ

MATH 0200

Continuous growth rate

Continuously compounded interest

Example

- How many years does it take for money to double at 3% annual interest compounded continuously? $Pe^{0.03t} = 2P \Leftrightarrow e^{0.03t} = 2 \Leftrightarrow 0.03t = \ell n(2) \Leftrightarrow t = \frac{\ell n(2)}{0.03} \approx 23$ years.
- 2 How many years does it take for money to quadruple at 3% annual interest compounded continuously? $Pe^{0.03t} = 4P \Leftrightarrow e^{0.03t} = 4 \Leftrightarrow 0.03t = \ell n(4) \Leftrightarrow t = \frac{\ell n(4)}{0.03} = \frac{2\ell n(2)}{0.03} \approx 46$ years.

うして ふゆ く 山 マ ふ し マ う く し マ

MATH 0200

Continuous growth rate

Continuously compounded interest

Example

- How many years does it take for money to double at 3% annual interest compounded continuously? $Pe^{0.03t} = 2P \Leftrightarrow e^{0.03t} = 2 \Leftrightarrow 0.03t = \ell n(2) \Leftrightarrow t = \frac{\ell n(2)}{0.03} \approx 23$ years.
- Observe that the equation of the equation

amount doubles after 23 years, so the calculation was unnecessary.