Lecture 16

MATH 0200

Unit circle

angles

Negative

Radian

Kadian

Special points on the unit circle

Length of a circular arc and area of

Lecture 16 The unit circle

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

$_{\rm Lecture~16}$

MATH 020

Unit circl

angles Negativ

Negativ angles

Radiar

Special points or the unit circle

Length of a

- 1 Unit circle
- 2 Positive angles
- 3 Negative angles
- Radians
- 5 Special points on the unit circle
- 6 Length of a circular arc and area of a sector

Unit circle

Lecture 16

MATH 0200

Unit circle

Positive angles

Negativ

Radians

Special points or the unit circle

Length of a circular arc and area of a sector

Definition

The unit circle is the circle with radius 1 centered at the origin.

Unit circle

Lecture 16

MATH 0200

Unit circle

Positive angles

Negativ

Radian

e caran

Special points on the unit circle

Length of a circular arc and area of a sector

Definition

The **unit circle** is the circle with radius 1 centered at the origin.

angles

angles

Radian

Special points or the unit circle

Length of a circular arc and area of a sector The unit circle in the xy-plane is the set of points (x, y) satisfying the equation $x^2 + y^2 = 1$.

Lecture 16

MATH 0200

Unit circle

Positive angles

angles

Radian

Special points or the unit circle

Length of a circular are and area of a sector The unit circle in the xy-plane is the set of points (x, y) satisfying the equation $x^2 + y^2 = 1$.

Example

Find the points on the unit circle whose y-coordinate is equal to 0.5.

Unit circle

Positive angles

angles

Radian

Special points or the unit

Length of a circular are and area of a sector

Example

Find the points on the unit circle whose y-coordinate is equal to 0.5. Let (x, 0.5) be a point on the unit circle. Then $x^2 + 0.5^2 = 1 \Leftrightarrow x^2 = 1 - 0.25 = 0.75$ and $x = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$.

Lecture 16 MATH 0200

Unit circle

Positive angles

angles

Radian

Special points on the unit circle

Length of a circular are and area of a sector

The unit circle in the xy-plane is the set of points (x, y) satisfying the equation $x^2 + y^2 = 1$.

Example

Find the points on the unit circle whose y-coordinate is equal to 0.5. Let (x,0.5) be a point on the unit circle. Then $x^2 + 0.5^2 = 1 \Leftrightarrow x^2 = 1 - 0.25 = 0.75$ and $x = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$. We conclude that there are two points on the unit circle whose y-coordinate is equal to 0.5, namely, $\left(\frac{\sqrt{3}}{2}, 0.5\right)$ and $\left(-\frac{\sqrt{3}}{2}, 0.5\right)$.

Lecture 16
MATH 0200

Unit circle

Positive angles

Negati angles

Radian

Special points on the unit circle

Length of a circular are and area of a sector

The unit circle in the xy-plane is the set of points (x, y) satisfying the equation $x^2 + y^2 = 1$.

Example

Find the points on the unit circle whose y-coordinate is equal to 0.5. Let (x, 0.5) be a point on the unit circle. Then

$$x^2 + 0.5^2 = 1 \Leftrightarrow x^2 = 1 - 0.25 = 0.75 \text{ and } x = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}.$$

We conclude that there are two points on the unit circle whose y-coordinate is equal to 0.5, namely, $\left(\frac{\sqrt{3}}{2}, 0.5\right)$ and

$$\left(-\frac{\sqrt{3}}{2}, 0.5\right).$$

Positive angles

Lecture 16

MATH 0200

Unit circle

Positive angles

angles

Radian

Special points or the unit circle

Length of a circular are and area of a sector

Definition

For a number $\alpha > 0$, the radius of the unit circle corresponding to α degrees is the radius that has angle α degrees with the positive horizontal axis, when measured counterclockwise from the positive horizontal axis:

Positive angles

Lecture 16

MATH 0200

Unit circle

Positive angles

angles

Radian

Special points or the unit circle

Length of a circular arc and area of a sector

Definition

For a number $\alpha > 0$, the radius of the unit circle corresponding to α degrees is the radius that has angle α degrees with the positive horizontal axis, when measured counterclockwise from the positive horizontal axis:

Positive angles

Radians

Radian

Special points on the unit circle

Length of a circular arc and area of a sector

Example

Sketch the radius of the unit circle corresponding to each of the following angles: $45^{\circ}, 270^{\circ}$ and 360° .

Length of a circular arc and area of a sector

Example

Sketch the radius of the unit circle corresponding to each of the following angles: 45° , 270° and 360° .

Negative angles

Lecture 16

MATH 020

Unit circle

Positive

Negative angles

n i

ladian

Special points or the unit circle

Length of a circular ard and area of

Definition

For a number $\alpha < 0$, the radius of the unit circle corresponding to α degrees is the radius that has angle $|\alpha|$ degrees with the positive horizontal axis, when measured clockwise from the positive horizontal axis:

Negative angles

Lecture 16

MATH 020

Unit circle

Positive

Negative angles

Radians

{adian

Special points on the unit circle

Length of a circular arc and area of a sector

Definition

For a number $\alpha < 0$, the radius of the unit circle corresponding to α degrees is the radius that has angle $|\alpha|$ degrees with the positive horizontal axis, when measured clockwise from the positive horizontal axis:

Lecture 16

MATH 0200

Unit circle

Positive angles

angres

Radians

Special points or the unit circle

Length of a circular arc and area of a sector

Remark

The radius corresponding to an angle α corresponds to angles $\alpha + 360k$ for any integer k as well.

Lecture 16

MATH 0200

Unit circl

angles

Negative angles

Radians

Special points on the unit

Length of a circular are and area of a sector

Remark

The radius corresponding to an angle α corresponds to angles $\alpha + 360k$ for any integer k as well.

Definition

Radians are a unit of measurement for angles such that 2π radians correspond to 360° .

Lecture 16

MATH 0200

Unit circle

angles

Negative angles

Radians

Special points on the unit

Length of a circular are and area of a sector

Remark

The radius corresponding to an angle α corresponds to angles $\alpha + 360k$ for any integer k as well.

Definition.

Radians are a unit of measurement for angles such that 2π radians correspond to 360° .

Using the equality 2π rad = 360° , we get conversion formulas:

Lecture 16

MATH 020

Unit circle

angles

Negative angles

Radians

Special points on the unit

Length of a circular are and area of a sector

Remark

The radius corresponding to an angle α corresponds to angles $\alpha + 360k$ for any integer k as well.

Definition

Radians are a unit of measurement for angles such that 2π radians correspond to 360° .

Using the equality 2π rad = 360° , we get conversion formulas:

• 1 rad =
$$\left(\frac{180}{\pi}\right)^{\circ}$$
 and

Lecture 16

MATH 0200

Unit circl

Positive angles

Negative angles

Radians

Special points on the unit

Length of a circular are and area of a sector

Remark

The radius corresponding to an angle α corresponds to angles $\alpha + 360k$ for any integer k as well.

Definition

Radians are a unit of measurement for angles such that 2π radians correspond to 360° .

Using the equality 2π rad = 360° , we get conversion formulas:

- 1 rad = $\left(\frac{180}{\pi}\right)^{\circ}$ and
- $1^{\circ} = \frac{\pi}{180}$ rad.

Lecture 16

MATH 0200

Unit circle

angles

Negative

Radians

Special points on the unit circle

Length of a circular arc and area of a sector

Example

• Convert 120 degrees to radians.

Length of a circular are and area of

Example

• Convert 120 degrees to radians.

We use the second formula to get $120^{\circ} = \frac{\pi}{180} \cdot 120 = \frac{120\pi}{180} = \frac{2\pi}{3}$ rad.

Length of a circular are and area of a sector

Example

• Convert 120 degrees to radians.

We use the second formula to get $120^{\circ} = \frac{\pi}{180} \cdot 120 = \frac{120\pi}{180} = \frac{2\pi}{3}$ rad.

2 Convert
$$\frac{5\pi}{6}$$
 radians to degrees.

Example

• Convert 120 degrees to radians.

We use the second formula to get

$$120^{\circ} = \frac{\pi}{180} \cdot 120 = \frac{120\pi}{180} = \frac{2\pi}{3} \text{ rad.}$$

2 Convert $\frac{5\pi}{6}$ radians to degrees.

This time we use the first formula and get $\frac{5\pi}{6}$ rad $=\frac{180}{\pi} \cdot \frac{5\pi}{6} = \frac{180 \cdot 5\pi}{6\pi} = 30 \cdot 5 = 150^{\circ}$.

3 Convert
$$\frac{2\pi}{15}$$
 radians to degrees.

Example

• Convert 120 degrees to radians.

We use the second formula to get

$$120^{\circ} = \frac{\pi}{180} \cdot 120 = \frac{120\pi}{180} = \frac{2\pi}{3} \text{ rad.}$$

2 Convert $\frac{5\pi}{6}$ radians to degrees.

This time we use the first formula and get

$$\frac{5\pi}{6}$$
 rad = $\frac{180}{\pi} \cdot \frac{5\pi}{6} = \frac{180 \cdot 5\pi}{6\pi} = 30 \cdot 5 = 150^{\circ}$.

3 Convert $\frac{2\pi}{15}$ radians to degrees.

This time we use the first formula and get

$$\frac{2\pi}{15}$$
 rad = $\frac{180}{\pi} \cdot \frac{2\pi}{15} = \frac{180 \cdot 2\pi}{15\pi} = 12 \cdot 2 = 24^{\circ}$.

Lecture 16

MATH 0200

Unit circle

angles

Negativ

Radians

Special points on the unit circle

Length of a circular arc and area of

Question

What is the radian measure of the angle $\alpha = \frac{18}{\pi}$ degrees?

Special points on the unit circle

Lecture 16

MATH 0200

Unit circle

Positive angles

Negati

Ŭ

Kadian

Special points on the unit circle

Length of a circular arc and area of a sector

angle	endpoint of radius
$0 = 0^{\circ}$	(1,0)
$\frac{\pi}{6} = 30^{\circ}$	$\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$
$\frac{\pi}{4} = 45^{\circ}$	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\frac{\pi}{3} = 60^{\circ}$	$\left(rac{1}{2},rac{\sqrt{3}}{2} ight)$
$\frac{\pi}{2} = 90^{\circ}$	(0, 1)
$\pi=180^{\circ}$	(-1, 0)

Length of a circular arc and area of a sector

Lecture 16

MATH 0200

Unit circle

Positive angles

Negati

Radian

Special points o the unit

Length of a circular arc and area of a sector Let $0 \le \alpha \le 2\pi$, then the length a circular arc on the circle of radius r corresponding to α radians is equal to αr and the area of sector with angle α radians is equal to $\frac{\alpha r^2}{2}$.

Length of a circular arc and area of a sector

Lecture 16

MATH 0200

Unit circle

Positive angles

angles

Radian

tadian

Special points on the unit circle

Length of a circular arc and area of a sector Let $0 \le \alpha \le 2\pi$, then the length a circular arc on the circle of radius r corresponding to α radians is equal to αr and the area of sector with angle α radians is equal to $\frac{\alpha r^2}{2}$.

Examples

Lecture 16

MATH 0200

Unit circle

Positive angles

angles

Radian

Special points or the unit circle

Length of a circular arc and area of a sector

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

Examples |

Lecture 16

MATH 0200

Unit circle

Positive angles

angles

adian

Special points or the unit circle

Length of a circular arc and area of a sector

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

• How far does the endpoint of the hour hand of the clock travel in five hours?

angles

Radian

Special points or the unit circle

Length of a circular arc and area of a sector

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

• How far does the endpoint of the hour hand of the clock travel in five hours?

$$\ell = \frac{5}{12} \cdot 2\pi \cdot 4 = \frac{10\pi}{3} \text{ inches.}$$

Length of a circular arc and area of a sector

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

• How far does the endpoint of the hour hand of the clock travel in five hours?

$$\ell = \frac{5}{12} \cdot 2\pi \cdot 4 = \frac{10\pi}{3}$$
 inches.

2 How far does the endpoint of the minute hand of the clock travel in 3 hours 15 minutes?

Length of a circular arc and area of a sector

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

• How far does the endpoint of the hour hand of the clock travel in five hours?

$$\ell = \frac{5}{12} \cdot 2\pi \cdot 4 = \frac{10\pi}{3}$$
 inches.

• How far does the endpoint of the minute hand of the clock travel in 3 hours 15 minutes?

$$\ell = 3 \cdot 2\pi \cdot 7 + \frac{15}{60} \cdot 2\pi \cdot 7 = 45.5\pi$$
 inches.

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

• How far does the endpoint of the hour hand of the clock travel in five hours?

$$\ell = \frac{5}{12} \cdot 2\pi \cdot 4 = \frac{10\pi}{3}$$
 inches.

• How far does the endpoint of the minute hand of the clock travel in 3 hours 15 minutes?

$$\ell = 3 \cdot 2\pi \cdot 7 + \frac{15}{60} \cdot 2\pi \cdot 7 = 45.5\pi$$
 inches.

For a 14-inch pizza 60, find the area of a slice with angle $\frac{4}{7}$ radians.

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

• How far does the endpoint of the hour hand of the clock travel in five hours?

$$\ell = \frac{5}{12} \cdot 2\pi \cdot 4 = \frac{10\pi}{3}$$
 inches.

• How far does the endpoint of the minute hand of the clock travel in 3 hours 15 minutes?

$$\ell = 3 \cdot 2\pi \cdot 7 + \frac{15}{60} \cdot 2\pi \cdot 7 = 45.5\pi$$
 inches.

For a 14-inch pizza 60, find the area of a slice 60 with angle $\frac{4}{7}$ radians. Notice that 14 inches is the diameter of the pizza, so the radius is 7 inches.

Length of a circular arc and area of a sector

Example

Suppose the distance from the center of a wall clock to the endpoint of the hour hand is 4 inches and the length of the minute hand is 7 inches.

• How far does the endpoint of the hour hand of the clock travel in five hours?

$$\ell = \frac{5}{12} \cdot 2\pi \cdot 4 = \frac{10\pi}{3}$$
 inches.

② How far does the endpoint of the minute hand of the clock travel in 3 hours 15 minutes?

$$\ell = 3 \cdot 2\pi \cdot 7 + \frac{15}{60} \cdot 2\pi \cdot 7 = 45.5\pi$$
 inches.

For a 14-inch pizza $\stackrel{4}{\sim}$, find the area of a slice with angle $\frac{4}{7}$ radians. Notice that 14 inches is the diameter of the pizza, so the radius is 7 inches.

$$S()$$
 = $\frac{1}{2} \cdot \frac{4}{7} \cdot 7^2 = 14 \text{ in}^2$.

Positive angles

Negativ angles

Radian

Special points or the unit circle

Length of a circular arc and area of a sector

Question

Suppose an ant walks clockwise on the unit circle from the point (0,1) to the endpoint of the radius corresponding to $\left(2+\frac{\pi}{2}\right)$ radians. How far has the ant walked?

Length of a circular arc and area of a sector

Question

Suppose an ant walks clockwise on the unit circle from the point (0,1) to the endpoint of the radius corresponding to $\left(2+\frac{\pi}{2}\right)$ radians. How far has the ant walked?

