Lecture 17

MATH 0200

osine and cosine: definitions

signs of sines and cosines

First trigonometric identity

Graphs of sine and cosine

Lecture 17 Cosine and sine

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 17

MATH 0200

Sine and cosine: definitions

Science of signs of sines and

First trigonometric identity

Graphs of sine and 1 Sine and cosine: definitions

2 Science of signs of sines and cosines

3 First trigonometric identity

4 Graphs of sine and cosine

Sine and cosine: definitions

Lecture 17

MATH 0200

Sine and cosine: definitions

Science of signs of sines and cosines

trigonome ric identity

Graphs of sine and

Definition

• The **cosine** of an angle α , denoted $\cos(\alpha)$, is the x-coordinate of the endpoint of the radius of the unit circle corresponding to α .

Sine and cosine: definitions

Lecture 17

MATH 0200

Sine and cosine: definitions

Science of signs of sines and cosines

First trigonometric identity

Graphs of sine and cosine

Definition

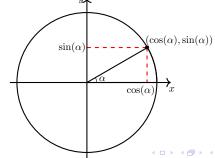
- The cosine of an angle α , denoted $\cos(\alpha)$, is the x-coordinate of the endpoint of the radius of the unit circle corresponding to α .
- The sine of an angle α , denoted $\sin(\alpha)$, is the y-coordinate of the endpoint of the radius of the unit circle corresponding to α .

Sine and cosine: definitions

Lecture 17

MATH 0200

Sine and cosine: definitions


Science of signs of sines and cosines

First trigonometric identity

Graphs of sine and cosine

Definition

- The cosine of an angle α , denoted $\cos(\alpha)$, is the x-coordinate of the endpoint of the radius of the unit circle corresponding to α .
- The sine of an angle α , denoted $\sin(\alpha)$, is the y-coordinate of the endpoint of the radius of the unit circle corresponding to α .

Special angles

Lecture 17

MATH 0200

Sine and cosine: definitions

Science of signs of sines and cosines

first trigonomet

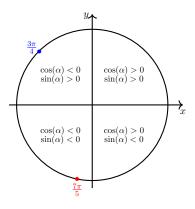
Graphs of sine and cosine

α	$\sin(\alpha)$	$\cos(\alpha)$
0°	0	1
$\frac{\pi}{6} = 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4} = 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3} = 60^{\circ}$ $\frac{\pi}{2} = 90^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2} = 90^{\circ}$	1	0
$\pi = 180^{\circ}$	0	-1

Science of signs of sines and cosines

Lecture 17

MATH 0200


Sine and cosine: definitions

Science of signs of sines and cosines

First

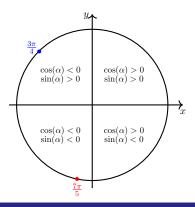
igonomet. c identitv

Graphs of sine and

Science of signs of sines and cosines

Lecture 17

MATH 0200


Sine and cosine: definitions

Science of signs of sines and cosines

Firs

rigonomet ic identity

Graphs of sine and cosine

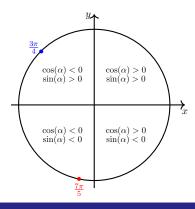
Example

$$\bullet \cos\left(\frac{3\pi}{4}\right) < 0 \text{ and } \sin\left(\frac{3\pi}{4}\right) > 0;$$

Science of signs of sines and cosines

Lecture 17

MATH 0200


Sine and cosine: definitions

Science of signs of sines and cosines

Firs

igonomet c identity

Graphs of sine and cosine

Example

- \bullet cos $\left(\frac{3\pi}{4}\right)$ <0 and sin $\left(\frac{3\pi}{4}\right)$ >0;

First trigonometric identity

Lecture 17

MATH 0200

Sine and cosine: definitions

Science o signs of sines and cosines

First trigonometric identity

Graphs of sine and For every angle α :

$$\sin^2(\alpha) + \cos^2(\alpha) = 1.$$

First trigonometric identity

Lecture 17

MATH 0200

Sine and cosine: definitions

Science of signs of sines and cosines

First trigonometric identity

Graphs of sine and cosine For every angle α :

$$\sin^2(\alpha) + \cos^2(\alpha) = 1.$$

Example

Given that $\sin(\alpha) = 0.8$ and α is between $\frac{\pi}{2}$ and π , find the value of $\cos(\alpha)$.

First trigonometric identity

Lecture 17

MATH 0200

Sine and cosine: definitions

Science of signs of sines and cosines

First trigonometric identity

Graphs of sine and cosine For every angle α :

$$\sin^2(\alpha) + \cos^2(\alpha) = 1.$$

Example

Given that $\sin(\alpha) = 0.8$ and α is between $\frac{\pi}{2}$ and π , find the value of $\cos(\alpha)$.

We find
$$\cos^2(\alpha) = 1 - \sin^2(\alpha) \Leftrightarrow \cos(\alpha) = \pm \sqrt{1 - \sin^2(\alpha)} = \pm \sqrt{1 - 0.8^2} = \pm \sqrt{0.36} = \pm 0.6$$
 and, as $\frac{\pi}{2} < \alpha < \pi$, we conclude that $\cos(\alpha)$ is negative, so $\cos(\alpha) = -0.6$.

Science of signs of sines and cosines

First trigonometric identity

Graphs of sine and cosine

Question

Given that $\cos(\alpha) = -\sqrt{0.19}$ and α is between π and $\frac{3\pi}{2}$, find the value of $\sin(\alpha)$.

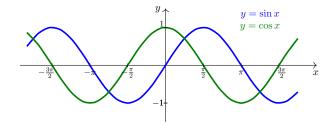
Question

Given that $\cos(\alpha) = -\sqrt{0.19}$ and α is between π and $\frac{3\pi}{2}$, find the value of $\sin(\alpha)$.

Answer: we compute $\sin^2(\alpha) = 1 - \cos^2(\alpha) \Leftrightarrow \sin(\alpha) = \pm \sqrt{1 - \cos^2(\alpha)} = \pm \sqrt{1 - (-\sqrt{0.19})^2} = \pm \sqrt{0.81} = \pm 0.9$ and, as $\pi < \alpha < \frac{3\pi}{2}$, we conclude that $\sin(\alpha)$ is negative, so $\sin(\alpha) = -0.9$.

Lecture 17

MATH 0200


Sine and cosine: definitions

Science o signs of sines and cosines

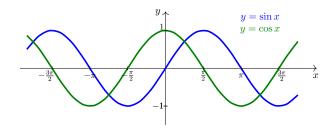
First

gonomet identity

Graphs of sine and cosine

Lecture 17

MATH 0200


Sine and cosine: definitions

Science of signs of sines and cosines

First

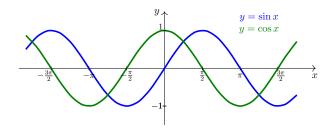
trigonometric identity

Graphs of sine and cosine

Domain: $\mathbb{R} = (-\infty, \infty)$.

Lecture 17

MATH 0200


Sine and cosine: definitions

Science of signs of sines and cosines

First

rigonomet c identity

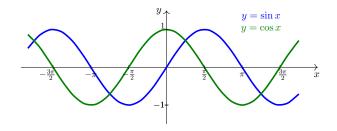
Graphs of sine and cosine

Domain: $\mathbb{R} = (-\infty, \infty)$.

Range: [-1, 1].

Lecture 17

MATH 0200


Sine and cosine: definitions

Science of signs of sines and cosines

First

gonomete identity

Graphs of sine and cosine

Domain: $\mathbb{R} = (-\infty, \infty)$.

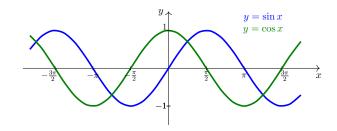
Range: [-1, 1].

Remark

• cos(-x) = cos(x), so cos(x) is an even function;

Lecture 17

MATH 0200


Sine and cosine: definitions

Science of signs of sines and cosines

First

rigonomet ric identity

Graphs of sine and cosine

Domain: $\mathbb{R} = (-\infty, \infty)$.

Range: [-1, 1].

Remark

- cos(-x) = cos(x), so cos(x) is an even function;
 - $\sin(-x) = -\sin(x)$, so $\sin(x)$ is an odd function.