Lecture 1

Lecture 1 Inequalities, sets and absolute value

MATH 0200

Dr. Boris Tsvelikhovskiy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Lecture 1

1 Inequalities

2 Sets

3 Intervals

4 Absolute value

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Lecture 1	

Let a and b be two numbers. We will consider the following relations between them:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sets

Intervals

Absolute value

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

• $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \leq b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

A D F A 目 F A E F A E F A Q Q

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

Properties

• Transitivity: $a \leq b \leq c$ implies $a \leq c$;

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \leq b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

- Transitivity: $a \le b \le c$ implies $a \le c$;
- Multiplication by a constant:
 - if $a \leq b$ and c > 0, then $ac \leq bc$;

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \leq b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

- Transitivity: $a \le b \le c$ implies $a \le c$;
- Multiplication by a constant:
 - if $a \leq b$ and c > 0, then $ac \leq bc$;
 - if $a \leq b$ and c < 0, then $ac \geq bc$;

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \leq b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

- Transitivity: $a \leq b \leq c$ implies $a \leq c$;
- Multiplication by a constant:
 - if $a \leq b$ and c > 0, then $ac \leq bc$;
 - if $a \leq b$ and c < 0, then $ac \geq bc$;
- Addition of inequalities: if $a \leq b$ and $c \leq d$, then $a + c \leq b + d$.

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

- Transitivity: $a \le b \le c$ implies $a \le c$;
- Multiplication by a constant:
 - if $a \leq b$ and c > 0, then $ac \leq bc$;
 - if $a \leq b$ and c < 0, then $ac \geq bc$;
- Addition of inequalities: if $a \leq b$ and $c \leq d$, then $a + c \leq b + d$.
- If a > b > 0, then $\frac{1}{b} > \frac{1}{a}$.

Lecture 1

MATH 0200

Inequalities

 Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{ \text{objects} \mid \text{properties} \}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture 1

MATH 0200

Inequalities

Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{ \text{objects} \mid \text{properties} \}.$

Example

• $A = \{\text{animals in Pitt Zoo}\}$

Lecture 1

MATH 0200

Inequalities

 Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{ \text{objects} \mid \text{properties} \}.$

Example

- $A = \{\text{animals in Pitt Zoo}\}$
- $B = \{$ students at Pitt | student knows sets $\}$

Lecture 1

MAIH 0200

Inequalities

 Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{ objects \mid properties \}.$

Example

- $A = \{\text{animals in Pitt Zoo}\}$
- $B = \{$ students at Pitt | student knows sets $\}$
- $C = \{a \in \mathbb{R} \mid a > 2022\}$ is the set of real numbers greater than 2022.

Lecture 1

Inequalities

 Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{ objects \mid properties \}.$

Example

- $A = \{\text{animals in Pitt Zoo}\}$
- $B = \{$ students at Pitt | student knows sets $\}$
- $C = \{a \in \mathbb{R} \mid a > 2022\}$ is the set of real numbers greater than 2022.

elements, a panda 🥗

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value A very important class of sets is given by intervals. There are three types of intervals.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value A very important class of sets is given by intervals. There are three types of intervals.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(1) Open interval:
$$(a, b) = \{c \mid a < c < b\}.$$

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value A very important class of sets is given by intervals. There are three types of intervals.

うしゃ ふゆ きょう きょう うくの

(1) Open interval:
$$(a, b) = \{c \mid a < c < b\}.$$

(2) Half-open intervals: $[a,b) = \{c \mid a \le c < b\}$ and $(a,b] = \{c \mid a < c \le b\}.$

Lecture 1 MATH 0200

Inequalities

Sets

Intervals

Absolute value A very important class of sets is given by intervals. There are three types of intervals.

うして ふゆ く 山 マ ふ し マ う く し マ

- (1) Open interval: $(a, b) = \{c \mid a < c < b\}.$
- (2) Half-open intervals: $[a,b) = \{c \mid a \le c < b\}$ and $(a,b] = \{c \mid a < c \le b\}.$
- (3) Closed interval: $[a, b] = \{c \mid a \le c \le b\}.$

Lecture 1 MATH 0200

Here we describe the basic operations on sets. Let A and B be two sets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Absolut value

Lecture 1 MATH 0200

Inequalities

Sets

Intervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

Union: A ∪ B is the set of elements that belong to at least one of the sets A, B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

- Union: A ∪ B is the set of elements that belong to at least one of the sets A, B.
- Intersection: A ∩ B is the set of elements that belong to both sets A and B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

- Union: A ∪ B is the set of elements that belong to at least one of the sets A, B.
- Intersection: A ∩ B is the set of elements that belong to both sets A and B.

Example

Let A = (-1, 4) and B = [-5, 2] be two intervals. Then the union $A \cup B$ is the half-open interval [-5, 4) and the intersection $A \cap B$ is the half-open interval (-1, 2].

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

- Union: A ∪ B is the set of elements that belong to at least one of the sets A, B.
- Intersection: A ∩ B is the set of elements that belong to both sets A and B.

Example

Let A = (-1, 4) and B = [-5, 2] be two intervals. Then the union $A \cup B$ is the half-open interval [-5, 4) and the intersection $A \cap B$ is the half-open interval (-1, 2].

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value

Question

Let $X = \{1, 4, 5, 6, 8, 9, 11\}$ and $Y = \{2, 4, 7, 9\}$ be two sets. What are the union $X \cup Y$ and intersection $X \cap Y$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Absolute value

Lecture 1 MATH 0200 Inequalities Sets

Interval

Absolute value $|x| = \begin{cases} x, \ x \ge 0\\ -x, x < 0 \end{cases}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Absolute value

Absolute value

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture 1 MATH 0200

Inequalities

 Sets

Intervals

Absolute value

Example

Find all x satisfying the inequality $|x - 3| \ge 4$.

(ロト (個) (E) (E) (E) (の)

Example

Find all x satisfying the inequality $|x - 3| \ge 4$.

Inequalities

Lecture 1

Interval

Absolute value The inequality is equivalent to $x - 3 \ge 4$ or $x - 3 \le -4$, which in turn gives the union $x \ge 7 \cup x \le -1$, in the interval notation, $(-\infty, -1] \cup [7, \infty)$.

Example

Lecture 1

Absolute

Find all x satisfying the inequality $|x - 3| \ge 4$.

The inequality is equivalent to $x - 3 \ge 4$ or $x - 3 \le -4$, which in turn gives the union $x \ge 7 \cup x \le -1$, in the interval notation, $(-\infty, -1] \cup [7, \infty)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで