

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Outline

Lecture 20

MATH 0200

- Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} \alpha$
- Trigonometric identities involving 2πperiodicity

1 Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$

2 Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

⁽³⁾ Trigonometric identities involving 2π -periodicity

・ロト・西ト・市・・市・ うくぐ

• $\cos(\alpha) = \cos(-\alpha)$ and $\cos(\pi - \alpha) = -\cos(\alpha)$;

• $\sin(\alpha) = \sin(\pi - \alpha)$ and $\sin(-\alpha) = -\sin(\alpha)$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π periodicity

Let's take a look at a right triangle (with angles $\alpha, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π periodicity Let's take a look at a right triangle (with angles $\alpha, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

イロト 不得 トイヨト イヨト

э

Lecture 20 MATH 0200 Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π periodicity Let's take a look at a right triangle (with angles $\alpha, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

イロト 不得 トイヨト イヨト

3

We obtain the following identities.

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2πperiodicity Let's take a look at a right triangle (with angles $\alpha, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

We obtain the following identities.

• $\cos\left(\frac{\pi}{2} - \alpha\right) = \frac{a}{c} = \sin(\alpha)$ and $\sin\left(\frac{\pi}{2} - \alpha\right) = \frac{b}{c} = \cos(\alpha);$

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π periodicity Let's take a look at a right triangle (with angles $\alpha, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

We obtain the following identities.

• $\cos\left(\frac{\pi}{2} - \alpha\right) = \frac{a}{c} = \sin(\alpha) \text{ and } \sin\left(\frac{\pi}{2} - \alpha\right) = \frac{b}{c} = \cos(\alpha);$ • $\tan\left(\frac{\pi}{2} - \alpha\right) = \frac{\sin\left(\frac{\pi}{2} - \alpha\right)}{\cos\left(\frac{\pi}{2} - \alpha\right)} = \frac{\cos(\alpha)}{\sin(\alpha)} = \cot(\alpha).$

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π periodicity

Question

Given that
$$\cos(u) = -0.6$$
 and $0 < \frac{\pi}{2} - u < \frac{\pi}{2}$, find $\cos(\frac{\pi}{2} - u)$.

・ロト ・御 ト ・ 臣 ト ・ 臣 ト 三 臣

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π periodicity

Question

Given that
$$\cos(u) = -0.6$$
 and $0 < \frac{\pi}{2} - u < \frac{\pi}{2}$, find $\cos\left(\frac{\pi}{2} - u\right)$.

Answer: first we use the identity $\sin(\frac{\pi}{2} - u) = \cos(u) = -0.6$ and then find $\cos(\frac{\pi}{2} - u) = \pm \sqrt{1 - \sin^2(\frac{\pi}{2} - u)} = \pm \sqrt{1 - (-0.6)^2} = \pm \sqrt{1 - 0.36} = \pm \sqrt{0.64} = \pm 0.8$. As $0 < \frac{\pi}{2} - u < \frac{\pi}{2}$, we choose the positive value $\cos(\frac{\pi}{2} - u) = 0.8$.

Lecture 20

MATH 0200

- Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} - \alpha$
- Trigonometri identities involving 2π periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Lecture 20

MATH 0200

- Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometri identities involving 2π periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x + P) for a constant P and all values of x in the domain. The smallest positive constant P for which this is the case is called the **period** of the function.

Lecture 20

MATH 0200

- Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} \alpha$

Trigonometri identities involving 2π periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x + P) for a constant P and all values of x in the domain. The smallest positive constant Pfor which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

Lecture 20

MATH 0200

- Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometri identities involving 2π periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x + P) for a constant P and all values of x in the domain. The smallest positive constant Pfor which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

うして ふゆ く は く は く む く し く

• $\sin(x) = \sin(x + 2\pi);$

Lecture 20

MATH 0200

- Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometri identities involving 2π periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x + P) for a constant P and all values of x in the domain. The smallest positive constant Pfor which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

- $\sin(x) = \sin(x + 2\pi);$
- $\cos(x) = \cos(x + 2\pi);$

Lecture 20

MATH 0200

- Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} \alpha$

Trigonometri identities involving 2π periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x + P) for a constant P and all values of x in the domain. The smallest positive constant Pfor which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

- $\sin(x) = \sin(x + 2\pi);$
- $\cos(x) = \cos(x + 2\pi);$
- $\tan(x) = \tan(x + 2\pi) \dots$

Lecture 20

MATH 0200

- Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} - \alpha$
- Trigonometri identities involving 2π periodicity

Example

Find the smallest number α larger than 7π such that $\tan(\alpha) = -1$.

Lecture 20

MATH 0200

- Trigonometric identities for $\alpha, -\alpha$ and $\pi - \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} \alpha$

Trigonometri identities involving 2π periodicity

Example

Find the smallest number α larger than 7π such that $\tan(\alpha) = -1$.

We know that $\tan\left(\frac{3\pi}{4} + n\pi\right) = -1$ and, therefore, need to find the smallest integer n with $\frac{3\pi}{4} + n\pi > 7\pi$. As $\frac{3\pi}{4} + n\pi > 7\pi \Leftrightarrow \frac{3}{4} + n > 7 \Leftrightarrow n > 6.25$, the smallest integer value of n satisfying the inequality is 7. The answer is $\alpha = \frac{3\pi}{4} + 7\pi = \frac{31\pi}{4}$.

うして ふゆ く は く は く む く し く