MATH 0200

The inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions of arccosine.

arccosine, arcsine and arctangent

Lecture 21

 ${\bf Inverse}\ {\bf trigonometric}\ {\bf functions}$

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 21

MATH 0200

The inverses of $\cos(x)$, $\sin($ and $\tan(x)$

Definitions of arccosine, arcsine and arctangent

① The inverses of cos(x), sin(x) and tan(x)

2 Definitions of arccosine, arcsine and arctangent

Lecture 21

MATH 0200

The inverses of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions of

arccosine, arcsine and arctangent Let's take one more look at the graph of cosine.

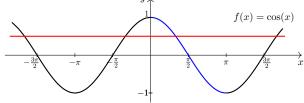
Lecture 21

MATH 0200

The inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions

arccosine, arcsine and Let's take one more look at the graph of cosine.



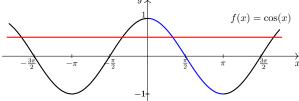
Lecture 21

MATH 0200

The inverses of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions

or arccosine, arcsine and arctangent Let's take one more look at the graph of cosine.



The cosine function is not one-to-one on its (full) domain $(-\infty, \infty)$. However, it is one-to-one if we restrict the domain, for instance, to $[0, \pi]$ and, therefore is invertible on the interval $[0, \pi]$:

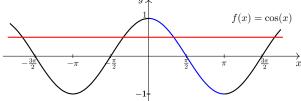
Lecture 21

MATH 0200

The inverses of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions

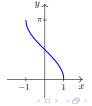
arccosine, arcsine and arctangent Let's take one more look at the graph of cosine.



The cosine function is not one-to-one on its (full) domain $(-\infty, \infty)$. However, it is one-to-one if we restrict the domain, for instance, to $[0, \pi]$ and, therefore is invertible on the interval $[0, \pi]$:

$$f(x) = \arccos(x)$$

Domain: $[-1, 1]$
Range: $[0, \pi]$



Lecture 21

MATH 0200

The inverses of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions of

arccosine, arcsine and arctangent Let's take one more look at the graph of sine.

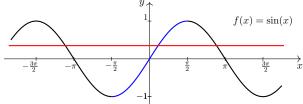
Lecture 21

MATH 0200

The inverses of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions

arccosine, arcsine and Let's take one more look at the graph of sine.



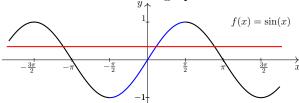
Lecture 21

MATH 0200

The inverses of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions

arccosine, arcsine and arctangent Let's take one more look at the graph of sine.



Similar to the cosine, the sine function is not one-to-one on its (full) domain $(-\infty, \infty)$. However, it is one-to-one if we restrict the domain, for instance, to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and, therefore is invertible on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

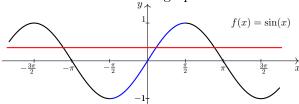
Lecture 21

MATH 0200

The inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions

arccosine, arcsine and arctangent Let's take one more look at the graph of sine.



Similar to the cosine, the sine function is not one-to-one on its (full) domain $(-\infty, \infty)$. However, it is one-to-one if we restrict the domain, for instance, to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and, therefore is invertible on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$f(x) = \arcsin(x)$$

Domain: $[-1, 1]$
Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Lecture 21

MATH 0200

The inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions of

of arccosine, arcsine and arctangent Below are the graphs of functions tan(x) and its inverse, arctan(x):

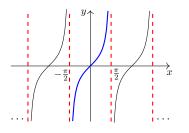
Lecture 21

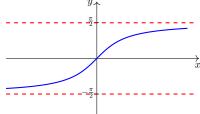
MATH 0200

The inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions

arccosine, arcsine and arctangent Below are the graphs of functions tan(x) and its inverse, arctan(x):





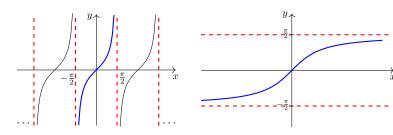
Lecture 21

MATH 0200

The inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions

arccosine, arcsine and arctangent Below are the graphs of functions tan(x) and its inverse, arctan(x):



• Domain of $\arctan(x) = \text{Range of } \tan(x)$: $\mathbb{R} = (-\infty, \infty)$;

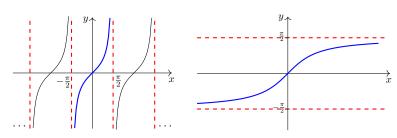
Lecture 21

MATH 0200

The inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions

of arccosine, arcsine and arctangent Below are the graphs of functions tan(x) and its inverse, arctan(x):



- Domain of $\arctan(x) = \text{Range of } \tan(x) : \mathbb{R} = (-\infty, \infty);$
- Domain of $tan(x) = Range of arctan(x): \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Lecture 21

MATH 0200

Th€

 $\operatorname{inverses}$ of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions of arccosine, arcsine and arctangent

Definition

• The arccosine of $-1 \le c \le 1$, denoted $\arccos(c)$, is the angle $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ with $\cos(\alpha) = c$.

Lecture 21

MATH 0200

Th€

 $\operatorname{cos}(x), \operatorname{sin}(x)$ and $\operatorname{tan}(x)$

Definitions of arccosine, arcsine and arctangent

Definition

- The arccosine of $-1 \le c \le 1$, denoted $\arccos(c)$, is the angle $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ with $\cos(\alpha) = c$.
- The arcsine of $-1 \le c \le 1$, denoted $\arcsin(c)$, is the angle $0 \le \alpha \le \pi$ with $\sin(\alpha) = c$.

Lecture 21

MATH 0200

Γhe

 $inverses of \\ cos(x), sin(x) \\ and tan(x)$

Definitions of arccosine, arcsine and arctangent

Definition

- The arccosine of $-1 \le c \le 1$, denoted $\arccos(c)$, is the angle $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ with $\cos(\alpha) = c$.
- The arcsine of $-1 \le c \le 1$, denoted $\arcsin(c)$, is the angle $0 \le \alpha \le \pi$ with $\sin(\alpha) = c$.
- The arctangent of c, denoted $\arctan(c)$, is the angle $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ with $\tan(\alpha) = c$.

Lecture 21

MATH 0200

Th

 $inverses of \\ cos(x), sin(x) \\ and tan(x)$

Definitions of arccosine, arcsine and arctangent

Definition

- The arccosine of $-1 \le c \le 1$, denoted $\arccos(c)$, is the angle $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ with $\cos(\alpha) = c$.
- The arcsine of $-1 \le c \le 1$, denoted $\arcsin(c)$, is the angle $0 \le \alpha \le \pi$ with $\sin(\alpha) = c$.
- The arctangent of c, denoted $\arctan(c)$, is the angle $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ with $\tan(\alpha) = c$.

Example

• $\arcsin(0.5) = \frac{\pi}{6} \text{ as } 0 \le \frac{\pi}{6} \le \pi \text{ and } \sin(\frac{\pi}{6}) = 0.5;$

Lecture 21

MATH 020

Τh

 $\operatorname{cos}(x), \operatorname{sin}(x)$ and $\operatorname{tan}(x)$

Definitions of arccosine, arcsine and arctangent

Definition

- The arccosine of $-1 \le c \le 1$, denoted $\arccos(c)$, is the angle $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ with $\cos(\alpha) = c$.
- The arcsine of $-1 \le c \le 1$, denoted $\arcsin(c)$, is the angle $0 \le \alpha \le \pi$ with $\sin(\alpha) = c$.
- The arctangent of c, denoted $\arctan(c)$, is the angle $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ with $\tan(\alpha) = c$.

Example

- $\arcsin(0.5) = \frac{\pi}{6} \text{ as } 0 \le \frac{\pi}{6} \le \pi \text{ and } \sin(\frac{\pi}{6}) = 0.5;$
- $\arctan(\sqrt{3}) = \frac{\pi}{3} \text{ as } -\frac{\pi}{2} < \frac{\pi}{3} < \frac{\pi}{2} \text{ and } \tan(\frac{\pi}{3}) = \sqrt{3};$

Thε

inverses of $\cos(x)$, $\sin(x)$ and $\tan(x)$

Definitions of arccosine, arcsine and arctangent

Question

Evaluate $\arctan(\tan(-5))$ (round your answer to **three** decimal places).

Question

Evaluate $\arctan(\tan(-5))$ (round your answer to **three** decimal places).

Answer: arctan and tan are inverse functions, so $\arctan(\tan(-5)) = -5$.

Question

Evaluate $\arctan(\tan(-5))$ (round your answer to **three** decimal places).

Answer: arctan and tan are inverse functions, so $\arctan(\tan(-5)) = -5$. But this answer is wrong \odot Recall that we defined arctan as the inverse of tan on the interval $(\frac{\pi}{2}, \frac{\pi}{2})$. Notice that -5 is not on that interval, but $-5 + 2\pi$ is and $\tan(-5) = \tan(-5 + 2\pi)$.

Question

Evaluate $\arctan(\tan(-5))$ (round your answer to **three** decimal places).

Answer: arctan and tan are inverse functions, so $\arctan(\tan(-5)) = -5$. But this answer is wrong \bigcirc Recall that we defined arctan as the inverse of tan on the interval $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$. Notice that -5 is not on that interval, but $-5 + 2\pi$ is and $\tan(-5) = \tan(-5 + 2\pi)$. The correct answer is $\arctan(\tan(-5)) = \arctan(\tan(-5 + 2\pi)) = -5 + 2\pi \approx 1.283$.

MATH 0200

The

 $inverses of \\ cos(x), sin(x) \\ and tan(x)$

Definitions of arccosine, arcsine and arctangent

Example

Find the smallest **positive** number x such that tan(x) = -2.

MATH 0200

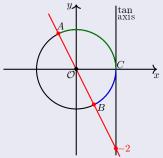
The

 $\cos(x), \sin(x)$ and $\tan(x)$

Definitions of arccosine, arcsine and arctangent

Example

Find the smallest **positive** number x such that tan(x) = -2.



MATH 020

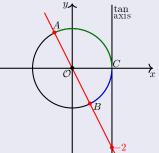
The inverses of $\cos(x)$, $\sin(x)$

and tan(x)Definitions of

of arccosine, arcsine and arctangent

Example

Find the smallest **positive** number x such that tan(x) = -2.



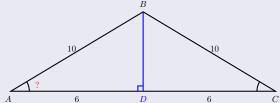
Notice that $\arctan(-2)$ is a negative number, minus the length of the arc CB, shaded in blue. The smallest positive value of x with $\tan(x) = -2$ is the length of the arc CA, shaded in green. It is equal to $\pi + \arctan(-2)$.

Example

Consider an isosceles triangle $\triangle ABC$ with |AB|=|BC|=10 and |AC|=12. Find measure of the angle $\angle BAC$.

Example

Consider an isosceles triangle $\triangle ABC$ with |AB| = |BC| = 10 and |AC| = 12. Find measure of the angle $\angle BAC$.



MATH 0200

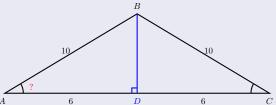
The

inverses of $\cos(x), \sin(x)$ and $\tan(x)$

Definitions of arccosine, arcsine and arctangent

Example

Consider an isosceles triangle $\triangle ABC$ with |AB| = |BC| = 10 and |AC| = 12. Find measure of the angle $\angle BAC$.



We drop a perpendicular from vertex B to the base AC and denote the point of intersection by D. Recall that since triangle $\triangle ABC$ is isosceles, D is the midpoint of AC, so |AD| = |DC| = 12/2 = 6. We get $\cos(\angle BAC) = \frac{6}{10} = 0.6$, hence, $\angle BAC = \arccos(0.6) \approx 53.13^{\circ}$.