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@ The inverses of cos(x),sin(z) and tan(x)

© Definitions of arccosine, arcsine and arctangent



Arccosine, the inverse of cos(x)

Let’s take one more look at the graph of cosine.
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and tan(z)

Arccosine, the inverse of cos(x)

Let’s take one more look at Z‘/che graph of cosine.
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Arccosine, the inverse of cos(x)

Let’s take one more look at Z‘/che graph of cosine.

Lecture 21

o N N )= o)
N ./ N ./

3 ) [ i ; 3m
7 2\72 \7/2 '
—14

The cosine function is not one-to-one on its (full) domain
(—00,00). However, it is one-to-one if we restrict the
domain, for instance, to [0, 7] and, therefore is invertible on
the interval [0, 7]:




Arccosine, the inverse of cos(x)

Let’s take one more look at Z‘/che graph of cosine.
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The cosine function is not one-to-one on its (full) domain
(—00,00). However, it is one-to-one if we restrict the
domain, for instance, to [0, 7] and, therefore is invertible on
the interval [0, 7]:

f(z) = arccos(x)
Domain: [—1,1]
Range: [0, 7]




Arcsine, the inverse of sin(x)

Let’s take one more look at the graph of sine.
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Arcsine, the inverse of sin(x)

Let’s take one more look at Z‘/che graph of sine.
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Arcsine, the inverse of sin(x)

Let’s take one more look at Z‘/che graph of sine.
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and tan(z)

Similar to the cosine, the sine function is not one-to-one on
its (full) domain (—o0, 00). However, it is one-to-one if we
restrict the domain, for instance, to [—%, ’T] and, therefore is

invertible on the interval [—%, g]
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and tan(z)

Arcsine, the inverse of sin(x)

Let’s take one more look at Z‘/che graph of sine.

! f(a) = sin(x)
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Similar to the cosine, the sine function is not one-to-one on
its (full) domain (—o0, 00). However, it is one-to-one if we
restrict the domain, for instance, to [—%, g] and, therefore is

invertible on the interval [—%, g]

f(z) = arcsin(z)
Domain: [—1,1]

Range: [-3,3]




Arctangent, the inverse of tan(x)
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MBS Below are the graphs of functions tan(z) and its inverse,
arctan(zx):
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Arctangent, the inverse of tan(x)

Below are the graphs of functions tan(z) and its inverse,
arctan(zx):
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Arctangent, the inverse of tan(x)
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arctan(zx):
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e Domain of arctan(xz) = Range of tan(z): R = (—o0, 0);



Arctangent, the inverse of tan(x)
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SRl  Below are the graphs of functions tan(z) and its inverse,
arctan(zx):
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e Domain of arctan(xz) = Range of tan(z): R = (—o0, 0);

e Domain of tan(z) = Range of arctan(z): (-3, %).



Definitions of arccosine, arcsine and arctangent
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@ The arccosine of —1 < ¢ < 1, denoted arccos(c), is the
angle —5 < o < § with cos(a) = c.

Definitions
of
arccosine,
arcsine and
arctangent




Definitions of arccosine, arcsine and arctangent

Lecture 21

MATH 0200

@ The arccosine of —1 < ¢ < 1, denoted arccos(c), is the
angle —5 < o < § with cos(a) = c.

BrfBheffome @ The arcsine of —1 < ¢ < 1, denoted arcsin(c), is the

O cosine, angle 0 < a < 7 with sin(a) = c.

arcsine and
arctangent




Definitions of arccosine, arcsine and arctangent
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@ The arccosine of —1 < ¢ < 1, denoted arccos(c), is the
angle —5 < o < § with cos(a) = c.

BrfBheffome @ The arcsine of —1 < ¢ < 1, denoted arcsin(c), is the

O cosine, angle 0 < a < 7 with sin(a) = c.

arcsine and

arctangent e The arctangent of ¢, denoted arctan(c), is the angle
-5 < a < § with tan(a) = c.




Definitions of arccosine, arcsine and arctangent

Lecture 21

MATH 0200

Th @ The arccosine of —1 < ¢ < 1, denoted arccos(c), is the
angle —5 < o < § with cos(a) = c.

@ The arcsine of —1 < ¢ < 1, denoted arcsin(c), is the
angle 0 < a < 7 with sin(«a) = c.

Definitions
of
arccosine,
arcsine and

arctangent e The arctangent of ¢, denoted arctan(c), is the angle

-5 < a < § with tan(a) = c. |

e arcsin(0.5) = £ as 0 < & < m and sin (§) = 0.5;

.
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Definitions of arccosine, arcsine and arctangent

@ The arccosine of —1 < ¢ < 1, denoted arccos(c), is the
angle —5 < o < § with cos(a) = c.

@ The arcsine of —1 < ¢ < 1, denoted arcsin(c), is the
angle 0 < a < 7 with sin(«a) = c.

e The arctangent of ¢, denoted arctan(c), is the angle
-5 < a < § with tan(a) = c.

v

e arcsin(0.5) = § as 0 < & < 7 and sin (%) = 0.5;

m
° arctan(\/g) =% as —§5 < § < Fand tan (%) =/3;

.
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Evaluate arctan(tan(—5)) (round your answer to three
decimal places).

Definitions
of
arccosine,
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Evaluate arctan(tan(—5)) (round your answer to three
decimal places).

Definitions
of
arccosine,

Answer: arctan and tan are inverse functions, so
arctan(tan(—5)) = —5.
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Evaluate arctan(tan(—5)) (round your answer to three
decimal places).

Definitions
of
arccosine,
arcsine and
arctangent

Answer: arctan and tan are inverse functions, so
arctan(tan(—5)) = —5. But this answer is wrong ¢ Recall
that we defined arctan as the inverse of tan on the interval
(5 E). Notice that —5 is not on that interval, but —5 + 27
is and tan(—5) = tan(—5 + 2m).
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Evaluate arctan(tan(—5)) (round your answer to three
decimal places).

Definitions
of
arccosine,
arcsine and
arctangent

Answer: arctan and tan are inverse functions, so
arctan(tan(—5)) = —5. But this answer is wrong ¢ Recall
that we defined arctan as the inverse of tan on the interval
(5 E). Notice that —5 is not on that interval, but —5 + 27
is and tan(—5) = tan(—5 + 27). The correct answer is
arctan(tan(—5)) = arctan(tan(—5 + 27)) = —5 + 27 ~ 1.283.



LECtllre * _

Rl Find the smallest positive number z such that tan(z) = —2.

Definitions
of
arccosine,
arcsine and
arctangent
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Rl Find the smallest positive number z such that tan(z) = —2.

Y tan
axis
Definitions
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R Find the smallest positive number z such that tan(z) = —2.

Th Y~ tan
axis

n 0
Definitions \
C

of

arccosine, O]
arcsine and
arctangent

Notice that arctan(—2) is a negative number, minus the
length of the arc C'B, shaded in blue. The smallest positive
value of z with tan(xz) = —2 is the length of the arc C'A,
shaded in green. It is equal to m + arctan(—2).
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Consider an isosceles triangle AABC' with
|AB| = |BC| = 10 and |AC| = 12. Find measure of the
angle /BAC.
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WO  Consider an isosceles triangle AABC with
|AB| = |BC| = 10 and |AC| = 12. Find measure of the
angle /BAC.
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WO  Consider an isosceles triangle AABC with
|AB| = |BC| = 10 and |AC| = 12. Find measure of the
angle /BAC.

B

Definitions

of

arccosine, 10,
arcsine and

arctangent

We drop a perpendicular from vertex B to the base AC and
denote the point of intersection by D. Recall that since
triangle AABC is isosceles, D is the midpoint of AC, so
|AD| = |DC| = 12/2 = 6. We get cos(ZBAC) = & = 0.6,
hence, ZBAC = arccos(0.6) ~ 53.13°.
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