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Trigonometric functions composed with their

inverses

Recall that if f and f−1 are inverse functions, then

(f ◦ f−1)(x) = x for any x in the domain of f−1;

(f−1 ◦ f)(x) = x for any x in the domain of f .

Example

Evaluate arccos(cos(400◦)).
First we need to �nd 0 ≤ α ≤ π (or 180◦) with
cos(α) = cos(400◦). As cos(400◦) = cos((400− 360)◦) =
= cos(40◦), we get α = 40◦ = 80π

360 = 2π
9 and

arccos(cos(400◦)) = arccos(cos
(
2π
9

)
) = 2π

9 .
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Example

Find the inverse of f(x) = 5− 6 sin(3x) on interval
[
0, π6

]
.

1 Write y = 5− 6 sin(3x).

2 Transform y = 5− 6 sin(3x) ⇔ y − 5 = −6 sin(3x) ⇔
y−5
−6 = sin(3x) ⇔ 3x = arcsin

(
y−5
−6

)
⇔ x =

1
3 arcsin

(
y−5
−6

)
= 1

3 arcsin
(
5−y
6

)
.

3 f−1(x) = 1
3 arcsin

(
5−x
6

)
.

Check: f ◦ f−1(x) = 5− 6 sin(3 · 1
3 arcsin

(
5−x
6

)
) =

5− 6 sin(arcsin
(
5−x
6

)
) = 5− 6 ·

(
5−x
6

)
= 5− (5− x) = x ✓

Range of f−1 = domain of f =
[
0, π6

]
.

As sin(3x) attains all values between 0 = sin(0) and
1 = sin

(
3π
6

)
, we get domain of f−1 = range of f is [−1, 5].
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Arccosine plus arcsine

Let t be a number between 0 and 1. Consider a right

triangle with the ratio of lengths of its legs equal to t.

π
2−α

α

b

a

1

A C

B

We get arcsin(t) + arccos(t) = arcsin
(
a
b

)
+ arccos

(
a
b

)
=

α+
(
π
2 − α

)
= π

2 .
The equation arcsin(t) + arccos(t) = π

2 holds true for any

−1 ≤ t ≤ 1.
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Question

Evaluate cos(arcsin
(
π
2 − 1

)
).

Answer: using that

cos(arcsin
(
π
2 − 1

)
) + sin(arcsin

(
π
2 − 1

)
) = π

2 , we get

cos(arcsin
(
π
2 − 1

)
) = π

2 − (π2 − 1) = π
2 − π

2 + 1 = 1.
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