MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric

Lecture 31 Complex numbers (applications)

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 31

MATH 0200

Zeros of polynomial

Powers of complex numbers

Trigonometric

- 1 Zeros of polynomials
- 2 Powers of complex numbers
- 3 Trigonometric identities

Zeros of polynomials

Lecture 31

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric

Example

The polynomial $P(x) = x^2 + 9$ does not have any real zeros. **Reason:** $\sqrt{-9}$ is not a real number.

Zeros of polynomials

Lecture 31

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric identities

Example

The polynomial $P(x) = x^2 + 9$ does not have any real zeros. **Reason:** $\sqrt{-9}$ is not a real number.

However, $\sqrt{-9} = \sqrt{9i^2} = 3i$ and, therefore, the complex numbers 3i and -3i are zeros of the polynomial P(x).

Zeros of polynomials

Lecture 31

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric identities

Example

The polynomial $P(x) = x^2 + 9$ does not have any real zeros. **Reason:** $\sqrt{-9}$ is not a real number.

However, $\sqrt{-9} = \sqrt{9i^2} = 3i$ and, therefore, the complex numbers 3i and -3i are zeros of the polynomial P(x).

More generally, recall that the zeros of a polynomial $f(x) = ax^2 + bx + c$ are $\frac{-b+\sqrt{D}}{2a}$ and $\frac{-b-\sqrt{D}}{2a}$, where $D = b^2 - 4ac$ is the discriminant of f(x). If D < 0, then \sqrt{D} is not a real number, so there are no real zeros of f(x), but there are two complex zeros, namely, $\frac{-b+i\sqrt{-D}}{2a}$ and $\frac{-b-i\sqrt{-D}}{2a}$.

Powers of complex numbers

Trigonometric

Example

Find the zeros of quadratic polynomial $P(x) = x^2 - 4x + 5$.

Powers of complex numbers

Trigonometric identities

Example

Find the zeros of quadratic polynomial $P(x) = x^2 - 4x + 5$. We find the discriminant

$$D = (-4)^2 - 4 \cdot 5 = 16 - 20 = -4 = (2i)^2$$
 and the zeros $x_1 = \frac{4+2i}{2} = 2+i$ and $x_2 = \frac{4-2i}{2} = 2-i$.

Example

Find the zeros of quadratic polynomial $P(x) = x^2 - 4x + 5$. We find the discriminant

$$D = (-4)^2 - 4 \cdot 5 = 16 - 20 = -4 = (2i)^2$$
 and the zeros $x_1 = \frac{4+2i}{2} = 2+i$ and $x_2 = \frac{4-2i}{2} = 2-i$.

Remark

Notice that the numbers 2+i and 2-i are conjugate. This is not a coincidence. If a complex number z is a zero of a polynomial P(x) with real coefficients, then its conjugate \overline{z} is a zero of P(x) as well.

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometri identities

Example

Find the zeros of quadratic polynomial $P(x) = x^2 - 4x + 5$. We find the discriminant

$$D = (-4)^2 - 4 \cdot 5 = 16 - 20 = -4 = (2i)^2$$
 and the zeros $x_1 = \frac{4+2i}{2} = 2+i$ and $x_2 = \frac{4-2i}{2} = 2-i$.

Remark

Notice that the numbers 2+i and 2-i are conjugate. This is not a coincidence. If a complex number z is a zero of a polynomial P(x) with real coefficients, then its conjugate \overline{z} is a zero of P(x) as well.

This follows from the fact a real number is equal to its conjugate, hence, $P(\overline{z}) = 0 = \overline{0} = \overline{P(z)}$.

Powers of complex numbers

Lecture 31

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric

Let z = a + bi be a complex number.

Powers of complex numbers

Lecture 31

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric identities

Let z = a + bi be a complex number.

Question

How can we compute z^{10} ?

Powers of complex numbers

Lecture 31

MATH 0200

Zeros of polynomial

Powers of complex numbers

Trigonometric

Let z = a + bi be a complex number.

Question

How can we compute z^{10} ?

Well, it is possible to compute $(a+bi)^{10}$ directly, but would be computationally intense. Instead, we should use the polar form of z. Recall that the magnitude of z^{10} is $|z|^{10} = (\sqrt{a^2 + b^2})^{10} = (a^2 + b^2)^5$ and the argument is $Arg(z^{10}) = 10Arg(z)$ (modulo 2π).

Powers of complex numbers

Trigonometric identities

Example

Let $z = \frac{1}{\sqrt{2}}(\sqrt{3} + i)$ and find z^{14} .

Example

Let
$$z = \frac{1}{\sqrt{2}}(\sqrt{3} + i)$$
 and find z^{14} .

We first compute
$$|z| = \sqrt{\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{3+1}{2}} = \sqrt{2}$$
 and $Arg(z) = \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$. It follows that $|z^{14}| = 2^7$ and $Arg(z^{14}) = \frac{14\pi}{6} = 2\pi + \frac{2\pi}{6} = 2\pi + \frac{\pi}{3} \equiv \frac{\pi}{3}$ (modulo 2π).

Example

Let $z = \frac{1}{\sqrt{2}}(\sqrt{3} + i)$ and find z^{14} .

We first compute $|z| = \sqrt{\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{3+1}{2}} = \sqrt{2}$ and $Arg(z) = \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$. It follows that $|z^{14}| = 2^7$

and
$$Arg(z) = \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$
. It follows that $|z^{14}| = 2^{\pi}$ and $Arg(z^{14}) = \frac{14\pi}{6} = 2\pi + \frac{2\pi}{6} = 2\pi + \frac{\pi}{2} \equiv \frac{\pi}{2}$ (modulo 2π).

Therefore,
$$z^{14} = 2^7 \left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right) = 2^7 \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2^6 (1 + \sqrt{3}i) = 64(1 + \sqrt{3}i).$$

Powers of complex numbers

Trigonometric identities

Question

Let z = 1 + i.

(a) Compute |z|.

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).
- (c) Compute $|z^{10}|$.

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).
- (c) Compute $|z^{10}|$.
- (d) Compute $Arg(z^{10})$.

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).
- (c) Compute $|z^{10}|$.
- (d) Compute $Arg(z^{10})$.

(a)
$$|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$$
.

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).
- (c) Compute $|z^{10}|$.
- (d) Compute $Arg(z^{10})$.

- (a) $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$.
- (b) $Arg(z) = \arctan\left(\frac{1}{1}\right) = \arctan(1) = \frac{\pi}{4}$.

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).
- (c) Compute $|z^{10}|$.
- (d) Compute $Arg(z^{10})$.

- (a) $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$.
- (b) $Arg(z) = \arctan\left(\frac{1}{1}\right) = \arctan(1) = \frac{\pi}{4}$.
- (c) $|z^{10}| = \sqrt{2}^{10} = 2^5 = 32$.

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).
- (c) Compute $|z^{10}|$.
- (d) Compute $Arg(z^{10})$.

- (a) $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$.
- (b) $Arg(z) = \arctan\left(\frac{1}{1}\right) = \arctan(1) = \frac{\pi}{4}$.
- (c) $|z^{10}| = \sqrt{2}^{10} = 2^5 = 32$.
- (d) $Arg(z^{10}) = 10Arg(z) = \frac{10\pi}{4} = 2\pi + \frac{2\pi}{4} = 2\pi + \frac{\pi}{2} \equiv \frac{\pi}{2}$.

Question

Let z = 1 + i.

- (a) Compute |z|.
- (b) Compute Arg(z).
- (c) Compute $|z^{10}|$.
- (d) Compute $Arg(z^{10})$.

Answer:

- (a) $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$.
- (b) $Arg(z) = \arctan\left(\frac{1}{1}\right) = \arctan(1) = \frac{\pi}{4}$.
- (c) $|z^{10}| = \sqrt{2}^{10} = 2^5 = 32$.
- (d) $Arg(z^{10}) = 10Arg(z) = \frac{10\pi}{4} = 2\pi + \frac{2\pi}{4} = 2\pi + \frac{\pi}{2} \equiv \frac{\pi}{2}$.

We conclude that $(1+i)^{10} = 32i$.

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric identities

Let's take a look at one more example.

Example

Evaluate i^n for a non-negative integer n.

Trigonometric

Let's take a look at one more example.

Example

Evaluate i^n for a non-negative integer n. Notice that |i|=1

and
$$Arg(i) = \frac{\pi}{2}$$
, so $|i^n| = |1|^n = 1$ and
$$Arg(i^n) = \frac{\pi}{2} = \begin{cases} 0, n\%4 = 0\\ \frac{\pi}{2}, n\%4 = 1\\ \pi, n\%4 = 2\\ \frac{3\pi}{2}, n\%4 = 3 \end{cases} \text{ with } i^n = \begin{cases} 1, n\%4 = 0\\ i, n\%4 = 1\\ -1, n\%4 = 2\\ -i, n\%4 = 3. \end{cases}$$

Powers of complex numbers

Trigonometric

Let's take a look at one more example.

Example

Evaluate i^n for a non-negative integer n. Notice that |i|=1

and
$$Arg(i) = \frac{\pi}{2}$$
, so $|i^n| = |1|^n = 1$ and
$$Arg(i^n) = \frac{\pi n}{2} = \begin{cases} 0, n\% = 1 \\ \frac{\pi}{2}, n\% = 1 \\ \pi, n\% = 2 \end{cases} \text{ with } i^n = \begin{cases} 1, n\% = 1 \\ i, n\% = 1 \\ -1, n\% = 2 \\ -i, n\% = 3 \end{cases}$$

Powers of numbers

Trigonometric

Question $i^{2023} = ?$

MATH 0200

Zeros of polynomials

Powers of complex numbers

Trigonometric

Question

 $i^{2023} = ?$

Answer: as 2023%4 = 3, we conclude that $i^{2023} = i^3 = -i$.

Lecture 31

MATH 0200

Zeros of polynomial

Powers of complex numbers

Trigonometri identities Let $z = \cos(a) + i\sin(a)$ and $w = \cos(b) + i\sin(b)$ be two complex numbers. Observe that |z| = |w| = 1, so both z and w are on the unit circle and form angles a and b with the positive x-axis, respectively.

Lecture 31

MATH 0200

Zeros of polynomial

Powers of complex numbers

Trigonometri identities Let $z = \cos(a) + i\sin(a)$ and $w = \cos(b) + i\sin(b)$ be two complex numbers. Observe that |z| = |w| = 1, so both z and w are on the unit circle and form angles a and b with the positive x-axis, respectively.

Notice that
$$|zw| = |z| \cdot |w| = 1 \cdot 1 = 1$$
, while $Arg(zw) = Arg(z) + Arg(w) = a + b$. It follows that

$$zw = \cos(a+b) + i\sin(a+b).$$

Lecture 31

MATH 0200

Zeros of polynomial

Powers of complex numbers

Trigonometri identities Let $z = \cos(a) + i\sin(a)$ and $w = \cos(b) + i\sin(b)$ be two complex numbers. Observe that |z| = |w| = 1, so both z and w are on the unit circle and form angles a and b with the positive x-axis, respectively.

Notice that
$$|zw| = |z| \cdot |w| = 1 \cdot 1 = 1$$
, while $Arg(zw) = Arg(z) + Arg(w) = a + b$. It follows that

$$zw = \cos(a+b) + i\sin(a+b).$$

Also,
$$zw = (\cos(a) + i\sin(a))(\cos(b) + i\sin(b)) = \cos(a)\cos(b) + i\cos(a)\sin(b) + i\sin(a)\cos(b) + i^2\sin(a)\sin(b) = (\cos(a)\cos(b) - \sin(a)\sin(b)) + i(\cos(a)\sin(b) + \sin(a)\cos(b)).$$

Lecture 31

MATH 0200

Zeros of polynomial

Powers of complex numbers

Trigonometri identities Let $z = \cos(a) + i\sin(a)$ and $w = \cos(b) + i\sin(b)$ be two complex numbers. Observe that |z| = |w| = 1, so both z and w are on the unit circle and form angles a and b with the positive x-axis, respectively.

Notice that $|zw| = |z| \cdot |w| = 1 \cdot 1 = 1$, while Arg(zw) = Arg(z) + Arg(w) = a + b. It follows that

$$zw = \cos(a+b) + i\sin(a+b).$$

Also, $zw = (\cos(a) + i\sin(a))(\cos(b) + i\sin(b)) = \cos(a)\cos(b) + i\cos(a)\sin(b) + i\sin(a)\cos(b) + i^2\sin(a)\sin(b) = (\cos(a)\cos(b) - \sin(a)\sin(b)) + i(\cos(a)\sin(b) + \sin(a)\cos(b)).$ We have established that

- cos(a+b) = cos(a)cos(b) sin(a)sin(b) and
- $\bullet \sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b).$