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Zeros of polynomials

Example

The polynomial P (x) = x2 + 9 does not have any real zeros.

Reason:
√
−9 is not a real number.

However,
√
−9 =

√
9i2 = 3i and, therefore, the complex

numbers 3i and −3i are zeros of the polynomial P (x).

More generally, recall that the zeros of a polynomial

f(x) = ax2 + bx+ c are −b+
√
D

2a and −b−
√
D

2a , where

D = b2 − 4ac is the discriminant of f(x). If D < 0, then
√
D

is not a real number, so there are no real zeros of f(x), but

there are two complex zeros, namely, −b+i
√
−D

2a and −b−i
√
−D

2a .
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Example

Find the zeros of quadratic polynomial P (x) = x2 − 4x+ 5.

We �nd the discriminant

D = (−4)2 − 4 · 5 = 16− 20 = −4 = (2i)2 and the zeros

x1 =
4+2i
2 = 2 + i and x2 =

4−2i
2 = 2− i.

Remark

Notice that the numbers 2 + i and 2− i are conjugate. This
is not a coincidence. If a complex number z is a zero of a

polynomial P (x) with real coe�cients, then its conjugate z
is a zero of P (x) as well.
This follows from the fact a real number is equal to its

conjugate, hence, P (z) = 0 = 0 = P (z).
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Powers of complex numbers

Let z = a+ bi be a complex number.

Question

How can we compute z10?

Well, it is possible to compute (a+ bi)10 directly, but would
be computationally intense. Instead, we should use the polar

form of z. Recall that the magnitude of z10 is
|z|10 = (

√
a2 + b2)10 = (a2 + b2)5 and the argument is

Arg(z10) = 10Arg(z) (modulo 2π).
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Example

Let z = 1√
2
(
√
3 + i) and �nd z14.

We �rst compute |z| =
√(√

3√
2

)2
+
(

1√
2

)2
=

√
3+1
2 =

√
2

and Arg(z) = arctan
(

1√
3

)
= π

6 . It follows that |z
14| = 27

and Arg(z14) = 14π
6 = 2π + 2π

6 = 2π + π
3 ≡ π

3 (modulo 2π).

Therefore, z14 = 27(cos
(
π
3

)
+ i sin

(
π
3

)
) = 27

(
1
2 + i

√
3
2

)
=

26(1 +
√
3i) = 64(1 +

√
3i).
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Question

Let z = 1 + i.

(a) Compute |z|.

(b) Compute Arg(z).

(c) Compute |z10|.
(d) Compute Arg(z10).

Answer:

(a) |z| =
√
12 + 12 =

√
2.

(b) Arg(z) = arctan
(
1
1

)
= arctan(1) = π

4 .

(c) |z10| =
√
2
10

= 25 = 32.

(d) Arg(z10) = 10Arg(z) = 10π
4 = 2π + 2π

4 = 2π + π
2 ≡ π

2 .

We conclude that (1 + i)10 = 32i.
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Let's take a look at one more example.

Example

Evaluate in for a non-negative integer n.

Notice that |i| = 1
and Arg(i) = π

2 , so |in| = |1|n = 1 and

Arg(in) = πn
2 =


0, n%4 = 0
π
2 , n%4 = 1

π, n%4 = 2
3π
2 , n%4 = 3

with in =


1, n%4 = 0

i, n%4 = 1

−1, n%4 = 2

−i, n%4 = 3.

•
1

•−1

•i

−i•
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Question

i2023 =?

Answer: as 2023%4 = 3, we conclude that i2023 = i3 = −i.
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Formulas for cos(a+ b) and sin(a+ b) revisited

Let z = cos(a) + i sin(a) and w = cos(b) + i sin(b) be two
complex numbers. Observe that |z| = |w| = 1, so both z and

w are on the unit circle and form angles a and b with the

positive x−axis, respectively.

Notice that |zw| = |z| · |w| = 1 · 1 = 1, while
Arg(zw) = Arg(z) +Arg(w) = a+ b. It follows that

zw = cos(a+ b)+isin(a+ b).

Also, zw = (cos(a) + i sin(a))(cos(b) + i sin(b)) =
cos(a) cos(b)+i cos(a) sin(b)+i sin(a) cos(b)+i2 sin(a) sin(b) =
(cos(a) cos(b)− sin(a) sin(b))+i(cos(a) sin(b) + sin(a) cos(b)).
We have established that

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) and

sin(a+ b) = cos(a) sin(b) + sin(a) cos(b).



Lecture 31

MATH 0200

Zeros of
polynomials

Powers of
complex
numbers

Trigonometric
identities

Formulas for cos(a+ b) and sin(a+ b) revisited

Let z = cos(a) + i sin(a) and w = cos(b) + i sin(b) be two
complex numbers. Observe that |z| = |w| = 1, so both z and

w are on the unit circle and form angles a and b with the

positive x−axis, respectively.
Notice that |zw| = |z| · |w| = 1 · 1 = 1, while
Arg(zw) = Arg(z) +Arg(w) = a+ b. It follows that

zw = cos(a+ b)+isin(a+ b).

Also, zw = (cos(a) + i sin(a))(cos(b) + i sin(b)) =
cos(a) cos(b)+i cos(a) sin(b)+i sin(a) cos(b)+i2 sin(a) sin(b) =
(cos(a) cos(b)− sin(a) sin(b))+i(cos(a) sin(b) + sin(a) cos(b)).
We have established that

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) and

sin(a+ b) = cos(a) sin(b) + sin(a) cos(b).



Lecture 31

MATH 0200

Zeros of
polynomials

Powers of
complex
numbers

Trigonometric
identities

Formulas for cos(a+ b) and sin(a+ b) revisited

Let z = cos(a) + i sin(a) and w = cos(b) + i sin(b) be two
complex numbers. Observe that |z| = |w| = 1, so both z and

w are on the unit circle and form angles a and b with the

positive x−axis, respectively.
Notice that |zw| = |z| · |w| = 1 · 1 = 1, while
Arg(zw) = Arg(z) +Arg(w) = a+ b. It follows that

zw = cos(a+ b)+isin(a+ b).

Also, zw = (cos(a) + i sin(a))(cos(b) + i sin(b)) =
cos(a) cos(b)+i cos(a) sin(b)+i sin(a) cos(b)+i2 sin(a) sin(b) =
(cos(a) cos(b)− sin(a) sin(b))+i(cos(a) sin(b) + sin(a) cos(b)).

We have established that

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) and

sin(a+ b) = cos(a) sin(b) + sin(a) cos(b).



Lecture 31

MATH 0200

Zeros of
polynomials

Powers of
complex
numbers

Trigonometric
identities

Formulas for cos(a+ b) and sin(a+ b) revisited

Let z = cos(a) + i sin(a) and w = cos(b) + i sin(b) be two
complex numbers. Observe that |z| = |w| = 1, so both z and

w are on the unit circle and form angles a and b with the

positive x−axis, respectively.
Notice that |zw| = |z| · |w| = 1 · 1 = 1, while
Arg(zw) = Arg(z) +Arg(w) = a+ b. It follows that

zw = cos(a+ b)+isin(a+ b).

Also, zw = (cos(a) + i sin(a))(cos(b) + i sin(b)) =
cos(a) cos(b)+i cos(a) sin(b)+i sin(a) cos(b)+i2 sin(a) sin(b) =
(cos(a) cos(b)− sin(a) sin(b))+i(cos(a) sin(b) + sin(a) cos(b)).
We have established that

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) and

sin(a+ b) = cos(a) sin(b) + sin(a) cos(b).


	Zeros of polynomials
	Powers of complex numbers
	Trigonometric identities

