Lecture 4

Lecture 4 Transformations of functions and graphs thereof

MATH 0200

Dr. Boris Tsvelikhovskiy

◆□ ▶ < 圖 ▶ < 圖 ▶ < ■ ● の Q @</p>

Outline

Lecture 4

Shifting 1

2 Flipping

Stretching 3

4 Even and odd functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Lecture 4

MATH 0200

Shifting

Flipping Stretching Even and odd In this lecture we will discuss some basics transformations of functions. Below we give the formulas for **shifting** the graph of f(x) (the number of units will be denoted by c, a positive number).

Lecture 4

MATH 0200

Shifting

- Flipping Stretching Even and
- odd functions
- In this lecture we will discuss some basics transformations of functions. Below we give the formulas for **shifting** the graph of f(x) (the number of units will be denoted by c, a positive number).
 - The graph of f(x+c) is obtained by shifting the graph of f(x) by c units to the left;

うして ふゆ く は く は く む く し く

Lecture 4

Shifting

- Flipping Stretching Even and
- odd functions

- In this lecture we will discuss some basics transformations of functions. Below we give the formulas for **shifting** the graph of f(x) (the number of units will be denoted by c, a positive number).
 - The graph of f(x+c) is obtained by shifting the graph of f(x) by c units to the left;
 - the graph of f(x-c) is obtained by shifting the graph of f(x) by c units to the right;

うして ふゆ く は く は く む く し く

Lecture 4

Shifting

- Flipping Stretching Fuon and
- Even and odd functions
- In this lecture we will discuss some basics transformations of functions. Below we give the formulas for **shifting** the graph of f(x) (the number of units will be denoted by c, a positive number).
 - The graph of f(x+c) is obtained by shifting the graph of f(x) by c units to the left;
 - the graph of f(x-c) is obtained by shifting the graph of f(x) by c units to the right;
 - the graph of f(x) + c is obtained by shifting the graph of f(x) by c units up;

Lecture 4

Shifting

- Flipping Stretching Even and
- even and odd functions
- In this lecture we will discuss some basics transformations of functions. Below we give the formulas for **shifting** the graph of f(x) (the number of units will be denoted by c, a positive number).
 - The graph of f(x + c) is obtained by shifting the graph of f(x) by c units to the left;
 - the graph of f(x-c) is obtained by shifting the graph of f(x) by c units to the right;
 - the graph of f(x) + c is obtained by shifting the graph of f(x) by c units up;
 - the graph of f(x) c is obtained by shifting the graph of f(x) by c units down.

Lecture 4 MATH 0200

Shifting

Flipping Stretching Even and odd

Lecture 4 MATH 0200 Two other elementary transformations are reflections with respect to the axes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Flipping

Stretching

Even and odd functions

Lecture 4 MATH 0200

Shifting

Flipping

Stretching

Even and odd functions Two other elementary transformations are reflections with respect to the axes.

• The graph of -f(x) is obtained from the graph of f(x) via reflecting the latter with respect to the x-axis.

Lecture 4 MATH 020 Two other elementary transformations are reflections with respect to the axes.

- The graph of -f(x) is obtained from the graph of f(x) via reflecting the latter with respect to the x-axis.
- The graph of f(-x) is obtained from the graph of f(x) via reflecting the latter with respect to the y-axis.

Lecture 4 MATH 020

Shifting

Flipping

Stretching

Even and odd functions Two other elementary transformations are reflections with respect to the axes.

- The graph of -f(x) is obtained from the graph of f(x) via reflecting the latter with respect to the x-axis.
- The graph of f(-x) is obtained from the graph of f(x) via reflecting the latter with respect to the y-axis.

Let c > 0 be a positive number.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少へで

Let c > 0 be a positive number.

• The graph of f(cx) is obtained from the graph of f(x) via stretching it horizontally by a factor of 1/c.

Let c > 0 be a positive number.

- The graph of f(cx) is obtained from the graph of f(x) via stretching it horizontally by a factor of 1/c.
- The graph of cf(x) is obtained from the graph of f(x) via stretching it vertically by a factor of c.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- MATH 0200
- Shifting
- Flipping
- Stretching
- Even and odd functions

Let c > 0 be a positive number.

- The graph of f(cx) is obtained from the graph of f(x) via stretching it horizontally by a factor of 1/c.
- The graph of cf(x) is obtained from the graph of f(x) via stretching it vertically by a factor of c.

Lecture 4 MATH 0200

Shifting

Flipping

Stretching

Even and odd functions

Question

Let f(x) be a function with domain [-3, 6] and range [0, 5]. What are the domain and range of the function f(3x) + 2?

Even functions

Lecture 4

Even and odd

Definition

A function f(x) is called **even** if for any number c with both c and -c in the domain of f one has f(-c) = f(c).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Even functions

Lecture 4 MATH 020

Shifting Flipping

Even and odd functions

Definition

A function f(x) is called **even** if for any number c with both c and -c in the domain of f one has f(-c) = f(c).

Example

・ロト・西ト・ヨト・ヨー シック

Odd functions

Lecture 4

Shifting Flipping

Stretching

Even and odd functions

Definition

A function f(x) is called **odd** if for any number c with both c and -c in the domain of f one has f(-c) = -f(c).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Odd functions

Lecture 4 MATH 020

Shifting Flipping

Stretching

Even and odd functions

Definition

A function f(x) is called **odd** if for any number c with both c and -c in the domain of f one has f(-c) = -f(c).

Example

イロト 不得下 イヨト イヨト

Graphs of even and odd functions

Lecture 4	
	The graphs of even and odd functions have symmetries.
Even and odd functions	

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Graphs of even and odd functions

Lecture 4 MATH 0200

- Shifting
- Flipping
- Stretching
- Even and odd functions

The graphs of even and odd functions have symmetries.

• The graph of an even function is symmetric with respect to the y-axis (remains unchanged after reflection about the y-axis).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Graphs of even and odd functions

Lecture 4 MATH 0200

- Summe
- Flipping
- Stretching
- Even and odd functions

The graphs of even and odd functions have symmetries.

- The graph of an even function is symmetric with respect to the *y*-axis (remains unchanged after reflection about the *y*-axis).
- The graph of an odd function has rotational symmetry with respect to the origin (remains unchanged after rotation of 180 degrees about the origin).

うして ふゆ く は く は く む く し く