Lectu.	re	0

Inverse functions

Lecture 6 Inverse functions

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture	6

MATH 0200

Inverse functions

(ロト (個) (E) (E) (E) (の)

Inverse functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function g is called the **inverse** of a function f if $(f \circ g)(x) = x$ (and automatically $(g \circ f)(x) = x$). The inverse of f is denoted by f^{-1} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Inverse functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function g is called the **inverse** of a function f if $(f \circ g)(x) = x$ (and automatically $(g \circ f)(x) = x$). The inverse of f is denoted by f^{-1} .

Remark

The inverse of a function is **NOT** the multiplicative inverse, in other words,

$$f^{-1} \neq \frac{1}{f}.$$

MATH 0200

Inverse functions

Example

The formula for converting the temperature from Celsius to Fahrenheit is $F(x) = \frac{9}{5}x + 32$. We would like to find the formula for converting 'backwards': from Fahrenheit to Celsius.

Inverse functions

Example

The formula for converting the temperature from Celsius to Fahrenheit is $F(x) = \frac{9}{5}x + 32$. We would like to find the formula for converting 'backwards': from Fahrenheit to Celsius.

Said differently, we would like to find the function C(x) with F(C(x)) = x (since conversion from Fahrenheit to Celsius and then back to Fahrenheit should give the initial value).

Inverse functions

Example

The formula for converting the temperature from Celsius to Fahrenheit is $F(x) = \frac{9}{5}x + 32$. We would like to find the formula for converting 'backwards': from Fahrenheit to Celsius.

Said differently, we would like to find the function C(x) with F(C(x)) = x (since conversion from Fahrenheit to Celsius and then back to Fahrenheit should give the initial value).

Let's denote C(x) by a dummy variable y. Then we need to find y from the equation $F(y) = \frac{9}{5}y + 32 = x$.

MATH 0200

Inverse functions

Example

This can be done via the following sequence of algebraic transformations:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

MATH 0200

Inverse functions

Example

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

MATH 0200

Inverse functions

Example

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

Therefore, $C(x) = \frac{5}{9}(x - 32).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

MATH 0200

Inverse functions

Example

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

Therefore, $C(x) = \frac{5}{9}(x - 32)$. We can (and should) check that the functions F and C are indeed inverse:

MATH 0200

Inverse functions

Example

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

Therefore, $C(x) = \frac{5}{9}(x - 32)$. We can (and should) check that the functions F and C are indeed inverse:

$$C(F(x)) = \frac{5}{9} \left(\frac{9}{5}x + 32 - 32\right) = \frac{5}{9} \cdot \frac{9}{5}x = x.$$

MATH 0200

Inverse functions

Question

There are two natural questions at this point.

functions

Question

There are two natural questions at this point.

• For which functions f does the inverse function f^{-1} exist?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Inverse functions

Question

There are two natural questions at this point.

• For which functions f does the inverse function f^{-1} exist?

2 How can we find a formula for f^{-1} (provided it exists)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inverse functions

Question

There are two natural questions at this point.

- For which functions f does the inverse function f^{-1} exist?
- **2** How can we find a formula for f^{-1} (provided it exists)?

Example

Consider the function $f(x) = x^2$, then $f(1) = 1^2 = 1$, but $f(-1) = (-1)^2 = 1$ as well. If f^{-1} existed then what would $f^{-1}(1)$ be equal to? Recall that f^{-1} is a function, so we can not have $f^{-1}(1) = \{1, -1\}$. Therefore, the function $f(x) = x^2$ does not have an inverse.

One-to-one functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function f is called **one-to-one** if for any numbers $a \neq b$ in the domain of f, one has $f(a) \neq f(b)$.

One-to-one functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function f is called **one-to-one** if for any numbers $a \neq b$ in the domain of f, one has $f(a) \neq f(b)$.

Remark

A function f is one-to-one if and only if any horizontal line y = c intersects the graph in at most one point. This statement is known as the **horizontal line test**.

One-to-one functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function f is called **one-to-one** if for any numbers $a \neq b$ in the domain of f, one has $f(a) \neq f(b)$.

Remark

A function f is one-to-one if and only if any horizontal line y = c intersects the graph in at most one point. This statement is known as the **horizontal line test**.

Remark

A function f is invertible if and only if it is one-to-one.

MATH 0200

Inverse functions

Example

The function f(x) below is not one-to-one.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

T. 1.		C
Finding	inverse.	tunctions
8	111,0100	10110010110

MATH 0200

Inverse functions

Next we provide a 3-step recipe for finding the inverse.

Finding inverse functions

Lecture 6

MATH 0200

Inverse functions

> Next we provide a 3-step recipe for finding the inverse. Step 1. Write y = f(x).

Finding inverse functions

Lecture 6

Inverse functions

> Next we provide a 3-step recipe for finding the inverse. **Step 1.** Write y = f(x). **Step 2.** Find x as a function of y.

Finding inverse functions

Lecture 6

Inverse functions

Next we provide a 3-step recipe for finding the inverse.

Step 1. Write y = f(x).

Step 2. Find x as a function of y.

Step 3. Substitute x by $f^{-1}(x)$ and y by x to obtain a formula for the inverse function.

MATH 0200

Inverse functions

Example

Find the inverse of the function $f(x) = \frac{1-x}{3+x}$.

MATH 0200

Inverse functions

Example

Find the inverse of the function $f(x) = \frac{1-x}{3+x}$.

$$\bullet \ y = \frac{1-x}{3+x}$$

MATH 0200

Inverse functions

Example

Find the inverse of the function $f(x) = \frac{1-x}{3+x}$.

$$y = \frac{1-x}{3+x}.$$

$$y = \frac{1-x}{3+x} \Leftrightarrow (3+x)y = 1-x \Leftrightarrow 3y+xy = 1-x \Leftrightarrow xy+x = 1-3y \Leftrightarrow x(y+1) = 1-3y \Leftrightarrow x = \frac{1-3y}{y+1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

MATH 0200

Inverse functions

Example

Find the inverse of the function $f(x) = \frac{1-x}{3+x}$.

•
$$y = \frac{1-x}{3+x}$$
.
• $y = \frac{1-x}{3+x} \Leftrightarrow (3+x)y = 1-x \Leftrightarrow 3y+xy = 1-x \Leftrightarrow xy+x = 1-3y \Leftrightarrow x(y+1) = 1-3y \Leftrightarrow x = \frac{1-3y}{y+1}$.
• We get $f^{-1}(x) = \frac{1-3x}{x+1}$.

Inverse functions

We check:
$$f^{-1} \circ f(x) = \frac{1 - 3 \cdot \frac{1 - x}{3 + x}}{\frac{1 - x}{3 + x} + 1} = \frac{\frac{3 + x - (3 - 3x)}{3 + x}}{\frac{1 - x + 3 + x}{3 + x}} = \frac{\frac{x + 3x}{3 + x}}{\frac{3 + x}{4}} = \frac{4x}{4} = x \quad \checkmark$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = の�?

Lecture 6

MATH 0200

Inverse functions • Domain of $f = \text{range of } f^{-1}$.

Lecture 6

MATH 0200

Inverse functions

- Domain of $f = \text{range of } f^{-1}$.
- 2 Range of $f = \text{domain of } f^{-1}$.

Lecture 6

MATH 0200

Inverse functions

- Domain of $f = \text{range of } f^{-1}$.
- 2 Range of $f = \text{domain of } f^{-1}$.
- The graphs of f and f^{-1} are symmetric with respect to the line y = x.

A D F A 目 F A E F A E F A Q Q

Lecture 6

MATH 0200

Inverse functions

- Domain of $f = \text{range of } f^{-1}$.
- 2 Range of $f = \text{domain of } f^{-1}$.
- The graphs of f and f^{-1} are symmetric with respect to the line y = x.

Example

MATH 0200

Inverse functions

Question

Let f(x) be given by the table below

$$\begin{array}{c|ccc}
x & f(x) \\
\hline
-2 & 3 \\
\hline
0 & 1 \\
\hline
3 & -2 \\
\end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

What are the range of f^{-1} and the value of $f^{-1}(-2)$?