Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Lecture 7 Lines and linear functions

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 7

MATH 0200

Slope and y-intercep

Equation o

 \bigcirc Slope and y-intercept

2 Equation of a line

Slope

Lecture 7

MATH 0200

Slope and y-intercep

Equation o a line

In this lecture we will go over linear functions and their graphs (lines on the plane).

Slope

Lecture 7

In this lecture we will go over linear functions and their graphs (lines on the plane).

Slope and y-intercept

Equation of a line

Definition

Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two points on a line ℓ . The number $m = \frac{y_2 - y_1}{x_2 - x_1}$ is called the **slope** of ℓ .

Slope

Lecture 7

In this lecture we will go over linear functions and their graphs (lines on the plane).

Slope and y-intercep

Equation of a line

Definition

Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two points on a line ℓ . The number $m = \frac{y_2 - y_1}{x_2 - x_1}$ is called the **slope** of ℓ .

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Remark

The slope depends only on the line ℓ , but not the two points on that line chosen to compute it.

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Remark

The slope depends only on the line ℓ , but not the two points on that line chosen to compute it.

Any line (except vertical lines) on xy-plane can be given by equation in the form y = mx + b, where m is the slope and b is the y-intercept (y-coordinate of the point where the line intersects the y-axis).

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Remark

The slope depends only on the line ℓ , but not the two points on that line chosen to compute it.

Any line (except vertical lines) on xy-plane can be given by equation in the form y = mx + b, where m is the slope and b is the y-intercept (y-coordinate of the point where the line intersects the y-axis).

Any vertical line has equation x = a for some number a.

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Remark

The slope depends only on the line ℓ , but not the two points on that line chosen to compute it.

Any line (except vertical lines) on xy-plane can be given by equation in the form y = mx + b, where m is the slope and b is the y-intercept (y-coordinate of the point where the line intersects the y-axis).

Any vertical line has equation x = a for some number a. A line is defined uniquely by

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Remark

The slope depends only on the line ℓ , but not the two points on that line chosen to compute it.

Any line (except vertical lines) on xy-plane can be given by equation in the form y = mx + b, where m is the slope and b is the y-intercept (y-coordinate of the point where the line intersects the y-axis).

Any vertical line has equation x = a for some number a. A line is defined uniquely by

• its slope and a point;

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Remark

The slope depends only on the line ℓ , but not the two points on that line chosen to compute it.

Any line (except vertical lines) on xy-plane can be given by equation in the form y = mx + b, where m is the slope and b is the y-intercept (y-coordinate of the point where the line intersects the y-axis).

Any vertical line has equation x = a for some number a. A line is defined uniquely by

- its slope and a point;
- 2 two not coinciding points.

Line with given slope and a point on it

Lecture 7

MATH 0200

Slope and y-intercep

Equation of a line

Example

Let's find an equation of the line with slope 3 and passing through the point (1,4).

Line with given slope and a point on it

Lecture 7

MATH 0200

Slope and y-intercep

Equation of a line

Example

Let's find an equation of the line with slope 3 and passing through the point (1,4). As the slope is m=3, equation of the line must be y=3x+b. It remains to find the value of y-intercept (b). Here we use the fact that point (1,4) is on the line:

$$4 = 3 \cdot 1 + b \Leftrightarrow b = 4 - 3 = 1,$$

and the equation becomes y = 3x + 1.

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Example

Find an equation of the line containing points (-1,3) and (2,2).

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Example

Find an equation of the line containing points (-1,3) and (2,2). First we find the slope:

$$m = \frac{2-3}{2-(-1)} = -\frac{1}{3}.$$

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Example

Find an equation of the line containing points (-1,3) and (2,2). First we find the slope:

$$m = \frac{2-3}{2-(-1)} = -\frac{1}{3}.$$

The equation is of the form $y = -\frac{1}{3}x + b$. We can use any of the points on the line to find b. Let's use the point (2,2):

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Example

Find an equation of the line containing points (-1,3) and (2,2). First we find the slope:

$$m = \frac{2-3}{2-(-1)} = -\frac{1}{3}.$$

The equation is of the form $y = -\frac{1}{3}x + b$. We can use any of the points on the line to find b. Let's use the point (2,2):

$$2 = -\frac{1}{3} \cdot 2 + b \Leftrightarrow b = 2 + \frac{2}{3} = \frac{8}{3}.$$

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Example

Find an equation of the line containing points (-1,3) and (2,2). First we find the slope:

$$m = \frac{2-3}{2-(-1)} = -\frac{1}{3}.$$

The equation is of the form $y = -\frac{1}{3}x + b$. We can use any of the points on the line to find b. Let's use the point (2,2):

$$2 = -\frac{1}{3} \cdot 2 + b \Leftrightarrow b = 2 + \frac{2}{3} = \frac{8}{3}.$$

The equation is $y = -\frac{1}{3}x + \frac{8}{3}$.

Lecture 7

MATH 0200

Slope and y-intercep

Equation of a line

We can check that the point (-1,3) is on the line (satisfies the equation that we have come up with):

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

We can check that the point (-1,3) is on the line (satisfies the equation that we have come up with):

$$-\frac{1}{3} \cdot (-1) + \frac{8}{3} = \frac{1}{3} + \frac{8}{3} = \frac{9}{3} = 3 \quad \checkmark$$

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line We can check that the point (-1,3) is on the line (satisfies the equation that we have come up with):

$$-\frac{1}{3} \cdot (-1) + \frac{8}{3} = \frac{1}{3} + \frac{8}{3} = \frac{9}{3} = 3 \quad \checkmark$$

Definition

Non coinciding lines on a plane are called **parallel** if their slopes are equal.

Lecture 7

MATH 0200

Slope and y-intercep

Equation of a line We can check that the point (-1,3) is on the line (satisfies the equation that we have come up with):

$$-\frac{1}{3} \cdot (-1) + \frac{8}{3} = \frac{1}{3} + \frac{8}{3} = \frac{9}{3} = 3$$

Definition

Non coinciding lines on a plane are called **parallel** if their slopes are equal.

Perpendicular lines

Lecture 7

MATH 0200

Slope and $y ext{-intercept}$

Equation of a line

Definition

Two lines on a plane are called **perpendicular** if they intersect at a right angle (90 degrees or $\frac{\pi}{2}$ radians).

Perpendicular lines

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line

Definition

Two lines on a plane are called **perpendicular** if they intersect at a right angle (90 degrees or $\frac{\pi}{2}$ radians).

Equation of a line

The slopes of perpendicular lines $\ell_1: y = m_1x + b_1$ and $\ell_2: y = m_2x + b_2$ satisfy the following equation:

$$m_1 m_2 = -1 \text{ or } m_2 = -\frac{1}{m_1}.$$

The slopes of perpendicular lines $\ell_1 : y = m_1 x + b_1$ and $\ell_2 : y = m_2 x + b_2$ satisfy the following equation:

$$m_1 m_2 = -1$$
 or $m_2 = -\frac{1}{m_1}$.

Example

Find an equation of the line passing through the point P = (1,2) and perpendicular to the line given by equation y = 3x - 7.

Lecture 7

MATH 0200

Slope and y-intercept

Equation of a line The slopes of perpendicular lines $\ell_1 : y = m_1 x + b_1$ and $\ell_2 : y = m_2 x + b_2$ satisfy the following equation:

$$m_1 m_2 = -1$$
 or $m_2 = -\frac{1}{m_1}$.

Example

Find an equation of the line passing through the point P = (1,2) and perpendicular to the line given by equation y = 3x - 7. First, we find the slope: $m = -\frac{1}{3}$ and, using that the line contains P:

$$-\frac{1}{3} \cdot 1 + b = 2 \Leftrightarrow b = 2 + \frac{1}{3} = \frac{7}{3}.$$

The equation is $y = -\frac{1}{3}x + \frac{7}{3}$.

Equation of a line

Question

Consider the line ℓ given by equation y = 7 - 5x.

Equation of a line

Question

Consider the line ℓ given by equation y = 7 - 5x.

① What is the slope of lines parallel to ℓ ?

Equation of a line

Question

Consider the line ℓ given by equation y = 7 - 5x.

- **①** What is the slope of lines parallel to ℓ ?
- 2 What is the slope of lines perpendicular to ℓ ?