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Zeros of quadratic functions

Today we will talk about quadratic functions. These are

functions given by polynomials of degree 2:

f(x) = ax2 + bx+ c,

where a, b and c are some numbers and a ̸= 0. The �rst
question we will address is how to �nd zeros of quadratic

functions.

De�nition

A zero of a function f(x) is a number d with f(d) = 0 (the

points where the graph of f(x) intersects the x-axis).
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Example

Let's take a look at the function f(x) = x2 − 4 and �nd its

zeros. We need to solve the equation f(x) = 0:

x2 − 4 = 0 ⇔ x2 = 4 ⇔ x = ±
√
4 ⇔ x = −2 or x = 2.

x

y

−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7

1

2

3

4

5

−5

−4

−3

−2

−1

• •

f(x) = x2 − 4
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Completing the square

Let f(x) = x2 + bx+ c and consider a 2-step procedure for

completing the square.

Step 1. Rewrite bx, the linear term of f(x) as

bx = 2 · · x
(
for =

b

2

)
:

f(x) = x2 + 2 · · x+ c.

Step 2. Add and subtract
2
:

f(x) = x2 + 2 · · x+
2
−

2
+ c =(

x+
)2

−
2
+ c.
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Example

Find the zeros of quadratic function f(x) = x2 − 2x− 8.

1 We write −2x = 2 · (−1) · x and

f(x) = x2 + 2 · (−1) · x− 8.

2 As = −1, we get

f(x) = x2 + 2 · (−1) · x− 8 = (x+ (−1))2 − (−1)2 − 8.

We compute (x− 1)2 − 1− 8 = 0 ⇔ (x− 1)2 = 9 ⇔ x− 1 =
±
√
9 = ±3 ⇔ x = ±3 + 1 ⇔ x = 4 or x = −2.

Check:

f(−2) = (−2)2 − 2 · (−2)− 8 = 4 + 4− 8 = 0 ✓

f(4) = 42 − 2 · 4− 8 = 16− 8− 8 = 0 ✓
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Quadratic formula

De�nition

Let f(x) = ax2 + bx+ c be a quadratic function. The

number D = b2 − 4ac is called the discriminant of f .

Now we present the formula for zeros of f(x).

1 If D < 0, then f(x) has no real zeros.

2 If D = 0, then f(x) has a unique zero x = − b
2a .

3 If D > 0, then f(x) has two zeros x = −b+
√
D

2a and

x = −b−
√
D

2a .

Example

We �nd the zeros of f(x) = 3x2− 18x− 21. The discriminant

of f(x) is D = 182 − 4 · 3 · (−21) = 324 + 252 = 576 = 242,
and the roots are (18 + 24)/6 = 7 and (18− 24)/6 = −1.
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Parabola

The graph of a quadratic function f(x) = ax2 + bx+ c is a
parabola. It has a vertex, point

(
− b

2a , f
(
− b

2a

))
, and a

directrix (line of symmetry), vertical line x = − b
2a .

x

y

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1

2

3

4

−6

−5

−4

−3

−2

−1

• •

f(x) = 0.3x2 − 1.8x− 2.1

x = 3

•
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Question

Find the coordinates of the vertex of parabola given by

equation f(x) = −0.5x2 + 7x− 4.



Lecture 8

MATH 0200

Zeros of
quadratic
functions

Completing
the square

Quadratic
formula

Parabolas

Circles

Properties

Let f(x) = ax2 + bx+ c be a quadratic function.

1 The graph of f(x) is symmetric with respect to its

directrix (vertical line x = − b
2a).

2 If a > 0, then f(x) attains its (global) minimal value at

the vertex. This value is f
(
− b

2a

)
.

•(
− b

2a , f
(
− b

2a

))
3 If a < 0, then f(x) attains its (global) maximal value at

the vertex. This value is f
(
− b

2a

)
.

•
(
− b

2a , f
(
− b

2a

))
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Distance between points

De�nition

Consider two points P = (x1, y1) and Q = (x2, y2). The
distance between P and Q is the length of the line segment

connecting these points. It is given by the formula

d(P,Q) =
√

(x1 − x2)2 + (y1 − y2)2.

x

y

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1

2

3

4

−2

−1

•

•

P

Q

x2 − x1

y2 − y1
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connecting these points. It is given by the formula

d(P,Q) =
√

(x1 − x2)2 + (y1 − y2)2.
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Question

What is the distance between the points (−3, 1) and (5, 7)?
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De�nition

A circle is a set of all points in a plane that are at a given

distance (radius) from a given point, the center.

The equation of the circle of radius r centered at O = (a, b)
is (x− a)2 + (y − b)2 = r2.

Example
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(x− 4)2 + (y − 1)2 = 9



Lecture 8

MATH 0200

Zeros of
quadratic
functions

Completing
the square

Quadratic
formula

Parabolas

Circles

De�nition

A circle is a set of all points in a plane that are at a given

distance (radius) from a given point, the center.

The equation of the circle of radius r centered at O = (a, b)
is (x− a)2 + (y − b)2 = r2.

Example

x

y

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1

2

3

4

−2

−1

• •O r

(x− 4)2 + (y − 1)2 = 9



Lecture 8

MATH 0200

Zeros of
quadratic
functions

Completing
the square

Quadratic
formula

Parabolas

Circles

De�nition

A circle is a set of all points in a plane that are at a given

distance (radius) from a given point, the center.

The equation of the circle of radius r centered at O = (a, b)
is (x− a)2 + (y − b)2 = r2.

Example

x

y

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1

2

3

4

−2

−1

• •O r

(x− 4)2 + (y − 1)2 = 9



Lecture 8

MATH 0200

Zeros of
quadratic
functions

Completing
the square

Quadratic
formula

Parabolas

Circles

Example

Find the radius and center of the circle given by equation

x2 − 6x+ y2 + 10y = 15.

We complete the squares:

x2 − 6x+ y2 + 10y = 15 ⇔
x2 − 2 · 3x+ 9− 9 + y2 + 2 · 5y + 25− 25 = 15 ⇔
(x− 3)2 + (y + 5)2 − 34 = 15 ⇔
(x− 3)2 + (y + 5)2 = 49 ⇔
(x− 3)2 + (y + 5)2 = 72.

The center is (3,−5) and the radius is equal to 7.
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