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MATH 4581: Statistics and Stochastic Processes

Bonus problems II

Problem 1[3 pts] Recall that the Gamma function is given by Γ(z) =
∞∫
0

xz−1e−xdx. Show that for any positive integer n

one has Γ(n) = (n− 1)! 1.

Problem 2[3 pts] The probability density function for the F -distribution with m and n degrees of freedom is
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Find the point at which fFm,n(x) attains its maximal value. 2.

Problem 3[4 pts] Let A1, A2, . . . An be a collection of events in a probability space (Ω, p) and let Āi stand for the complement
of Ai. Prove the Bonferroni inequality3
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1Hint: use induction on n and integration by parts
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is a constant, denote it by C and find the critical point of fFm,n (x) = C x
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by equating the

derivative to zero
3Hint: see the proof for n = 2 on page 2 of the notes


