Summer 2020

_ Total____/10

MATH 4581: STATISTICS AND STOCHASTIC PROCESSES

Bonus problems II

Problem 1[3 pts] Recall that the Gamma function is given by $\Gamma(z) = \int_{0}^{\infty} x^{z-1} e^{-x} dx$. Show that for any positive integer n one has $\Gamma(n) = (n-1)!^{-1}$.

Problem 2[3 pts] The probability density function for the F-distribution with m and n degrees of freedom is

$$f_{F_{m,n}}(x) = \frac{\Gamma\left(\frac{m+n}{2}\right)m^{\frac{m}{2}}n^{\frac{n}{2}}x^{\frac{m}{2}-1}}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)(n+mx)^{\frac{m+n}{2}}}$$

Find the point at which $f_{F_{m,n}}(x)$ attains its maximal value.².

Problem 3[4 **pts**] Let $A_1, A_2, \ldots A_n$ be a collection of events in a probability space (Ω, p) and let \bar{A}_i stand for the complement of A_i . Prove the Bonferroni inequality³

$$P(\bigcap_{i=1}^{n} A_i) \ge 1 - \sum_{i=1}^{n} P(\bar{A}_i).$$

¹**Hint:** use induction on *n* and integration by parts ²**Hint:** The number $\frac{\Gamma\left(\frac{m+n}{2}\right)m^{\frac{m}{2}}n^{\frac{n}{2}}}{\Gamma\left(\frac{m}{2}\right)\left(\frac{n}{2}\right)}$ is a constant, denote it by *C* and find the critical point of $f_{F_{m,n}}(x) = C \frac{x^{\frac{m}{2}-1}}{(n+mx)^{\frac{m+n}{2}}}$ by equating the

derivative to zero

³**Hint:** see the proof for n = 2 on page 2 of the notes