MATH 4581: Statistics and Stochastic Processes

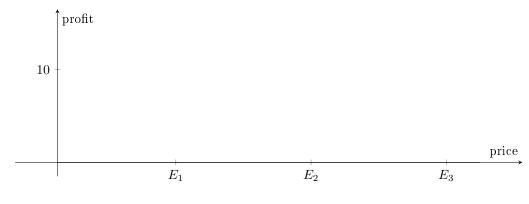
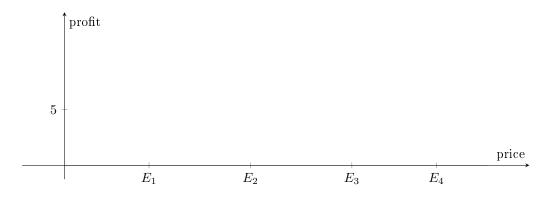
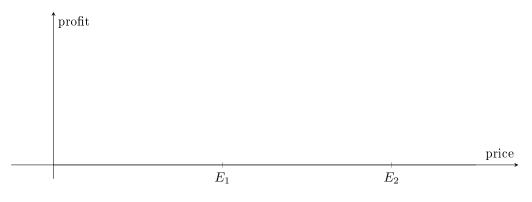

Options and Design of Portfolios

Figure 1: Who wins?


Problem 1. What follows are several portfolios denoted by \mathcal{P} . Graph the profit curve at t = T for each of them. In this listing, C_E denotes a call option with strike price E, $-C_E$ represents going short on a Call, P_E is a put option, $-P_E$ is going short on a put, and the numbers E_i indicate the strike prices.


(a) [5 **pts**] $\mathcal{P}_{Butterfly} = \$10 - C_{E_1} + 2C_{E_2} - C_{E_3}$, where $E_1 < E_2 < E_3$.



(b) [5 **pts**] $\mathcal{P} = \$5 + C_{E_1} - C_{E_2} - C_{E_3} + C_{E_4}$, where $E_1 < E_2 < E_3 < E_4$.

(c)* [5 **pts**] $\mathcal{P}_{Box} = C_{E_1} - P_{E_1} - C_{E_2} + P_{E_2}$, where $E_1 < E_2$.

Problem 2. For a given shape of the profit curve, design the portfolio and draw the graph of the profit as a function of price. The profit line is horizontal $\mathcal{P} = \$10$ until price \$60. At that point, it has slope 3 until price \$70. Then, the line has slope 2 until price \$100. Next, it has slope zero until price \$110. It then has a slope of -1 until \$120. After that, it has slope zero.

(a) [3 pts] Draw the graph of the profit as a function of price.

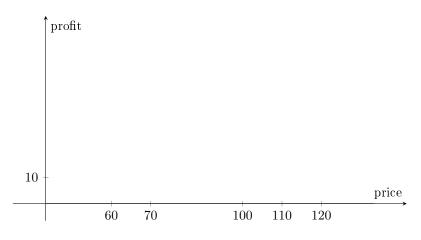


Figure 5: Profit as a function of price

- (b) [4 pts] Design the portfolio with the above behavior using only call options.
- (c) [4 pts] Design the portfolio with the above behavior using only put options.
- (d) [4 pts] Design a portfolio with the above behavior using both call and put options.

Problem 3 [5 pts]. Design the portfolios according to the table and graphs below.

Behavior type	Calls only	Puts only
Bear		
Bull		

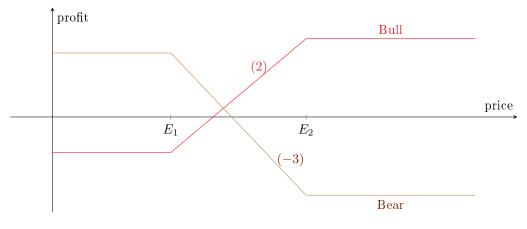


Figure 6: Bear vs Bull

Problem 4. Edward and Jeffrey are friends. Every morning they read a newspaper. Edward's choice is The Washington Post, while Jeffrey prefers The New York Times.

(a) [7 pts] The Washington Post published this morning that for an expiration date of a year from now (with 5% interest) the price of a call option $C_{60}(70, t)$ is \$9 and the price of a put option $P_{60}(70, t)$ is \$4. How can Edward use this information to make some money?¹

(b) [8 pts] The New York Times assure that for an expiration date of a year from now (with 5% interest) $C_{70}(68,t)$ is \$9 and $P_{70}(68,t)$ is \$4. How can Jeffrey use this information to his advantage?

The following problem does not contribute to the grade.

Problem 5. Let B(t) be a standard Brownian motion.

(a) Find P(B(4) > 1)

(b) Find $P(B(4) > 1 \cap B(7) - B(4) < 2)$

(c) Find P(B(4) > 3|B(2) = 1).

¹**Hint:** use the put-call parity equation $P_E(S,t) + S = C_E(S,t) + Ee^{-r(T-t)}$