Intro to affine Grassmannians.

\[\Theta = \mathbb{C}[t_1, \ldots, t_d] - \text{power series} \]

\[K = \text{Frac}(\Theta) = \mathbb{C}((t_1)) - \text{formal Laurent polynomials}. \]

Def. An \(\Theta \)-lattice in \(K^n \) is a projective finitely generated \(\Theta \)-submodule \(\Lambda \), s.t. \(\Lambda \otimes K \cong K^n \).

Such lattices are points in the affine Grassmannian.

Goal: Endow with topology!
Let \(G_{N} := \{ \Lambda | t^{-N} \Lambda \supseteq \Lambda \supseteq t^{N} \Lambda_{0} \} \), where \(\Lambda_{0} = \emptyset \).

Remark: \(G_{N} < G_{N+1} < \cdots \)

\(\Theta_{N} = \lim_{\to} G_{N} \)

Notice that \(\frac{t^{-N} \Lambda_{0}}{t^{N} \Lambda_{0}} = C^{2nN} \)

There is a map \(\varphi : G_{N} \hookrightarrow G_{(2n)N} \)

\[\cup_{k \in \{1, 2, \ldots, 2nN-1\}} G_{(k, 2nN)} \]

\(\varphi(\Lambda) = \frac{\Lambda}{t^{N} \Lambda_{0}} \)

Remark: \(\varphi \) is not surjective, since to be an \(\Theta \)-submodule, a subspace must be \(t \)-stable.

Recall: \(G_{(2n)N} \) is a projective variety (via Plücker embedding), \(t \)-stability is a closed condition, so we get an induced structure of proj. variety on \(G_{N} \).

Example: \(N = 0 \), \(G_{0} = \{ \Lambda | \Lambda_{0} \supseteq \Lambda \supseteq \Lambda_{0} \} = \)
Conclusion: \(\text{Lie: } \text{Gr}_n \hookrightarrow \text{Gr}(2nN) \) is a closed embedding, giving \(\text{Gr}_n \) a structure of proj. scheme and \(\text{Gr} = \text{lim} \text{Gr}_n \) the structure of ind-proj. scheme.

Cartan decomposition / Affine Schubert cells.

Recall: \(G \)-classical Lie group

Bruhat decomposition:

\[
G = \text{L} \uparrow \text{B} \downarrow \text{W} \downarrow \text{B}
\]

Example. \(G = \mathfrak{sl}_n \), \(\text{B} = (\begin{smallmatrix} \ast & \ast \cr 0 & \ast \end{smallmatrix}) \), \(\text{W} = \mathfrak{S}_n \).

For instance, \((12) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \).

Acting by row and column transformations, we can bring any matrix to a unique permutation matrix.
Cartan decomposition:

\[G(K) = \bigsqcup G(\theta) t^\lambda G(\theta). \]

\(\lambda \)-dominant coweights

In case \(G = G_{\text{un}} \), \(t^\lambda = (t^{\lambda_1}, 0, t^{\lambda_n}) \) with \(\lambda_i \in \mathbb{Z} \) and \(\lambda_1 > \lambda_2 > \cdots > \lambda_n \).

Proof: Gauss-Jordan elimination (Smith normal form).

Rmk: \(G(\theta) \) is the analog of \(pCG \) maximal parabolic

and is called **parahoric** = 'Iwahori + parabolic'

Analog of \(\beta \) is \(\iota: \chi: G(\theta) \to G \), \(\iota = \Pi^{-1}(\beta) \).

\(t_i \to 0 \) stabilizes a full flag of lattices
'Old' Grassmannian: \(P = \left(\otimes_1^n X \right) \subset G \subset G / p \),
\(B \subset G / p \rightarrow \text{Schubert cells} \)
(closures of) \(B \)-orbits.

'New' Grassmannian:
\(G(\Theta) \subset G(\mathbb{K}) / G(\Theta) \)

Affine Schubert cells are
\(X_\lambda = G(\Theta) \cdot \epsilon \lambda \).

Fact. \(\overline{X_\lambda} = \bigsqcup \overline{X_\mu} \), \(\mu \) is dominant.

\(\mu \prec \lambda \) means that \(\mu - \lambda \in X_+ \) (positive wt).

For \(B \subset \mathfrak{g} \), \(\mu \prec \lambda \) means \(\mu_i \leq \lambda_i \),
\(\mu_1 + \mu_2 \leq \lambda_1 + \lambda_2 \)
\(\vdots \)
\(\mu_1 + \cdots + \mu_n \leq \lambda_1 + \cdots + \lambda_n \).

Rmk. \(\overline{X_\lambda} \) is closed if \(\lambda \) is a minuscule wt (not greater than any \(\mu \in X_+ \)).
Example. The minuscule wts for GL_n are

$$x_k = \left(1, 1, \ldots, 1, 0, 0, \ldots, 0\right)_{\scriptscriptstyle K \atop \scriptstyle n-k}$$

$\text{Prop.}\ n, \ \chi_k \chi_k = \chi_n = 6\gamma(n-k, n).$

Indeed, this follows from a computation

$$\begin{pmatrix}
\begin{array}{cccc}
\Phi_1(t) & \cdots & \Phi_n(t) \\
\vdots & \ddots & \vdots \\
\Phi_1(t) & \cdots & \Phi_n(t)
\end{array}
\end{pmatrix}
\begin{pmatrix}
\begin{array}{c}
t \\
0 \\
\vdots \\
0
\end{array}
\end{pmatrix}$$

$$= \begin{pmatrix}
\begin{array}{c}
t \Phi_1(t) & \cdots & t \Phi_{n-k}(t) & \Phi_{n-k+1}(t) & \cdots & \Phi_n(t) \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
t \Phi_1(t) & \cdots & t \Phi_{n-k}(t) & \Phi_{n-k+1}(t) & \cdots & \Phi_n(t)
\end{array}
\end{pmatrix}$$

$$t x_k \cdot Q(t) = \begin{pmatrix}
\begin{array}{cccc}
t Q_{11}(t) & \cdots & t Q_{1n}(t) \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
t Q_{k_1}(t) & \cdots & t Q_{k_{n-k}}(t) \\
0 & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & \cdots & 0 \\
Q_{11}(t) & \cdots & Q_{1n}(t) \\
\vdots & \cdots & \vdots \\
\vdots & \cdots & \vdots \\
\vdots & \cdots & \vdots \\
Q_{k_1}(t) & \cdots & Q_{k_{n-k}}(t) \\
\vdots & \cdots & \vdots \\
0 & \cdots & 0 \\
0 & \cdots & 0
\end{array}
\end{pmatrix}$$
Conclusion: the action of $G(\Theta)$ factors through the action of $t \cdot G(\Theta)$

\[g \in G(\Theta) \]
\[G = g_0 + t \cdot g, (t) \]
\[G \rightarrow G(\Theta) = G + t \cdot G(\Theta) \]

U acts trivially

\[p = \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \]

We get that $X_{\chi_k} \cong G/p \cong G_{T}(n-k,n)$.

The stabilizer of t^2 for left $G(\Theta)$-action is $G(\Theta) \cap t^2 \cdot G(\Theta) \cdot t^{-1}$

In the example above, $t \cdot G(\Theta) \cdot t^{-1}$ is

\[
\begin{pmatrix}
\begin{pmatrix}
t & & \\
& \ddots & \\
& & 1
\end{pmatrix}
& \begin{pmatrix}
0 & & \\
& \ddots & \\
& & 0
\end{pmatrix}

\begin{pmatrix}
P_1(t) & \cdots & P_m(t)
\end{pmatrix}

\begin{pmatrix}
t^{-1} & 0 \\
0 & t^{-1}
\end{pmatrix}
\end{pmatrix}
\]
After intersecting with $G(9)$, we get that $\text{Stab}_{\mathfrak{t} \lambda \nu}$ consists of matrices of the form

$$g = \begin{pmatrix}
 P_\nu(t) & \cdots & P_{\lambda \nu}(t) \\
 \vdots & & \vdots \\
 t^{-1}P_{\lambda \nu}(t) & \cdots & t^{-1}P_{\lambda \nu}(t)
\end{pmatrix} \in G(9)$$

$$G(9)/\text{Stab}_{\mathfrak{t} \lambda \nu} \cong G/p, \quad p = \begin{pmatrix}
 x & 0 \\
 0 & x
\end{pmatrix}$$

Coffee break
Recall: \(\rho = \frac{1}{2} \sum_{\lambda \in \Phi^+} \lambda \)

Prop-n. \(\dim X_\lambda = (2 \rho, \lambda) \),

Pf: \(X_\lambda \cong G(\Theta)/\bigl(G(\Theta) \cap t^\lambda G(\Theta) t^{-\lambda} \bigr) \), hence, \(X_\lambda \) is smooth and the dimension of \(X_\lambda \) equals the dimension of \(X_\lambda \) at any point \(x_0 \):

\[
\dim T_{x_0}(X_\lambda) = \dim \left(\bigoplus_{\lambda \in \Phi^+} \frac{G(\Theta)}{t(\lambda, \Theta) \cdot G(\Theta)} \right) = \sum_{\lambda \in \Phi^+} (2 \rho, \lambda) = (2 \rho, \lambda).
\]

Rmk. \(\lambda \) is dominant, so \((L_j, \lambda) < 0\) for any \(L_j \) and \(G(\Theta)/t(\lambda, \Theta) \cdot G(\Theta) = 0 \).

Example. \(\lambda_k = (1,1, \ldots, 1, 0, \ldots, 0) \), a minuscule coweight for \(\overline{G} = G_{kn} \).

As \(2 \rho = \sum \xi_i - \xi_j \),

\[
\sum_{\mathbf{k} \preceq \mathbf{i} \preceq j \preceq \mathbf{n}} \xi_i - \xi_j + \sum_{\mathbf{i} \preceq \mathbf{k} \preceq \mathbf{j} \preceq \mathbf{n}} \xi_i - \xi_j + \sum_{\mathbf{k} \preceq \mathbf{i} \preceq \mathbf{j} \preceq \mathbf{n}} \xi_i - \xi_j,
\]

where \(\xi_i(\xi_j) = \delta_{i,j} \).
we have \((2g, \lambda_k) = \left(\sum_{1 \leq i < k < j \leq n} (e_i - e_j, \lambda_k) = k(n-k) \right) \dim \mathfrak{g} = (n-k,n)\).

Nilcone inside affine Grassmannian.

Def: The subvariety \(N = \{ A \in \mathfrak{g} | A^n = 0 \} \) is called the nilpotent cone.

Remark: The definition above works for \(\mathfrak{g} = \mathfrak{gl}_n \) or \(\mathfrak{g} = \mathfrak{sl}_n \).

Example. \(\mathfrak{g} = \mathfrak{sl}_2 = \left\{ \begin{pmatrix} x & y \\ z & -x \end{pmatrix} \right\} \)

\(A \in \mathfrak{g} \) is nilpotent \(\iff A^2 = 0 \left(\overset{\text{Cayley-Hamilton}}{\iff} \right) \)

\(\chi_A(t) = t^2 \). As \(\mathfrak{sl}_2 \) consists of traceless matrices, \(\chi_A(t) = t^2 \iff \det A = -x^2 - yz = 0 \), i.e.

\[N = \mathbb{C}[x,y,z] / (x^2 + yz) \text{ is a cone} \]

This is where the name 'nilpotent cone' or 'nilcone' comes from.
If \(\sigma_1 = \sigma_1^N \), then an operator \(A \in \mathcal{N} \) iff \\
\(X_\mu(t) = t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0 = t^n \), i.e., the \(n \) coefficients \(a_0, a_1, \ldots, a_{n-1} \) (which are polynomials in the matrix entries of \(A \) all vanish). \\
This allows to conclude \\
\(\dim \mathcal{N} = \dim \mathcal{O}_1 - n = n^2 - n \). \\
The following construction is attributed to G. Lusztig. \\
Let \(\mu = (n, 0, 0, \ldots, 0) \). It is not hard to check that \\
\(X_\mu = G(\mathfrak{g}) \cdot t^n \) \(\forall \lambda \in \mathfrak{n} \supset \mathcal{N} \), \(\dim \mathfrak{n}/\lambda = n \). \\
Consider the map \\
\(\Psi: \mathcal{N} \to \mathcal{O}_1 \) \\
\(A \mapsto A_0 / (t-A) A_0 \). \\
Remark. This is the same construction as the one used in the proof of existence of Jordan canonical form: given a matrix \(A \in \mathfrak{gl}_n \) and \(V = \mathbb{C}^n \), we make \(V \) into a \((\mathbb{C}[t]) - \)module.
with the action of $f(x) \in C[x]$ being via $f(A)$.

Remark. Notice that $\dim X_\mu = (2p, \mu) = n(n-1) = \dim N$, hence, Φ is an open embedding.

Coffee break

Valuation.

Let $\Lambda = \text{span} g \{v_1, \ldots, v_n\}$ be a lattice, then $\det \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \in K^\times$.

Define the map $\text{val} : \mathcal{G}_r \rightarrow \mathbb{Z}$ via $\text{val}(\Lambda) = \min \{n | t^n \text{ occurs in } \det(\text{basis})\}$.

Properties: 1. Independent of the choice of basis
2. Constant on left $G(\Theta)$-orbits. (Schubert cells)
Reason: any matrix \(g \in G(\mathbb{F}) \) has \(\det g \in C[t, t^*] \) (is invertible), i.e., \(\det g = a_0 + a_1 t + \ldots \) with \(a_0 \neq 0 \). It follows that multiplication by \(g \) (left or right) does not change the minimal power of \(t \) in the determinant.

Complete picture for \(GL_n \):

As shown above, we have a map

\[Val : \{ \text{connected com-?} \} \rightarrow \mathbb{Z} \]

Example. \(n = 2 \):

\[Val^{-1}(0) = \begin{array}{c}
\text{Gr}_{(0,0)} \quad \text{Gr}_{(1,1)} \\
\end{array} \]

\[\dim \text{Gr}_{(m, -m)} = (1, 1-1, (m, -m)) = 2m \]

\[Val^{-1}(1) = \begin{array}{c}
\text{Gr}_{(1,0)} \quad \text{1p} \\
\end{array} \]

\[\dim \text{Gr}_{(m, -m+1)} = 2m+1. \]

((1,0) is a minuscule weight)
Rmk. \(\text{Val}^{-1}(2k) \) is \(\text{GL}_2(F) \)-equivariantly isomorphic to \(\text{Val}^{-1}(0) \) and \(\text{Val}^{-1}(2k+1) \) is \(\text{GL}_2(F) \)-equivariantly isomorphic to \(\text{Val}^{-1}(0) \) for any \(k \in \mathbb{Z} \). The isomorphisms are given by multiplication by the matrix \((t^k 0) \) and its inverse \((0 t^{-k}) \).

In other words, we get the bijection

\[
\begin{cases}
\text{iso-classes of connected components of Gr} \\
\text{for } \text{GL}_2
\end{cases}
\xleftrightarrow{\quad}\mathbb{Z}/2
\]

parity of valuation

Similarly one gets

\[
\begin{cases}
\text{iso-classes of connected components of Gr} \\
\text{for } \text{GL}_n
\end{cases}
\xleftrightarrow{1:1}\mathbb{Z}/n
\]

valuation (mod \(n \))

Slodowy slices.

Let \(g \) be a reductive Lie algebra and \(x \in N \subseteq \mathfrak{g} \) a nilpotent element.
A transversal slice S_x in X to the (adjoint) orbit of x is a locally closed subvariety $S_x \subset \mathfrak{g}$ such that

- $x \in S_x$;
- the morphism $G \times S_x \to \mathfrak{g}$, $(g,s) \mapsto \text{ad}(g)(s)$ is smooth;
- $\dim S_x = \text{codim}(G \cdot x)$.

In case $x \in N$ such a slice is obtained as the affine space complimentary to the tangent space of the orbit $G \cdot x$ in \mathfrak{g}.

The recipe is as follows.

Step 1. We will need the Jacobson-Morozov theorem.

Thm. There exists a Lie algebra homomorphism $\mathfrak{h} \ni \mathfrak{l}_2 \to \mathfrak{g}$ with $\mathfrak{l}(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}) = X$. All such homomorphisms are conjugate under the centralizer $Z_\mathfrak{g}(X)$.
The result above allows to complete x to an \mathfrak{sl}_2-triple $<x,y,h>$, which will be denoted by \hat{x}.

Step 2. Decompose \hat{x} into the sum of irreducible representations w.r.t. adjoint \mathfrak{g}-action:

$$\hat{x} = \bigoplus_{i=1}^{k} V_i$$

As $T_x(\mathfrak{g},x) = x + [x,y]$, the complement to $T_x(\mathfrak{g},x)$ in \mathfrak{g} is $x + \cdots = x + \ker(\text{ad}y)$ (consists of lowest weight vectors in V_i's).

Step 3. A slice to x inside \mathfrak{N} is $S_x \cap \mathfrak{N}$.

Example. $\mathfrak{g}_1 = \mathfrak{sl}_2$, $x = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
Step 1. As x is a positive root, $y = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is the corresponding negative root and

$$h = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Step 2. Let $A \in \mathbb{F}^{l_3}$, then

$$[y, A] = \begin{pmatrix} -a_{13} & 0 & 0 \\ -a_{23} & 0 & 0 \\ a_{11} - a_{33} & a_{12} & a_{13} \end{pmatrix}.$$

Thus, $A \in \ker (ady)$ is of the form

$$A = \begin{pmatrix} a & 0 & 1 \\ b & -2a & 0 \\ d & c & a \end{pmatrix}.$$

Step 3. Now we find the intersection

$$S_x \cap S^* = \{ A^x (a, 0, 1) | \chi_A(t) = t^3 \},$$

where $\chi_A(t)$ is the characteristic polynomial of A, i.e.

$$\chi_A(t) = \det (A - t \cdot I).$$

The coefficient of t^3 is $\text{tr} A = 0$ ($A \in \mathbb{F}^{l_3}$).
The coefficient of t is $2a^2+2a^2-a^2+d$. The constant term is $\det(A) = -2a^3 + 2ad + bc$.

Hence, $S_{x \cap N} = \mathbb{C}[a,b,c]/(bc-b^3)$ is a Kleinian singularity of type A_2 (the Dynkin diagram of sl_3).

We will need a little bit of preparation in order to formulate a more general result.

Def. An element $x \in \mathfrak{g}$ is called **regular** if its adjoint G-orbit is of maximal possible dimension. This is equivalent to $\dim Z_G(x) = \text{rk} \mathfrak{g} \mathfrak{g}$ (here $Z_G(x)$ is the centralizer of x).

An element $x \in \mathfrak{g}$ is called **subregular** if $\dim Z_G(x) = \text{rk} \mathfrak{g} \mathfrak{g} + 2$.

Example. Let $\mathfrak{g} = sl_n$, $x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{g}$ and $y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{g}$. A direct calculation shows that

\[Z_G(x) = \begin{pmatrix} 0 & a_{11} & a_{21} & \cdots & a_{n-1,1} \\ 0 & 0 & a_{22} & \cdots & a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} \]

\[Z_G(y) = \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & 0 \\ 0 & a_1 & a_2 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_1 \end{pmatrix} \]
As $rk(g_{ln}) = n-1$, $\dim Z_G(x) = n-1$ and $\dim Z_G(y) = n+1$, x is regular and y is subregular.

Thm (Dynkin). If y is simple, all subregular elements belong to the same conjugacy class.

Now we can state an interesting result.

Thm (Brieskorn). Let y be a simple Lie algebra of type A, D or E and $x \in N < y$ a subregular element. Then the variety $S_{xN}N$ is a Kleinian singularity of type 'prescribed' by the Dynkin diagram of y.

Next we will show how the shadowy slices (inside the nilcone) are realized in the affine Grassmannian.

Birkhoff decomposition.

Apart from the Cartan decomposition

$$G(k) = \bigcup_{\lambda \in \text{dom. coweights}} G(\Theta) t^\lambda G(\Theta)$$
there is the Birkhoff's decomposition:

\[G(K) = \bigcup_{\text{dom. coweights}} G[t^*] t^* G(\Theta) \]

The existence of this decomposition is equivalent to Grothendieck's thm classifying locally free sheaves (vector bundles) on the projective line \(\mathbb{P}^1 \).

Thm (Grothendieck). Let \(E \) be a rank \(n \) locally free sheaf on \(\mathbb{P}^1 \), then

\[E = \bigoplus_{i=1}^n \mathcal{O}(s_i), \quad s_i \in \mathbb{P}^1. \]

Recall that the line bundle \(\mathcal{O}(k) \) on \(\mathbb{P}^1 \) is given by two modules \(M_0 = \mathbb{C}[t] \) and \(M_1 = \mathbb{C}[t^*] \) (on the two affine charts \(\mathbb{A}^1 \)) and transition function being multiplication by \(t^k \).

Similarly, a rank \(n \) locally free sheaf on \(\mathbb{P}^1 \) is given by two modules \(M_0 = \mathbb{C}[t]^n \) and \(M_1 = \mathbb{C}[t^*]^n \) (over \(\mathbb{C}[t] \) and \(\mathbb{C}[t^*] \), respectively) together with a transition matrix \(g \in G_l n(K) \). Notice that \(g \) is
defined up to the change of basis in \mathfrak{m}_0 and \mathfrak{m}_1, i.e. action of $G[t^{-1}]$ on the left and $G[t]^{-1}$ on the right. It follows that the Birkhoff's decomposition and Grothendieck's thm are equivalent.

Rmk. The attentive reader may have noticed that in Birkhoff's decomposition we act by $G[t]$ (the matrix entries are power series), while $G[t]$ above stands for matrices of polynomials, so instead of the decomposition above we rather need

$$G[t, t^{-1}] = \bigcup_{x \in \text{dom. CSweights}} G[t^{-1}] t^x G[t],$$

which also holds true and bears Birkhoff's name.

Slices in affine Grassmannian.

Let $Gr^\lambda = G[t^{-1}] \cdot t^\lambda \subset Gr$.

Thm. (1) $Gr^\mu \cap Gr^\lambda = \emptyset$ if $\mu > \lambda$.

(2) $Gr^\mu \cap Gr^\lambda \cong G \cdot t^\lambda$.

Let $Gr^\mu = G[t^{-1}] \cdot t^\mu \subset Gr$.

Thm. (1) $Gr^\mu \cap Gr^\lambda = \emptyset$ if $\mu > \lambda$.

(2) $Gr^\mu \cap Gr^\lambda \cong G \cdot t^\lambda$.
\textbf{Remark.} The proof is a straightforward calculation. The variety $G \cdot t^\mu$ is the fixed point set for the action of one-dimensional torus \mathbb{C}^* on Gr_x via rescaling t. This torus is called the \textit{rotation torus}.

Let $G_i \subset G[t^{-1}]$ be the kernel of the evaluation map $\varphi: G[t^{-1}] \rightarrow G$

\[t^{-1} \mapsto 0 \]

and $\overline{Gr^\mu} := G_i \cdot t^\mu$.

Then $\overline{Gr^\mu} \cap \overline{Gr^\mu} = t^\mu$ is a single point.

\textbf{Prop.} Let $\mu \leq \lambda$, then $\overline{Gr^\mu} \cap \overline{Gr^\mu} \cap Gr_x$ intersects Gr_x transversally for any $\mu \leq \nu \leq \lambda$.

In particular, for $\lambda = (n, 0, 0, \ldots, 0)$ and $\mu \leq \lambda$, one gets $\overline{Gr^\mu} \cap \overline{Gr^\mu} \approx S_x \cap N_x$, where the Jordan form of the nilpotent matrix X has partition type μ.