Review Midterm Exam 2

1. Find the length of the circular arc of the unit circle connecting the point $P_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and the point whose radius corresponds to 1 radian.

2. For a 14-inch pizza \bigcirc , find the area of a slice with angle 4/7 radians.

- 3. Suppose y is a number such that $tan(y) = -\frac{5}{7}$. Find tan(-y).
- 4. Suppose that $\sin(\alpha) = \frac{3}{5}$ and α is in the second quadrant. Use trigonometric identities to find the exact values of the following quantities.
 - $(a) \cos(\alpha)$
 - (b) $\sin(2\alpha)$
 - $(c) \cos(2\alpha)$

- (d) $\tan(2\alpha)$
- 5. Let α be an angle in the first quadrant, and suppose $\sin(\alpha) = a$. Evaluate the following expressions in terms of a. For example, $\sin(\alpha + \pi) = -a$. Your answers need to be expressions that involve a.

(a)
$$\sin\left(\alpha + \frac{3\pi}{2}\right)$$

(b)
$$\cos\left(\frac{\pi}{2} - \alpha\right)$$

(c)
$$\sin(\pi - \alpha)$$

$$(d) \sin\left(\frac{\pi}{2} - \alpha\right)$$

(e)
$$\cos(2\pi - \alpha)$$

6. A 12-foot ladder leans against a vertical wall forming an angle of 60° with the ground. How high above the ground does the ladder touch the wall?

7. Use trigonometric identities to find the exact value of each expression.

(a)
$$\cos(48^\circ)\cos(12^\circ) - \sin(48^\circ)\sin(12^\circ)$$

(b)
$$\frac{\tan(78^\circ) + \tan(112^\circ)}{1 - \tan(78^\circ)\tan(112^\circ)}$$

8. Show (without using a calculator) that

$$\sin\left(\frac{\pi}{7}\right)\cos\left(\frac{4\pi}{21}\right) + \cos\left(\frac{\pi}{7}\right)\sin\left(\frac{4\pi}{21}\right) = \frac{\sqrt{3}}{2}.$$

- 9. (a) Use the half angle formula to find the value of $\sin\left(\frac{\pi}{8}\right)$.
 - (b) Find the area of a regular 16-sided polygon whose vertices are 16 equally spaced points on a circle with radius 3.

10.	Find the perimeter of a regular	12-sided polygon	whose	vertices are	12 equally	spaced po	ints on a	a circle
	with radius 3. ¹							

11. Find the smallest number t such that $\cos(3^t) = 0$.

¹**Hint:** use the law of cosines