Spring 2023

MATH 0200: Preparation for Scientific Calculus

Review for the Final Exam

1. Solve $e^{2x} + e^x = 6$.

2. Solve
$$\frac{\ell n(11x)}{\ell n(4x)} = 2.$$

- 3. Solve $\ell n(\ell nx) = 5$.
- 4. How many digits does $5^{999} \cdot 17^{222}$ have?

- 5. Suppose a savings account pays 5% interest per year, compounded four times per year. If the savings account starts with \$600, how many years would it take for the savings account to exceed \$1400?
- 6. A baseball card bought for \$50 increases by 10% in value each year. How long does it take for the card to quadruple in price?

7. (a) A baby alligator ****** is born 9 inches long and grows by 5% each month. How old will the alligator ****** be when it doubles its initial length?

(b) Our alligator has eaten a slice of a 20-inch pizza with angle 2 radians. The weight of the alligator grows by approximately 250 grams per square inch of pizza eaten. How much weight did the alligator gain ...???

8. (a) Show that
$$\cos(15^\circ) = \frac{\sqrt{2+\sqrt{3}}}{2}$$

(b) Show that
$$\sin(15^{\circ}) = \frac{\sqrt{2-\sqrt{3}}}{2}$$

9. Suppose that $\sin(\alpha) = -\frac{2}{7}$ and α is in the second quadrant. Use trigonometric identities to find the exact values of the following quantities.

(a) $\cos(\alpha)$

(b) $\sin(2\alpha)$

(c) $\cos(2\alpha)$

10. Find the smallest number x such that $\cos(e^x + 1) = 0$.

- 11. Find the amplitude and period of the given function f(x) on the given interval [a, b]. Sketch the graph and mark any line segments corresponding to amplitude and period.
 - (a) $f(x) = 5\sin\left(\frac{\pi x}{3}\right) 1$ on the interval [-6, 6].

(b) $f(x) = -2\cos(3\pi x) + 6$ on the interval [-2, 2].

12. Find the value of t for which the vectors ${\bf u}$ and ${\bf v}$ are perpendicular.

(a)
$$\mathbf{u} = (2\ell n(t), -3)$$
 and $\mathbf{v} = (1, 6)$.

(b)
$$\mathbf{u} = (56, 2)$$
 and $\mathbf{v} = (-1, 7^t)$.

(c)
$$\mathbf{u} = \left(-\frac{\pi}{3}, 2\right)$$
 and $\mathbf{v} = (1, \arccos(t)).$

13. Rewrite the following equations in polar coordinates.

(a)
$$x^2 + y^2 = 49$$
.

(b)
$$(x-5)^2 + y^2 = 9.$$

(c)
$$x^2 + (y+3)^2 = 25.$$

14. Rewrite the following equations in Cartesian coordinates.

(a)
$$r = 3\cos(\theta)$$
.

(b)
$$r = 2\sin(\theta)$$
.

(c) r = 5.

- 15. Sketch the radius vectors corresponding to the following complex numbers and their conjugates.
 - (a) z = 1 + i. (b) w = -3i - 4.
 - (c) $\ell = 4i$.

16. Write the following complex numbers in the form a + bi.

(a) $1 + i - (\overline{i-5})$.

- (b) (5i-2)(3-i).
- $(c) (3-i)^2.$

$$(d) \ \frac{5+2i}{2-i}.$$

17. Write the following complex numbers in the form $z = r(\cos(\theta) + i\sin(\theta))$, where r = |z| and θ is the angle that z forms with the x-axis.

$$(a) \ z = \frac{1+i}{\sqrt{2}}.$$

(b)
$$w = -5 - 5\sqrt{3}i$$
.