Bonus 1

Definition 1. A unit sphere of dimension n is the subset of vectors with norm 1 in $n + 1$ -dimensional real vector space:

$$
S^n := \{ v \in \mathbb{R}^{n+1} \mid |v| = \sqrt{x_1^2 + x_2^2 + \ldots + x_{n+1}^2} = 1 \}.
$$

Notice that as $|v| > 0$, we have $|v| = 1 \Leftrightarrow |v|^2 = x_1^2 + x_2^2 + \ldots + x_{n+1}^2 = 1$.

Example 2. Let's consider a few low-dimensional cases.

 $n = 1$: $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$ $n = 2$: $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$

Let $z \in \mathbb{C}$ be a complex number with $\Re e(z)$, $\Im \pi(z)$ the real and imaginary parts of z:

Recall that $\mathbb{C}^2 \simeq \mathbb{R}^4$ via $(\alpha, \beta) \mapsto (\Re e(\alpha), \Im \pi(\alpha), \Re e(\beta), \Im \pi(\beta))$. Notice that if we write $\alpha \in \mathbb{C}$ in the standard form $\alpha = \alpha_1 + i\alpha_2$, then $\Re e(\alpha) = \alpha_1$ and $\Im \pi(\alpha) = \alpha_2$. Therefore, under the identification of vector spaces above, the pair (α, β) corresponds to the quadruple $(\alpha_1, \alpha_2, \beta_1, \beta_2)$. The unit sphere $S^3 \subset \mathbb{C}^2 \simeq \mathbb{R}^4$ is the subset $\{(\alpha_1, \alpha_2, \beta_1, \beta_2) \in$ $\mathbb{R}^4 | \alpha_1^2 + \alpha_2^2 + \beta_1^2 + \beta_2^2 = 1$. Henceforth we assume that $(\alpha, \beta) \in S^3$.

Problem (3 pts) Let $\lambda = \cos(\varphi) + i \sin(\varphi) \in \mathbb{C}$ be a number of norm 1 .¹

(a) Find the 4 coordinates of the vector $(\lambda \alpha, \lambda \beta)$ as a vector in \mathbb{R}^4 (this will be functions of φ).

¹Notice that such numbers form the unit circle $S^1 = {\lambda \in \mathbb{C} \simeq \mathbb{R}^2 \mid |\lambda|^2 = \lambda \overline{\lambda}} = \lambda_1^2 + \lambda_2^2 = 1}.$

(b) Find the values of φ for which the first coordinate is zero (notice that if $\alpha = (\alpha_1, \alpha_2) = (0, 0)$, then $(\lambda \alpha, \lambda \beta) = (0, \lambda \beta)$ for any $\lambda \in S^1$).

(c) Show that the quotient S^3/S^1 is *homeomorphic* to S^2 S^2 .²

²Hint: in (b) for each $(\alpha, \beta) \in S^3$, $\alpha \neq 0$ you have found two representatives $\lambda_1, \lambda_2 \in S^1$, for which $(\lambda_1 \alpha_1, \lambda_1 \beta) = (0, \alpha_1, \alpha_2, \alpha_3)$ and $(\lambda_2 \alpha_1, \lambda_2 \beta) = (0, -a_1, -a_2, -a_3)$. Show that $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$. It is straightforward to see that for any point $p = (x_1, x_2, x_3) \in S^2$ there is a point $(\alpha_1, \alpha_2, \beta_1, \beta_2) \in S^3$ with $(\alpha_1, \alpha_2, \alpha_3) = (x_1, x_2, x_3)$. It remains to notice that a 2-dimensional sphere with antipodal points $(\alpha_1, \alpha_2, \alpha_3)$ and $(-a_1, -a_2, -a_3)$ identified (for $a_1 \neq 0$) and the equator $(0, a_2, a_3)$ contracted to a point (as $(0, \beta) \sim (0, \lambda \beta)$ for any $\lambda \in S^1$) is homeomorphic to a 2-dimensional sphere to conclude the statement in (c).