Final Exam Review

Elliptic curves

In addition to the problems below, take another look at midterms 1&2, the reviews preceding them and homework assignments.

(b) Find the equation $\psi(x)$ that the x-coordinate of a point (element) satisfies if and only if it has order 3? (justify your answer)

(c) Let's pick a concrete example with b = 0, a = 1, i.e. the defining equation of E is $y^2 = x^3 + x$. Find the inflection points (give both coordinates).

¹Hint: hopefully, you found out that the answer in 1(b) is 'inflection points'. That means a point $P = (P_x, P_y)$ has order 3 iff $y''(P) = \frac{d^2y}{dx^2} = 0$. Find the second derivative using implicit differentiation of $y^2 = x^3 + \alpha x + b$, the defining equation of E, twice. Then use the defining equation of E again to get rid of the y terms.

Hover over Grover

Problem 3. Let r_x be the reflection with respect to the x-axis and r_ℓ the reflection with respect to a line ℓ . Denote the angle between the x-axis and line ℓ by α . Show that the composition $r_\ell \circ r_x$ is the counterclockwise rotation by 2α , while $r_x \circ r_\ell$ is the clockwise rotation by 2α .

Problem 4. Let $N=2^n$ and $\xi=H^{\otimes n}(|0\dots 0\rangle)=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}|i\rangle$ be the generic superposition state. Consider any

boolean function $f:\mathbb{B}^n\to\mathbb{B}$. Denote the cardinality of the solution set of f by t, i.e. $t=\#\{x\in\mathbb{B}^n\mid f(x)=1\}$. Let $G=\frac{1}{\sqrt{t}}\sum_{i,f(i)=1}|i\rangle$ and $B=\frac{1}{\sqrt{N-t}}\sum_{j,f(j)=0}|j\rangle$ be the generic superposition of 'good' (solution) and 'bad' (not solution) states, respectively.

- (a) Show that the vectors $|G\rangle$ and $|B\rangle$ are orthogonal.
- (b) Compute the angle θ between $|B\rangle$ and $|\xi\rangle$ in the 2-dimensional real plane $\mathbb{R}\langle |G\rangle, |B\rangle\rangle^2$
- (c) Use your result in (b) to show that $|\xi\rangle$ can be written as $|\xi\rangle = \sin(\theta)|G\rangle + \cos(\theta)|B\rangle$.
- (d) Conclude that the Grover operator $\mathcal{G}:=r_{\xi}\circ r_{B}$ rotates ξ by $2\arcsin\left(\sqrt{\frac{t}{N}}\right)$ towards $|G\rangle$ in the 2-dimensional real plane $\mathbb{R}\langle|G\rangle,|B\rangle\rangle$ (use the results in 1(b) and 3(b)).

Figure 1: The $|B\rangle$, $|G\rangle$ and $|\xi\rangle$ states

Definition 1. The Boolean satisfiability (SAT) problem asks whether there is at least one combination of binary input variables $x \in \mathbb{B}^n$ for which a Boolean logic formula holds. When this is the case, we say the formula is satisfiable.

Problem 5. Consider the four Teenage Mutant Ninja Turtles: Leonardo , Michelangelo , Raphael and Donatello and their sensei Splinter . Michelangelo wants to throw a party, however, a recent incident resulted in the following restrictions.

²**Hint:** use the dot product to find $cos(\theta)$

- (2) Raphael 🦲 will join only together with Leonardo 🦲.
- (3) In turn, Leonardo 💍 will take part only together with Raphael 😂 and without Donatello 😂.
- (4) Sensei Splinter doesn't like when the turtles quarrel, so he will join only if all turtles arrive.
- (5) Finally, Michelangelo will cancel the party if no one shows up.A character does join the party provided his restrictions are not violated.
- (a) Will the party take place? If 'yes', present possible collection(s) of participants, if 'no', give an explanation.
- (b) Find the smallest positive integer m for which the Grover operator maps ξ very close to G (use (a)). ³

(c) Using the first letters of names to represent participation of corresponding character together with \neg , \land , \lor logical operators, write the logical expressions for conditions (1) - (5). For instance, (2) can be written as

$$(R \wedge L) \vee (\neg R)$$
 or $(\bigcirc \land \bigcirc) \vee (\neg \bigcirc)$

³Hint: Ok, I have to confess that there are solutions:)

Problem 6. Let $f: \mathbb{B}^n \to \mathbb{B}$ be a function and suppose that the number of solutions, t, is known. Give a modification of Grover's algorithm, which finds all t solutions in $\mathcal{O}(t\sqrt{N})$ queries to database (recall that each application of Grover's operator \mathcal{G} requires 1 query).