Final Exam Review Solutions

Elliptic curves

In addition to the problems below, take another look at midterms 1&2, the reviews preceding them and homework assignments.

Problem 1. Let P be a point on a smooth elliptic curve over \mathbb{R} . Suppose that P is not the point at infinity.

(a) Give a geometric condition that is equivalent to P being a point of order 2.

Solution: the tangent line to E at P is vertical, hence these are the points of intersection of the graph of E with the x-axis (the graph of E is symmetric w.r.t. the x-axis and, as $-P$ is the reflection of P w.r.t. the x-axis, P = $-P$ only for P on the x-axis).

(b) Give a geometric condition (justify your answer) that is equivalent to P being a point of order 3.

Solution: such a point P satisfies $P \oplus P \oplus P = \mathcal{O}$ or $P \oplus P = -P$, which implies that the third point of intersection of the tangent line to E at P with the graph of E is P. Let $F_\ell(x)$ be the restriction of the defining polynomial of E to the tangent line to E at P. Then $F_{\ell}(x)$ vanishes at P with multiplicity 3, meaning that $F_{\ell}(x(P)) = F'_{\ell}(x(P)) = F''_{\ell}(x(P)) = 0$ (here $x(P)$ is the x-coordinate of P), thus P is an inflection point.

Problem 2. Let E be a smooth elliptic curve over \mathbb{R} .

(a) How many points (elements) of order 2 can $G(E)$ have? (justify your answer)

Solution: the cubic polynomial in the defining equation of E has either one or three real zeros and those are precisely the elements of order 2.

(b) Find the equation $\psi(x)$ that the x-coordinate of a point (element) satisfies if and only if it has order 3 ?^{[1](#page-0-0)} (justify your answer)

Solution: using implicit differentiation, we find $2y \frac{dy}{dx} = 3x^2 + a$, thus, $\frac{dy}{dx} = \frac{3x^2 + a}{2y}$ $\frac{1}{2y}$. Differentiating implicitly one more time gives

$$
\frac{d^2y}{dx^2}=\frac{d\left(\frac{3x^2+a}{2y}\right)}{dx}=\frac{6x\cdot 2y-2\frac{dy}{dx}(3x^2+a)}{4y^2}=\frac{12xy^2-(3x^2+a)^2}{4y^3}=\frac{12x(x^3+a x+b)-(3x^2+a)^2}{4y^3},
$$
so $\psi(x)=12x(x^3+a x+b)-(3x^2+a)^2=3x^4+6ax^2+12bx-a^2.$

(c) Let's pick a concrete example with $b = 0$, $a = 1$, i.e. the defining equation of E is $y^2 = x^3 + x$. Find the inflection points (give both coordinates).

Solution: we have $\psi(x) = 3x^4 + 6x^2 - 1$ and using the substitution $t = x^2 \ge 0$, get the quadratic equation $\psi(t) = 3t^2 + 6t - 1$, which has the zeros $t_{1,2} = \frac{-6 \pm 4\sqrt{3}}{6}$ $\frac{1}{6}$ = $\frac{4\sqrt{3}}{6}$. Notice that t₂ = $\frac{-6-4\sqrt{3}}{6}$ $\frac{1}{6}$ is less than 0, while

¹**Hint:** hopefully, you found out that the answer in 1(b) is 'inflection points'. That means a point P = (P_x, P_y) has order 3 iff y''(P) = $\frac{d^2y}{dx^2}$ $\frac{d^{2}y}{dx^{2}} = 0.$ Find the second derivative using implicit differentiation of $y^2 = x^3 + ax + b$, the defining equation of E, twice. Then use the defining equation of E again to get rid of the y terms.

 $t_1 = \frac{-6 + 4}{6}$ √ 3 $\frac{-4\sqrt{3}}{6} = \frac{-3+2}{3}$ √ 3 $\frac{2\sqrt{3}}{3}$ is greater. Notice that the domain of E is $x \ge 0$, hence, the only possible value of the x- coordinate is $\sqrt{\frac{-3 + 2\sqrt{3}}{2}}$ √ $\frac{200}{3}$. The inflection points are

$$
P_1 = \left(\sqrt{\frac{-3 + 2\sqrt{3}}{3}}, \frac{2\sqrt{-3 + 2\sqrt{3}}}{3}\right)
$$

$$
P_2 = \left(\sqrt{\frac{-3 + 2\sqrt{3}}{3}}, -\frac{2\sqrt{-3 + 2\sqrt{3}}}{3}\right).
$$

Hover over Grover

$$
|0^n\rangle \left\{ \begin{array}{c} |0\rangle \longrightarrow H \\ \cdots \longrightarrow H \\ |0\rangle \longrightarrow H \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \end{array} \\ \begin{array}{c} \end{array
$$

Problem 3. Let r_x be the reflection with respect to the x-axis and r_ℓ the reflection with respect to a line ℓ . Denote the angle between the x-axis and line ℓ by α . Show that the composition $r_{\ell} \circ r_{\chi}$ is the counterclockwise rotation by 2α , while $r_x \circ r_\ell$ is the clockwise rotation by 2α .

Solution: the triangles vOP and $r_x(v)$ OP are equal (a shared side OP and equal sides $vP = r_x(v)P$ because r_x is a reflection together with the angle between these sides being $\frac{\pi}{2}$ in both triangles), implying equality of the angles ∠POv and ∠POr_x(v) (see Figure [1](#page-2-0) below). Analogously one shows that the angles ∠QOr_x(v) and ∠QO(r_x ∘ r_ℓ(v)) are equal as well. As $\angle POv + \angle POr_x(v) = \theta$, the assertion follows.

Problem 4. Let $N = 2^n$ and $\xi = H^{\otimes n}(|0...0\rangle) = \frac{1}{\sqrt{2}}$ N $\sum_{i=1}^{N-1}$ $i=0$ $|i\rangle$ be the generic superposition state. Consider any boolean function $f : \mathbb{B}^n \to \mathbb{B}$. Denote the cardinality of the solution set of f by t, i.e. $t = #\{x \in \mathbb{B}^n | f(x) = 1\}$. Let $|G\rangle = \frac{1}{\sqrt{2}}$ t \sum $i,f(i)=1$ $|i\rangle$ and $|B\rangle = \frac{1}{\sqrt{2}}$ $N - t$ \sum $j,f(j)=0$ |j⟩ be the generic superposition of 'good' (solution) and 'bad' (not solution) states, respectively.

(a) Show that the vectors $|G\rangle$ and $|B\rangle$ are orthogonal.

Figure 1: Composition of two reflections is a rotation

Solution: notice that $|G\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{\tau}$ (a₀, a₁, ..., a_{N−1}) and $|B\rangle = \frac{1}{\sqrt{N}}$ $\frac{1}{N-1}(1 - a_0, 1 - a_1, \ldots, 1 - a_{N-1})$ for some $a_i \in \mathbb{B}$, hence, either the ith coordinate of $|G\rangle$ is zero or the ith coordinate of $|B\rangle$ is zero for any $0 \le i \le N-1$ and the result follows.

(b) Compute the angle θ between $|B\rangle$ and $|\xi\rangle$ in the [2](#page-2-1)-dimensional real plane $\mathbb{R}\langle |G\rangle, |B\rangle$.

Solution: as
$$
(|B\rangle, |\xi\rangle) = ||B\rangle| \cdot ||\xi\rangle| \cdot \cos(\theta)
$$
 and $||B\rangle| = ||\xi\rangle| = 1$ (unitary vectors), we get $\cos(\theta) = (|B\rangle, |\xi\rangle) = \frac{N-t}{\sqrt{N(N-t)}}$ (recall that $|\xi\rangle = \frac{1}{\sqrt{N}}(1, 1, ..., 1)$). As $\sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \left(\sqrt{\frac{N-t}{N}}\right)^2 = 1 - \left(\sqrt{\frac{N-t}{N}}\right) = \frac{t}{N}$, we conclude that $\theta = \arcsin\left(\sqrt{\frac{t}{N}}\right)$.

(c) Use your result in (b) to show that $|\xi\rangle$ can be written as $|\xi\rangle = \sin(\theta)|G\rangle + \cos(\theta)|B\rangle$.

Solution: the projection of $|\xi\rangle$ on $|B\rangle$ is cos(θ) and the projection of $|\xi\rangle$ on $|G\rangle$ is cos $(\theta + \frac{\pi}{2})$ 2 $=$ sin(θ), the assertion follows.

(d) Conclude that the Grover operator $\mathcal{G} := r_{\xi} \circ r_{\text{B}}$ rotates ξ by 2 arcsin $\left(\sqrt{\frac{t}{N}}\right)$ N ! towards $|G\rangle$ in the 2-dimensional real plane $\mathbb{R}\langle |G\rangle, |B\rangle\rangle$ (use the results in 1(b) and 3(b)).

Solution: if you have done $(a) - (c)$, this is obvious :)

Definition 1. The Boolean satisfiability (SAT) problem asks whether there is at least one combination of binary input variables $x \in \mathbb{B}^n$ for which a Boolean logic formula holds. When this is the case, we say the formula is **satisfiable**.

Problem 5. Consider the four Teenage Mutant Ninja Turtles: Leonardo , Michelangelo , Raphael and Do-

natello and their sensei Splinter . Michelangelo wants to throw a party, however, a recent ' incident' resulted in the following restrictions.

- (1) If Leonardo \bigoplus participates, Donatello \bigoplus will come to the party only with sensei Splinter
- (2) Raphael \bullet will join only together with Leonardo \bullet

²Hint: use the dot product to find $cos(\theta)$

Figure 2: The $|B\rangle$, $|G\rangle$ and $|\xi\rangle$ states

- (3) In turn, Leonardo will take part only together with Raphael \bigodot and without Donatello \bigodot .
- (4) Sensei Splinter doesn't like when the turtles quarrel, so he will join only if all turtles arrive.
- (5) Finally, Michelangelo will cancel the party if no one shows up. A character does join the party provided his restrictions are not violated.
- (a) Will the party take place? If 'yes', present possible collection(s) of participants, if 'no', give an explanation. Solution: Michelangelo , Raphael , Leonardo
- (b) Find the smallest positive integer m for which the Grover operator maps ξ very close to G (use (a)). ^{[3](#page-3-0)}

Solution:
$$
\theta = \arcsin\left(\sqrt{\frac{t}{N}}\right) = \arcsin\left(\frac{1}{\sqrt{32}}\right)
$$
 and $m \approx \frac{\pi}{4\theta} - \frac{1}{2} \approx 3.919$ (the closest integer is $\tilde{m} = 4$).

(c) Using the first letters of names to represent participation of corresponding character together with \neg, \wedge, \vee logical operators, write the logical expressions for conditions $(1) - (5)$. For instance, (2) can be written as

$$
(R \wedge L) \vee (\neg R) \text{ or } (\bigotimes \wedge \bigotimes) \vee (\neg \bigotimes)
$$

Solution:

³Hint: Ok, I have to confess that there are solutions:)

Problem 6. Let $f : \mathbb{B}^n \to \mathbb{B}$ be a function and suppose that the number of solutions, t, is known. Give a modification of Grover's algorithm, which finds all t solutions in $\mathcal{O}(t\sqrt{N})$ queries to database (recall that each application of Grover's operator G requires 1 query).

Solution: suppose that Grover's algorithm collapses to a solution state $|s_1\rangle$ with $s_1 \in \mathbb{B}^n$. Register this solution and consider the function \tilde{f} given by

$$
\widetilde{f}(x) = \begin{cases} f(x), & x \neq s_1 \\ 0, & x = s_1. \end{cases}
$$

Notice that the generic solution vectors of f and \tilde{f} satisfy the relation $\sqrt{t-1}G_{\tilde{f}} = \sqrt{\frac{t-1}{t}}B_{\tilde{f}} + s$. Apply Grover's algorithm again, but this time with an oracle for \tilde{f} . Notice that the generic solution vectors of f and \tilde{f} satisfy the relation $\sqrt{t-1}G_{\tilde{f}} = \sqrt{t}G_f - s_1$, while $\sqrt{N-t+1}B_{\tilde{f}} = \sqrt{N-t+1}B_f$. $N - tB_f + s_1$. Apply Grover's algorithm again, but this time with an oracle for f...