MATH 1800: Quantum Information Theory with Applications to Cryptography

Midterm Exam 2 Review

Problem 1. Let $\omega = e^{2\pi i/n}$ be the primitive nth root of unity. Show that $\sum_{j=0}^{n-1} \omega^j = 0.^1$

Problem 2. Show that $|1 - e^{i\phi}| = 2|\sin\left(\frac{\phi}{2}\right)|^2$.

Problem 3. Let F_n be the matrix of discrete Fourier transform for the group $G = \mathbb{Z}_n$ in the standard basis (of delta functions).

(a) Write down the matrix of F_6 (let $\omega = e^{2\pi i/6}$ and $\xi = \omega^2 = e^{2\pi i/3}$) and compute the image of δ_4 .

¹**Hint:** what happens to the sum when you multiply it by ω ?

²**Hint:** use that $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi), |z|^2 = z\overline{z}$ and $\cos(\varphi) = 1 - 2\sin^2\left(\frac{\varphi}{2}\right)$.

- (b) Write down the matrices of F_2,F_3 and compute $(F_2\otimes F_3)(\delta_0\otimes \delta_1).$
- (c) Notice that the groups \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_3$ are isomorphic. Consider the isomorphism $\phi : \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ given by $\phi(j) = (j \pmod{2}, j \pmod{3})$. For instance, $\phi(4) = (0, 1)$. Write down the 6×6 matrix of $F_2 \otimes F_3$ in the basis $\delta_{j \pmod{2}} \otimes \delta_{j \pmod{3}}$ with $j \in \mathbb{Z}_6$. What is the relation between matrices of F_6 and $F_2 \otimes F_3$?³

Problem 4. Find the periods of functions on the set of positive integers (in other words, the domain is $\mathbb{Z}_{>0}$).

(a) $f(x) = 7x \pmod{11}$

(b) $g(x) = mx \pmod{n}$ with $n, m \in \mathbb{Z}_{>0}$

(c) $h(x) = 5^x \pmod{13}$

³**Hint:** notice that $\xi = -\overline{\omega}$.

On the Shore of factorization

Problem 5. Consider the number $n = 115 = 5 \cdot 23$. The goal of this exercise is to factorize it using Shor's algorithm. (a) What is the order of the multiplicative group $\mathbb{Z}_{115}^{\times}$?

- (b) Notice that the numbers 3 and 115 are coprime, hence, 3 is invertible modulo 115. Find the order r of 3 in $\mathbb{Z}_{115}^{\times}$. Check that the pair (x, r) satisfies the requirements of Shor's algorithm (use the programs at http://tsvboris. pythonanywhere.com/IntrotoCryptography, if necessary).
- (c) We will take 7 qubits for the second register as $q = 2^7 = 128$ is the smallest power of 2 larger than 115. ⁵ Run Shor's algorithm, assuming that the measurement of the second register produced 13 (the smallest number a with $3^{\alpha} \equiv 13 \pmod{115}$ is $\alpha = 5$. Write the expression that you obtained at that stage (show steps).

(d) What is an upper bound on the probability of collapsing to a state $|j\rangle$? Is it attained (justify)? ⁶

⁴**Hint:** recall that the order of an element must divide the order of the group ⁵We are 'cheating' here since the actual requirement is $q = 2^{\ell} > n^2 = 115^2 = 13225$, so $q = 2^{14}$ should be taken instead.

⁶Hint: recall that the probability of collapsing to a basic state is equal to the square of the absolute value of the corresponding coefficient in the expression you obtained in (c).

(e) Compute the probability of measuring j = 3 (give the estimate up to 3 decimals using the formula in Problem 2).

(f) Assume that measuring of the first register produced j = 3 and find the continued fraction of $\frac{3}{128}$. Let the corresponding sequence be $[a_0 : a_1 : \ldots : a_s]$. Find $\tilde{r} = q_{s-1}$. Explain why $\tilde{r} \neq r$.⁷

(g)* (3 bonus points on the midterm). Run Shor's algorithm with $q = 2^{14}$ and your choice of measurements to get $\tilde{r} = r = 44$.

⁷**Hint:** take a look at the footnote in (c).

Discrete logarithm problem (DLP)

Problem 6.

(a) Consider the group $G=(\mathbb{Z}_{131},+)$ and element g=5. Find the order of g.

(b) Solve the DLP for $G = (\mathbb{Z}_{131}, +)$, g = 5 and h = 23. In other words, find a number $1 \le s \le \text{ord}(g)$ with $sg \equiv h \pmod{131}$.