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1 Introduction
The goal of these notes is to explain the main steps in classifying and finding solutions of the classical Yang-

Baxter equation (CYBE), which is [X12(u1 − u2), X13(u1 − u3)] + [X12(u1 − u2), X23(u2 − u3)] + [X13(u1 −
u3), X23(u2 − u3)] = 0, where X(u) takes values in g⊗ g, and g is a simple Lie algebra. Our primary references
are [1] and [4].

2 Constant Solutions of CYBE
We start with the classification of solutions of the system of equations

[r12, r13] + [r12, r23] + [r13, r23] = 0
r12 + r21 = t

(1)

with values in g ⊗ g, where t ∈ g ⊗ g is the Casimir element, i.e. if we choose an orthonormal basis {Iν} of g
with respect to the Killing form (as g is simple, any nondegenerate invariant bilinear form is proportional to
it), then t =

∑
Iν ⊗ Iν . We can express r =

∑
rµνIµ ⊗ Iν . We explain the notation r12, other notations of

this type should be understood accordingly. For this we fix an associative algebra A with unit (i.e. A = U(g)),
containing g and consider the map φ12 : g⊗ g→ A⊗ A⊗ A, given by φ12(a⊗ b) = a⊗ b⊗ 1. Thus, by r12 we
will understand

∑
rµνIµ ⊗ Iν ⊗ 1, r13 stands for

∑
rµνIµ ⊗ 1⊗ Iν , etc. We notice that if r is a solution of (1)

and σ ∈ Aut(g), then (σ ⊗ σ)(r) is also a solution. In order to write down explicit formulas for the solutions,
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we need some notation. Namely, h ⊂ b+ ⊂ g are Cartan and Borel subalgebras of g, Γ is the set of simple
roots. The solutions will depend on a discrete parameter - a triple (Γ1,Γ2, τ), where Γ1,Γ2 ⊂ Γ, τ : Γ1 → Γ2 is
a bijection and satisfies

(a) (α, β) = (τ(α), τ(β)) ∀α, β ∈ Γ

(b) ∀α ∈ Γ1 ∃k ∈ N : α, τ(α), . . . , τk−1(α) ∈ Γ1, τ
k(α) /∈ Γ1.

A triple satisfying the conditions above is called admissible. The solution also depends on a continuous
parameter - an element r0 ∈ h⊗ h, which satisfies (below t0 denotes the projection of t on h⊗ h)

r12
0 + r21

0 = t0
(τα⊗ 1)(r0) + (1⊗ α)(r0) = 0, α ∈ Γ1

(2)

If r0 =
∑
i

hi ⊗ h′i, then (τα⊗ 1)(r0) =
∑
i

τα(hi)h
′
i and (1⊗ α)(r0) =

∑
i

α(h′i)hi.

We fix the system {Xα, Yα, Hα}α∈Γ of Weyl generators of g and denote by ai =
∑
α∈Γi

CHα ⊕
∑
α∈Γ′i

gα, where

Γ′i stands for the roots which, whose expansion in terms of simple roots involves only roots from Γi. We notice
that τ gives rise to an isomorphism φ : a1 →: a2, with φ(Xα) = Xτα, φ(Yα) = Yτα, φ(Hα) = Hτα. In every root
space gα, we choose eα, s.t. (eα, eα) = 1 and set φ(eα) = eτ(α) for α ∈ Γ′1. We write α < β, if there is a k > 0,
s.t. τk(α) = β.

Theorem 1 ([1], 6.1) Let r0 satisfy the conditions above. The tensor

r = r0 +
∑
α>0

e−α ⊗ eα +
∑

α,β>0,α<β

e−α ⊗ eβ − eβ ⊗ e−α

is a solution of (1). Moreover, any solution of (1) is equivalent (under the action of Aut(g)) to a solution of this
form.

Idea of the proof: first we write r =
∑
µ
f(Iµ)⊗ Iµ for some f : g→ g. By a direct calculation, one can check

that (1) is equivalent to
f + f∗ = 1

(f − 1)[f(x), f(y)] = f([(f − 1)(x), (f − 1)(y)])
(3)

The next step is to use the Cayley transform θ = f
f−1 . Then the system of equations (3) would imply

θθ∗ = f
f−1

f∗

f∗−1 = 1 and θ[x, y] = [θx, θy]. But, as will be shown later, det(θ) =det(θ − 1) = 0 and, therefore,
also det(f) =det(f − 1) = 0. This forces us to restrict the domain of θ to im(f − 1). The precise definition of θ
is that it is a map im(f−1)

ker(f)
→ im(f)

ker(f−1)
. We define C1 := im(f − 1) and C2 := im(f). Then ([1], 6.3) we have

C⊥1 = ker(f) and C⊥2 = ker(f − 1), also, θθ∗ = 1 (θ is orthogonal), C1 and C2 are subalgebras and θ is a Lie
algebra isomorphism. Conversely, if C1 and C2 are subalgebras and θ is a Lie algebra isomorphism, then the
second equation of (3) holds. In ([1], pages 44-49) it is verified that the triples (C1, C2, θ) described above are
derived from the triples (Γ1,Γ2, τ) constructed in the beginning of Section 2.
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The detailed proof of this theorem can be found in Chapter 6 of [1]. We conclude this section with an example.

Example 1. [4] Let g = sl2 = 〈X,Y,H〉 and the invariant product is given by the trace form. There is one
simple root α and due to condition (b) above, we must set Γ1 = Γ2 = ∅. We notice that r0 = aH ⊗ H. As
Γ1 = ∅, the condition (τα ⊗ 1)(r0) + (1 ⊗ α)(r0) = 0 is vacuous, the second condition r12

0 + r21
0 = t0 implies

2aH ⊗H = 1
2H ⊗H, therefore, a = 1

4 . So we come up with r = 1
4H ⊗H + Y ⊗X

3 CYBE with Spectral Parameter
In this section we describe the classification of solutions of the system

[X12(u1 − u2), X13(u1 − u3)] + [X12(u1 − u2), X23(u2 − u3)] + [X13(u1 − u3), X23(u2 − u3)] = 0 (4)

X12(u) +X21(−u) = 0

(the second equality is called the unitarity condition and is usually imposed), where X(u) takes values in g⊗ g
This system of equations is known as CYBE with spectral parameter. It will be convenient for us to use the
expression X(u) =

∑
Xµν(u)IµIν . We show the following result.

Definition 1 A solution X(u) of (4) is called nondegenerate if one of the three equivalent conditions holds
(the equivalence is shown in [1], Chapter 10):

(a) the determinant Xµν(u) is not identically 0;

(b) the function X(u) has at least one pole and there is no Lie subalgebra g′ ⊂ g, s.t. X(u) ⊂ g′ ⊗ g′ for all
u;

(c) X(u) has a first order pole at u = 0 and the residue is equal to λt.

Theorem 2 ([1], 2.0) Suppose X(u) is nondegenerate, the function X(u) satisfies the equation [X12(u1 −
u2), X13(u1 − u3)] + [X12(u1 − u2), X23(u2 − u3)] + [X13(u1 − u3), X23(u2 − u3)] = 0 and has a first order pole
with residue θ at the origin, then θ = λt.

Proof. We make the substitution u = u1 − u2 and u = u2 − u3, then the equation becomes

[X12(u), X13(u+ v)] + [X12(u), X23(v)] + [X13(u+ v), X23(v)] = 0 (5)

Multiplying the equation by u and letting u go to zero, we obtain [θ12, X13(v)]+[θ12, X23(v)] = [θ12,
∑
Xµν(v)(Iµ⊗

1⊗Iν +1⊗Iµ⊗Iν)] = 0. Now we choose a v with detXµν(v) 6= 0. Thus for every µ we must have [θ, Iµ⊗1+1⊗
Iµ] = 0. As t is in Z(Ug), we see that [t, Iµ ⊗ 1 + 1⊗ Iµ] = 0. We will show that θ is proportional to t. For this
we write θ as θ =

∑
ν
A(Iν)⊗Iν = (A⊗1)(t) (there exists a linear operator A). Then [A(Iµ), Iν ] = A[Iµ, Iν ] (this

holds since [t, Iµ⊗ 1 + 1⊗ Iµ] = 0, implies (A⊗ 1)[t, Iµ⊗ 1 + 1⊗ Iµ] =
∑
ν

(A([Iν , Iµ]⊗ Iν) +A(Iν)⊗ [Iν , Iµ]) = 0

and also since [θ, Iµ ⊗ 1 + 1⊗ Iµ] =
∑
ν

([A(Iν), Iµ]⊗ Iν +A(Iν)⊗ [Iµ, Iν ]) = 0), so for any x, y ∈ g

[A(x), y] = A([x, y]).
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Let λ be a nonzero eigenvalue ofA, then it follows from the equality above that the elements {x ∈ g|A(x) = λx}
form an ideal of g, which must coincide with g as it is a simple Lie algebra.

The next result is as follows.

Theorem 3 ([1], 10.1) Assume that X(u) is a solution of (4), defined on a small circle U ⊂ C, s.t. X(u) has
at least one pole and there is no Lie subalgebra g′ ⊂ g, s.t. X(u) ∈ g′ ⊗ g for any u. Then all the poles of X(u)
are simple, there is a pole at 0 with residue λt.

Proof. We assume that X(u) has a pole of order k at γ, and set τ := lim
u→γ

(u− γ)kX(u). Multiplying both sides

of (5) by (v − γ)k and taking v to γ, we arrive with

[X12(u), τ23] + [X13(u+ γ), τ23(v)] = 0 (6)

Similarly (multiplying both sides of (5) by (u− γ)k and taking u to γ), we obtain

[τ12, X13(v + γ)] + [τ12, X23(v)] = 0 (7)

Expanding (7) around v = 0, we see that X(v) must have a pole of order k at zero, as otherwise [τ12, τ13] = 0,
which contradicts Lemma 1 (see the Appendix).

The next step is to show that the order of the pole at zero is at most 1 and lim
u→0

uX(u) = λt. For these we write

X(u) = θ
ul

+ µ
ul−1 +

∑
i≥2−l

cix
i, where θ 6= 0. Now we take a closer look at the poles of X(u). Fixing v, we find that

the coefficient of u1−l in the expansion of (4) around u = 0 is [µ12, X13(u) +X23(v)] + [θ12, dX13(v)
dv ] = 0 (here v

is not a pole of X(u)). Considering the coefficient of v−l−1 in the expansion around v = 0, the equality becomes
[θ12, θ23] = 0, which is impossible due to Lemma 1. Equations (6) and (7) imply [X12(u) +X13(u), θ23] = 0 and
[θ12, X13(u) +X23(u)] = 0.

We introduce the Lie subalgebra {x ∈ g|[x ⊗ 1 + 1 ⊗ x, θ] = 0} =: g′ ⊂ g. It follows from (6) and (7) that
X(u) ∈ g′ ⊗ g′ and, therefore, g′ = g. So [x ⊗ 1 + 1 ⊗ x, θ] = 0 for every x ∈ g. It follows that θ must be
proportional to t.

Theorem 4 ([1], 2.1) Let X(u) be a nondegenerate solution of (4) defined in some disc U ⊂ C with
lim
u→0

uX(u) = t. Then X(u) satisfies the unitarity condition, i.e. X12(u) = −X21(−u).

Proof. As X(u) is a solution of CYBE, we have

[X12(u1 − u2), X13(u1 − u3)] + [X12(u1 − u2), X23(u2 − u3)] + [X13(u1 − u3), X23(u2 − u3)] = 0 (8)

Interchanging u1 with u2 and the first two factors in g⊗ g⊗ g, we also have

[X21(u2 − u1), X23(u2 − u3)] + [X21(u2 − u1), X13(u1 − u3)] + [X23(u2 − u3), X13(u1 − u3)] = 0 (9)

and adding (9) to (8) gives

[X12(u1 − u2) +X21(u2 − u1), X13(u1 − u3) +X23(u2 − u3)] = 0.
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Multiplying the equation above by u2 − u3 and considering u3 → u2 with u1 and u2 fixed, we come up with

[X12(u1 − u2) +X21(u2 − u1), t23] = 0.

As t =
∑
µ
Iµ ⊗ Iµ, this implies

[X12(u1 − u2) +X21(u2 − u1), 1⊗ Iµ] = 0

for all Iµ.

We can write X12(u1−u2) +X21(u2−u1) =
∑
ν
Iν ⊗Xν(u1−u2), then the equality above gives for every ν, µ

[Iν ⊗Xν(u1 − u2), 1⊗ Iµ] = 0.

As g is simple, it follows that each Xν(u1 − u2) = 0 therefore, X12(u1 − u2) +X21(u2 − u1) = 0.

We sketch the proof of the fact that X(u+ v) is a rational function of X(u) and X(v) (see [1], Theorem 2.2).
This has an important corollary that X(u) can be extended to a meromorphic function on C.

Proof. We consider (5) as an inhomogeneous system of linear equations with X(u) and X(v) as coefficients.
Then the corresponding homogeneous system is

[X12(u)−X23(v), X13] = 0

and for the solution of the inhomogeneous system to be expressed as a rational function of coefficients, we need
the homogeneous system to be nondegenerate (have only the trivial solution) for generic u, v in the neighborhood
of 0. Considering u = v 6= 0, multiplying by u and letting u → 0 turns the homogeneous system of equations
above into [uX12(u)− uX23(v), X13] = [t12 − t23, X13] = 0, which is equivalent to

[g ⊗ 1− 1⊗ g,X] = 0 ∀g ∈ g.

But then
[[g1, g2]⊗ 1 + 1⊗ [g1, g2], X] = [[g1 ⊗ 1− 1⊗ g1, g2 ⊗ 1− 1⊗ g2], X] = 0,

where for the last equality we used that [g ⊗ 1− 1⊗ g,X] = 0 ∀g ∈ g and the Jacobi identity. As g is simple
(in particular, [g, g] = g), the equalities above imply [1⊗ g,X] = 0, [g ⊗ 1, X] = 0 ∀g ∈ g, so X = 0.

To conclude the proof we use that the nondegeneracy of the homogeneous system of equations is equivalent
to nonvanishing of certain minors, which are meromorphic functions in u and v. Thus, nondegeneracy is an
open condition, and we can find a neighborhood of zero, where it holds.

The set of poles of X(u) will be denoted by Γ. As shown in Theorem 3 above, it consists of simple poles.
The next result allows to enrich Γ with a group structure.
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Theorem 5 ([1], 2.3) For every γ ∈ Γ there exists an Aγ ∈ Aut(g), s.t. X(u+ γ) = (Aγ ⊗ 1)(X(u)).

Proof. Again we set τ := lim
u→γ

(u− γ)X(u) and define Aγ : g→ g by

τ =
∑
µ

Aγ(Iµ)⊗ Iµ =
∑
µ,ν

(Aγ)µ,ν(Iν)⊗ Iµ.

If we multiply by u − γ and let u → γ, (5) becomes (7). From (7), using that [t12, r13 + r23] = 0 for any
r ∈ g⊗ g, we derive

[τ12, X13(v + γ)] = −(Aγ ⊗ 1⊗ 1)([t12, X23(v)]) = (Aγ ⊗ 1⊗ 1)([t12, X13(v)]) (10)

The residues of both sides of (10) for v = 0, give the equality

[τ12, τ13] = (Aγ ⊗ 1⊗ 1)([t12, t13]),

which (using the definition of Aγ) can be rewritten as∑
µ,ν

[Aγ(Iµ), Aγ(Iν)]⊗ Iµ ⊗ Iν =
∑
µ,ν

Aγ [Iµ, Iν ]⊗ Iµ ⊗ Iν .

It follows that Aγ is a Lie algebra homomorphism. As the kernel of Aγ would be an ideal of g, which is
impossible, since the latter is simple. Therefore, Aγ is invertible, i.e. Aγ ∈ Aut(g). Applying (A−1

γ ⊗ 1⊗ 1) to
both sides of (10), we get

[t12, (A−1
γ ⊗ 1)(X13(v + γ))−X13(v)] = 0.

It follows that (A−1
γ ⊗ 1)(X13(v + γ)) = X13(v), therefore, X13(v + γ) = (Aγ ⊗ 1)X13(v) and, finally,

X(v + γ) = (Aγ ⊗ 1)X(v) (11)

One immediate corollary of Theorem 5 is that if γ, γ′ ∈ Γ are poles of X(u), so is γ + γ′. Indeed, the r.h.s
of (11) has a pole at γ′, so the l.h.s must have one as well. It is not hard to see that Aγ+γ′ = AγAγ′ . Also,
from unitarity of X(u) we see that γ ∈ Γ implies −γ ∈ Γ. So we have that Γ ⊂ C is a discrete subgroup. Such
subgroups are lattices of rank 0, 1 or 2. The next theorem shows, that in case the rank is equal to two, X(u) is
an elliptic function, i.e. double-periodic. Later, in Section 6, we will show that this happens only for g = sln.
The other two cases (rk Γ = 0 and rk Γ = 1) correspond to rational and trigonometric solutions.

Theorem 6 ([1], 2.5) Let rk Γ = 2, then there is no a ∈ g, s.t. Aγ(a) = a for all γ ∈ Γ. Moreover, for any
γ ∈ Γ ∃n : Anγ = 1.

Proof. Assume the first assertion does not hold, i.e. ∃a ∈ g, s.t. Aγ(a) = a for all γ ∈ Γ. We define the
meromorphic g-valued function φ(u) =

∑
µ,ν

Xµ,ν(u)(Iµ, a)Iν (here (,) stands for the Killing form and (Aγv, w) =

(v,Aγw), for Aγ ∈ Aut(g) and v, w ∈ g). It is easy to see that φ(u + γ) = φ(u) for any γ ∈ Γ. Also, φ(u) has
a simple pole at zero, as X(u) does. We can choose the parallelogram P of periods in such a way that zero is
the only pole of φ(u) in the closure of P . On the one hand 1

2πi

∫
∂P

φ(u)du = Res0φ(u), on the other, it is zero,

since the integrals over opposite sides of ∂P cancel each other - a contradiction.
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The second assertion follows from the fact (see [1], Theorem 9.1) that if H ⊂ Aut(g) is an infinite abelian
subgroup, there exists a ∈ g : ha = a ∀h ∈ H.

4 Rational Solutions (Examples)
In this section we give examples of rational solutions, which correspond to r-matrices for the so-called Yangian
Lie bialgebras. We follow Lecture 6 of [3].

We denote by g0 a finite-dimensional Lie algebra with fixed nondegenerate invariant bilinear form ( , ) and
set g := g0((v−1)), g− := v−1g0[[v−1]] and g+ := g0[v]. Thus, g = g+ ⊕ g−. Next, we equip g with the
nondegenerate invariant bilinear form, defined by

〈a(v), b(v)〉 := Resv=0(a(v), b(v)).

The subalgebras g+ and g− are isotropic, moreover,

g∗+ = (
⊕
n≥0

g0v
n)∗ =

∏
n≥0

g0v
−n−1 = g−.

This shows that (g, g+, g−) is a Manin triple and, therefore ([4], Proposition 1.3.4) g0[v] is a Lie bialgebra,
called the Yangian Lie bialgebra.

We choose an orthonormal basis (xi) of g0. The cocommutator is given by the formula

δ(avn) =
∑

0≤r≤n−1

∑
j

[xj , a]vr ⊗ xjvn−1−r.

We use different variables v and u to distinguish between the subalgebras g+ and g−. The r-matrix is given
by

rg =
∑
i,n≥0

xiv
n ⊗ xiu−n−1 =

∑
i

xi ⊗ xi

u− v
=

t

u− v
,

where we used the expansion 1
u−v =

∑
n≥0

vnu−n−1 in the region |v| < |u|.

Dually, we can start with the Manin triple (g = g0((v)), g+ = v−1g0[v−1], g− = g0[[v]]). The corresponding
cocommutator and r-matrix are

δ(avn) =
∑

1≤r≤n

∑
j

[xj , a]v−r ⊗ xjvr−n−1;

rg =
∑
i,n≥0

xiv
−n−1 ⊗ xiun =

t

v − u
,

this type we used the expansion 1
v−u =

∑
n≥0

unv−n−1 in the region |v| > |u|.
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Here rg(u1 − u2) = t
u1−u2

is a rational solution of CYBE with spectral parameter.

5 Trigonometric Solutions
Suppose that A is an automorphism of g, s.t. (A⊗ 1)X(u) = X(u+ 2πi). We denote by σ ∈ Aut(g)/Inn(g)

the automorphism of the Dynkin diagram 4 of g, determined by A.

Definition 2 A finite order automorphism A of g in the coset σInn(g) is called a Coxeter Automorphism of
the pair (g, σ) if

(a) its fixed point subalgebra is abelian;

(b) A has the minimal order among the elements from the coset σInn(g), which satisfy (a).

Definition 3 The order hσ of the Coxeter element A is called the Coxeter number of the pair (g, σ).

We denote ε = e
2πi
hσ−1 and by gσ,j - the εj-eigenspace for the action of A on g. So, we have the direct sum

decomposition:

g =

hσ−1⊕
j=0

gσ,j .

The abelian subalgebra gσ,0 should be thought of as an analogue of the Cartan subalgebra, so we denote it
by hσ, also, tσ,j stands for the projection of the Casimir element t on the gσ,j ⊗ gσ,−j - component of g⊗ g. So

we can write t =
hσ−1∑
j=0

tσ,j .

For any α ∈ h∗σ, we denote
gασ,j = {x ∈ gσ,j |[h, x] = α(h)x ∀h ∈ hσ}.

Then dim(gασ,j) ≤ 1 for all α 6= 0 and we define
∏
σ = {α ∈ h∗σ|gασ,1 6= 0} (in particular, 0 /∈

∏
σ). The

elements of
∏
σ are called simple weights. They are not linearly independent, but satisfy a single linear relation

with positive integer coefficients.

As in the theory of simple Lie algebras, we can associate a Dynkin diagram to the pair (g, σ) - the vertices
correspond to simple weights and the number of edges joining α and β is equal to 4(α,β)2

(α,α)(β,β) , if (α, α) > (β, β),
then the edge is oriented from the longer root to the shorter one.

We define the linear operator θ̃ : g → g by θ̃(x) = θ(P (x)), where P is the unique projector g → a1, s.t.
P (gασ,j) = 0, if gασ,j 6⊂ a1 and θ : a1 → a2 is the isomorphism, described in Section 2 and denoted by φ therein. It

follows from the definition of an admissible triple that θ̃ is nilpotent, so it makes to define ψ := θ̃

1−θ̃
= θ̃+ θ̃2 +. . .
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Theorem 7 ([1], 7.3) Suppose that r0 ∈ h⊗ h satisfies the system of equations (2). Then the function

X(u) = r0 +
1

eu − 1

hσ−1∑
j=0

eju/hσ−1tj −
hσ−1∑
j=1

eju/hσ (ψ ⊗ 1)tj +

hσ−1∑
j=1

e−ju/hσ (1⊗ ψ)t−j (12)

is a solution of the triangle system (5) with the set of poles Γ = 2πiZ and residue t at the origin. Also,

X(u+ 2πi) = (A⊗ 1)X(u).

Moreover, every trigonometric solution of (2) with the set of poles Γ = 2πiZ, corresponding to an automor-
phism σ ∈ Aut(4), and residue t at the origin is equivalent to a solution of the form (12).

Example 2. We consider the Manin triple (g, g+, g−), which is (g[v, v−1]⊕h, vg[v]⊕b+, v
−1g[v−1]⊕b−) with

g a simple Lie algebra. As in the examples of Section 4, the inner product is given by 〈a(v), b(v)〉 the constant
term of (a(v), b(v)). It is not hard to see, that in this case r = t

1− vu
= t

1−ez , where
v
u = ez (here to distinguish

between g+ and g−, we use the variable u for g−).

6 Elliptic Solutions
Theorem 8 ([1], 3.3). Let A1, A2 be commuting automorphisms of g of finite order, s.t. there exists no

a ∈ g fixed by both A1 and A2. Then there exists an isomorphism g ' sln, under which A1 and A2 are inner
automorphisms, corresponding to T1 and T2 defined below, i.e. Ai(Iµ) = T−1

i IµTi

Proof. We remind that A1, A2 are automorphisms of finite order. Now we show that any automorphism of finite

order must fix some x ∈ g. Indeed, assume this is not the case and decompose g =
k−1⊕
j=0

gj , where k is the order

of the automorphism and gj is the e
2πij
k -eigenspace. Then [gj , gl] ⊂ gj+l and it follows that the operator ad(y)

for y ∈ gj is nilpotent. Using the Jacobson-Morozov theorem, we complete y to an sl2-triple, in particular, find
h ∈ g, s.t. [h, y] = 2y, which implies that [h, y] ∈ gj , thus, h ∈ g0-a contradiction. So (slightly abusing notation)
we set g0 = {x ∈ g|A1(x) = x}, and by the previous argument this is not empty. As A1 and A2 commute, A2

preserves g0 and there is no nonzero a ∈ g0 fixed by A2. Since any automorphism of finite order of a semisimple
Lie algebra must have a fixed vector (this assertions can be proved using the argument above), it follows that
g0 is solvable. Also, Lemma 1 in [2] shows that g0 is reductive. Being both, it must be abelian, as the adjoint
representation is completely reducible (due to g0 is reductive), but [g0, g0] as g0 is solvable.

It follows from the definition of the Dynkin diagram 4, associated to the pair (g, A1), that A2 induces an
automorphism of 4. Next, we show that the action of the cyclic subgroup 〈A2〉 ⊂ Aut(4) is transitive. Assume
the contrary, so there are two subsets S1, S2 ⊂ vertices(4), S1 ∩ S2 = ∅, S1, S2 6= ∅, both preserved by A2. The
results of [2] imply that there is a single linear relation

∑
δi∈vertices(4)

nihδi = 0, but A2(
∑
δi∈S1

lihδi) =
∑
δi∈S1

lihδi

and A2(
∑
δi∈S2

mihδi) =
∑
δi∈S2

mihδi implies
∑
δi∈S1

lihδi =
∑
δi∈S2

mihδi = 0 - two linear relations - a contradiction.

From the explicit classification of diagrams 4, associated to (g, σ) given in [2], it follows that in our case
4 ' Ãn−1 and g ' sln. Then one can show that A1, A2 are inner automorphisms and correspond to the
matrices T1, T2 given below (see the discussion on pages 68-69, [1]):
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T1 =


ξ 0 0 . . . 0
0 ξ2 0 . . . 0
0 0 ξ3 . . . 0
...

...
...

. . .
...

0 0 . . . 0 ξn−1

 , T2 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
...

0 0 0 . . . 1
0 0 0 . . . 0

 .

The classification of elliptic solutions of CYBE follows from the following theorem (the proof uses techniques,
similar to those, appeared before and is skipped, [1], 3.2 being the reference).

Theorem 9 ([1], 3.2). Let A1, A2 be commuting automorphisms of g with no common fixed nonzero
eigenvectors. Then there is a unique meromorphic solution of (4) X(u) : C→ g⊗ g, such that

(1) lim
u→0

uX(u) = t;

(2) X(u+ wi) = (Ai ⊗ 1)X(u), i = 1, 2;

(3) X(u) has no poles for u /∈ Γ.

7 Appendix
Lemma 1 [τ12, τ13] 6= 0

Proof. We denote by V ⊂ g the smallest vector subspace, s.t. τ ∈ V ⊗ g and by g′ := {x ∈ g|[x, V ] ⊂ V }. It is
clear that g′ is a subalgebra. As [X13(u+ γ), τ23(v)] ∈ g⊗ V ⊗ g, from (6) it follows that [X12(u), τ23] is also
in g ⊗ V ⊗ g, so X(u) ∈ g ⊗ g′. Analogously, using (6), we verify that X13(v + γ) ∈ g′ ⊗ g for any v. Thus,
X(u) ∈ g′ ⊗ g′ and g′ coincides with g, so [g, V ] ⊂ V and we must have g = V as g is simple. The assertion
follows.
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