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2 BORIS TSVELIKHOVSKY

1. Introduction

The shuffle algebras were introduced by Feigin and Odesskii. These algebras are unital
associative subalgebras of C

⊕
n∈Z>0

C(z1, . . . , zn)Sn with multiplication defined by

f(z1, . . . , zn) ∗ g(z1, . . . , zm) := Sym

f(z1, . . . , zn)g(zn+1, . . . , zn+m)
∏

i∈{1,...n}
j∈{n+1,...n+m}

µ

(
zi
zj

) ,

for some function µ. In the work of Schiffmann and Vasserot [SV] it was shown that subalge-
bras in Hall algebras of vector bundles of smooth projective curves generated by 1Picd(X) :=∑
L∈Picd(X)

L, where Picd(X) is the set of line bundles over X of degree d are isomorphic to

subalgebras of S, generated by elements of degree 1. For a smooth projective curve of genus

g, one takes µg(x) = xg−1 1−qx
1−x−1

g∏
i=1

(1− αix−1)(1− αix−1), where αi are the roots of the numer-

ator of the zeta function of the curve, i.e. ζX(t) = exp(
∑
d≥1

#X(Fqd) t
d

d
) =

g∏
i=1

(x−αi)(x−αi)

(1−t)(1−qt) . This

isomorphism was made more explicit in case of elliptic curves (elliptic Hall algebras) in [Neg].
The latter paper will be the primary reference for this talk.

. The action of shuffle algebra on the sum of localized equivariant K-groups (with respect to the
T = C∗ × C∗ induced from the action on C2) of Hilbert schemes of points on C2 was provided
in [FT].

In Section 2 we show that the Hall algebra of locally free sheaves (vector bundles) on pro-
jective line is isomorphic to shuffle algebra with µ(x) = x−1 1−qx

1−x−1 and formulate the general
isomorphism of Schiffmann and Vasserot.

Section 3 recalls the definition and basic properties of the elliptic Hall algebra (EHA) and
Sections 4 and 5 are devoted to speculations on the isomorphism of EHA and the corresponding
shuffle algebra and their Drinfeld doubles.

2. Shuffle Algebras vs Hall Algebras of Genus g Curves

2.1. Hall Algebra of the Projective Line. The goal of this section is to show that the Hall
algebra of vector bundles on P1(Fq) is isomorphic to the shuffle algebra Sq with the function
µ(x) = 1−qx

x−1 .

Proposition 2.1. The shuffle algebra Sq is generated by
⊕
d∈Z

Sd,1, the ideal of relations is gen-

erated by the following relations of degree 2 (in
⊕
d∈Z

Sd,2)

(2.1) zm+1 ∗ zn − qzn ∗ zm+1 = qzm ∗ zn+1 − zn+1 ∗ zm
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Proof. We notice that the vector space generated by monomials zi1 ∗ . . . ∗ zid , ij ∈ Z forms an
ideal inside C[z±11 , . . . , z±1n ]Sn . Indeed, f(z1, . . . , zn)zα1 ∗ . . . ∗ zαn = zα1+i1 ∗ . . . ∗ zαn+in , where
f(z1, . . . , zn) = Sym(zi1 ∗ . . . ∗ zin) is in C[z±11 , . . . , z±1n ]Sn .

The next step is to show that the ideal
⊕
d∈Z

Sd,1 ∗ . . . ∗
⊕
d∈Z

Sd,1︸ ︷︷ ︸
n

has no common zeros and

therefore must coincide with Sn (we use that Sn = C[z±11 , . . . , z±1n ]Sn is finitely generated over
C and, therefore, any maximal ideal must be vanishing at a point). Suppose that all functions
from the ideal vanished at a point with coordinates (α1, . . . , αn). It is not hard to show that
this implies that there exist αj1 = qαj2 = . . . = qαjk = qαj1 , i.e. αj1 = qkαj1 . But neither
αj1 = 0 nor qk = 1. This completes the proof of the first claim.

. Exercise. Alternatively, show that 1 ∗ 1 ∗ . . . ∗ 1︸ ︷︷ ︸
n

= c
n∏
i=1

qi−1
q−1 = c[n]q!, where c ∈ C is a

constant. This implies that 1 ∈
⊕
d∈Z

Sd,1 ∗ . . . ∗
⊕
d∈Z

Sd,1︸ ︷︷ ︸
n

, unless q is kth root of unity (k ≤ n).1

The relations (2.1) can be checked directly. They allow to rewrite every monomial zi1∗. . .∗zik
in such a way that im+1 ≤ im + 1 ∀m ∈ {1, . . . , k}. Indeed, if im+1 > im + 1, then using (2.1)
for zim ∗ zim+1 , we see that the other three summands have the difference i′m+1− i′m− 1 strictly
less than im+1 − im − 1. In case im+1 = im + 1, (2.1) becomes

qzim+1 ∗ zim − zim ∗ zim+1 + qzim+1 ∗ zim − zim ∗ zim+1 = 0

and allows to swap the two factors. This implies that there no relations, other then those
generated by (2.1), as otherwise taking the limit q → 1 we would obtain relations between
monomial symmetric Laurent polynomials, which are known to be independent. �

To describe the Hall algebraHlf (P1) of vector bundles on P1(Fq), we first recall the Grothendieck

theorem: every vector bundle V of rank k on P1 splits as a sum of line bundles V =
n⊕
j=1

O(ij).

The result holds over fields of char = p as well. Therefore, the only indecomposable objects
are the line bundles O(i).

Observation. If m ≤ n+ 1, then Ext1(O(m),O(n)) = 0.

Proof. Using that ωP1 = O(−2) and Serre duality, we conclude Ext1(O(m),O(n))∗ = Hom(O(n),O(m−
2)), which is zero for m ≤ n+ 1. �

Definition. We introduce ν =
√
q and define the Euler form to be 〈M,N〉 = dim(Hom(M,N))−

dim(Ext1(M,N)). The product of two elements [O(n)] and [O(m)] ∈ Hlf (P1) is defined to

1Hint: the degree of the polynomial is zero, hence, it is enough to evaluate it at a single point. One convenient
choice is the point (ξ, ξ2, . . . , ξn−1, 1), where ξ = n

√
1 is the primitive root of unity (use induction on n). Also,

compare to formula (i) in Theorem 10 of [BK].
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be [O(n)] ∗ [O(m)] := ν〈M,N〉∑
R

PR
O(n),O(m)[R], where R is a vector bundle of rank 2 and

PR
O(n),O(m) =

LRO(n),O(m)

|AutO(m)||AutO(n)| with L
R
O(n),O(m) equal to the number of SES

0→ O(m)→ R→ O(n)→ 0.

The next lemma shows computations of some structure constants in Hlf (P1) (see also The-
orem 10 in [BK]).

Lemma 2.2. The following relations hold in Hlf (P1):

(2.2)

[O(n)]∗[O(m)] = νm−n

qn−m+1([O(m)⊕O(n)] +

bn−m
2
c∑

s=1

(q2 − 1)qn−m−1[O(m+ s)⊕O(n− s)])

 , n > m

Proof. We notice that for a nontrivial extension

0→ O(m)→ O(p)⊕O(q)→ O(n)→ 0

to exist, we must have min(p, q) > m, max(p, q) < n and p + q = m + n, these are precisely
the summands of the sum in the r.h.s of (2.2). To compute the coefficient with which [O(m+
s) ⊕ O(n − s)] appears in the product, we notice that it is equal to the number of pairs of
coprime polynomials of degrees s and n −m − s. Indeed a pair of such polynomials (ϕ1, ϕ2)
defines a map ψ : 0 → O(m) → O(m + s) ⊕O(n − s) and coker(ψ) is locally free (has trivial
support) whenever (ϕ1, ϕ2) are coprime. The number of such pairs of polynomials is computed
in the next proposition, which completes the proof of the lemma (one also needs to use that
|AutO(n)| = q − 1 ∀n ∈ Z). �

Proposition 2.3. The number η(a, b) of pairs (J, L), consisting of coprime homogeneous poly-
nomials in Fq[x, y] of degrees a and b, respectively, is given by

(2.3)

{
η(a, b) = (q − 1)(qa+b+1 − 1), a = 0 or b = 0

η(a, b) = (q − 1)(q2 − 1)qa+b−1, a ≥ 1 and b ≥ 1

Proof. The first assertion follows from the fact that the space of homogeneous polynomials of
degree s in two variables is of dimension s+ 1 (the number of nontrivial linear combinations of
vectors from the basis is qs+1 − 1 and the other polynomialal is a nonzero constant).

The second claim is verified by induction on min(a, b), using that the number of all possible
pairs of polynomials in Fq[x, y] of degrees a and b can be expressed as

(qa+1 − 1)(qb+1 − 1) =

min(a,b)∑
d=0

qd+1 − 1

q − 1
η(a− d, b− d).

�

Corollary 2.4. The following relations hold in Hlf (P1):

(2.4) O(m+ 1) ∗ O(n)− qO(n) ∗ O(m+ 1) = qO(m) ∗ O(n+ 1)−O(n+ 1) ∗ O(m).
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Proof. We check (2.4) for m > n. Then

O(n) ∗ O(m+ 1) = νm−n+2O(n)⊕O(m+ 1);

O(n+ 1) ∗ O(m) = νm−nO(n+ 1)⊕O(m);

O(m)∗O(n+1) = νn−m+2(qm−nO(m)⊕O(n+1)+

bm−n−1
2
c∑

s=1

(q2−1)qm−n−2[O(n+s+1)⊕O(m−s)]);

O(m+1)∗O(n) = νn−m(qm−n+2O(m+1)⊕O(n)+

bm−n+1
2
c∑

s=1

(q2−1)qm−n[O(n+s)⊕O(m−s+1)])

and we get the desired equality.

�

The conclusion of the section is the following result.

Theorem 2.5. The map Υ : zi → O(i) extends to an isomorphism of algebras Sq and Hlf (P1).
�

2.2. General Result. Let X be a smooth connected projective curve of genus g over some
finite field Fq. Let ζX(t) ∈ C(t) be its zeta function:

ζX(t) = exp(
∑
d≥1

#X(Fqd)
td

d
).

Example. For a smooth elliptic curve E we have

ζE(t) =
1− aq(E)t+ qt2

(1− t)(1− qt)
.

. It is known that ζX(t) =

g∏
i=1

(1−αit)(1−αit)

(1−t)(1−qt) is a rational function of t and the roots αi of the
polynomial in the numerator are such that |αi| = q

1
2 , so αiαi = q.

We choose µg(x) = xg−1 1−qx
1−x−1

g∏
i=1

(1−αix−1)(1−αix−1) and denote the corresponding shuffle

algebra by Sg. For d ∈ Z, let Picd(X) be the set of line bundles over X of degree d, define

1Picd(X) :=
∑

L∈Picd(X)

L.

In [SV] it was shown that the map 1Picd(X) 7→ zi extends to an isomorphism

ΥX : U>
X → S1,

where U>
X stands for the subalgebra of Hlf (X) generated by 1Picd(X) and S1 denotes the sub-

algebra of Sg, generated by C[z±1].



6 BORIS TSVELIKHOVSKY

3. EHA: a Reminder

We recall the presentation of the elliptic Hall algebra E+ via generators and relations.

Definition. A triangle with vertices X = (0, 0), Y = (k2, d2) and Z = (k1 + k2, d1 + d2) on
the lattice Z2 is said to be quasi-empty, if the following properties hold:

•k1, k2 ∈ Z>0;

•d1
k1
> d2

k2
;

• There are no lattice points inside the triangle and on at least one of the edges XY , Y Z.

If the first two conditions hold and there are no lattice points on both XY and Y Z, the
triangle is called empty.

The positive half E+ is by definition generated by the elements uk,d (here k ≥ 1 and d ∈ Z),
with relations:

(3.1) [uk1,d1 , uk2,d2 ] = 0,

whenever the points (k1, d1), (k2, d2) are collinear, and:

(3.2) [uk1,d1 , uk2,d2 ] =
θk1+k2,d1+d2

α1

,

whenever the triangle with vertices (0, 0), (k2, d2) and (k1 + k2, d1 + d2) is quasi-empty. Here

(3.3) αn =
(qn1 − 1)(qn2 − 1)(q−n − 1)

n

and θ is given by the generating function

(3.4)
∞∑
n=0

θna,nbt
n = exp(

∞∑
n=0

αnuna,nbt
n),

where gcd(a, b) = 1.

The proof of the following result can be found in [SV]

Theorem 3.1. The map u1,d 7→ zd extends to an isomorphism of algebras

Υ : E+ → S̃,

where S̃ is the subalgebra of S, generated by
⊕
d∈Z

Sd,1.

4. Shuffle Algebra and EHA

We consider the shuffle algebra depending on three parameters q1, q2, q, s.t. q1q2 = q. This is
an associative graded unital subalgebra S of the graded space of symmetric rational functions
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in infinitely many variables endowed with the product

F (z1, . . . , zn)∗G(z1, . . . , zm) =
1

n!m!
SymSn+m

F (z1, . . . , zn)G(zn+1, . . . , zn+m)
∏

i∈{1,...n}
j∈{n+1,...n+m}

µ

(
zi
zj

) ,

where µ(x) = (x−1)(x−q)
(x−q1)(x−q2) and SymSk

(H(z1, . . . , zk)) =
∑
σ∈Sk

sgn(σ)H(zσ(1), . . . , zσ(k)). Each

component Sn consists of rational functions

(4.1) F (z1, . . . , zn) =

f(z1, . . . , zn)
∏

1≤i<j≤n
(zi − zj)2∏

1≤i 6=j≤n
(zi − q1zj)(zi − q2zj)

,

with f(z1, . . . , zn) - a symmetric Laurent polynomial, satisfying the wheel condition.

Definition. A symmetric Laurent polynomial f(z1, . . . , zn) satisfies the wheel condition if

(4.2) f(z1, . . . , zn) = 0 when
zi
zj

= q1,
zj
zk

= q2 and
zk
zi

=
1

q
.

zk

q2
zj

q1

zi
1/q

Figure 1. Wheel condition.

Next we verify that S is an algebra.

Proposition 4.1. S is closed under the product (∗).

Proof. The shuffle product of F (z1, . . . , zn) ∈ Sn and G(z1, . . . , zm) ∈ Sm can be written as

F (z1, . . . , zn) ∗G(z1, . . . , zm) =

∏
1≤i<j≤n+m

(zi − zj)2∏
1≤i 6=j≤n+m

(zi − q1zj)(zi − q2zj)
·

1

n!m!
SymSn+m

(
f(z1, . . . , zn)g(zn+1, . . . , zn+m)

∏
1≤i≤n<j≤n+m

(zi − qzj)(zi − q1zj)(zi − q2zj)
(zi − zj)

)
.

The rational function on the second line of the expression above does not have poles, as the
only possible poles are at zi = zj and those are simple. However, as the function is symmetric
it cannot have poles of odd order and, therefore, is regular. It remains to check that the
conditions (4.2) are satisfied. Indeed, if the indices of all three variables are in either {1, . . . , n}
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or {n+1, . . . , n+m} simultaneously, this follows from the wheel conditions for f or g. Otherwise
the product

∏
1≤i≤n<j≤n+m

(zi−qzj)(zi−q1zj)(zi−q2zj)
(zi−zj) vanishes. �

The shuffle algebra S := C
⊕

d∈Z,n>0

Sd,n is bigraded by the degree and the number of variables

in f .

The next definition will be of great importance for the proof that S and E+ are isomorphic.

Definition. An element F (z1, . . . , zn) ∈ S is said to have slope ≤ µ (µ ∈ R) if the limit
lim
ξ→∞

F (ξz1,...,ξzi,zi+1,...,zn)
ξµi

exists and is finite for all i ∈ {1, . . . , n}.

The subspace of elements of Sd,n with slope ≤ µ will be denoted by Sµn . Notice, that we
have inclusions Sµk,n ⊂ Sµ

′

d,n for µ ≤ µ′ and Sd,n = ∪
µ∈R

Sµd,n, thus, an increasing filtration on the

infinite-dimensional vector space Sd,n. It is also true that Sµ = C
⊕

k∈Z,n>0

Sµd,n is a subalgebra.

One advantage of considering the subspaces Sµd,n is that they are finite dimensional, the next
proposition provides an upper bound on the dimension.

Proposition 4.2. The dimension of Sµd,n does not exceed the number of unordered tuples (the
order between pairs with ni = nj is disregarded) of pairs (n1, d1), . . . , (ns, ds), such that

(4.3)


n1 + . . .+ ns = n

d1 + . . .+ ds = d

di ≤ µni ∀ i ∈ {1, . . . , n},

where t, ni ∈ N and di ∈ Z.

Proof. Let ρ = (n1, . . . , ns) be a partition of n. We consider the map

ϕρ : Sµd,n → C[y±11 , . . . , y±1t ]

ϕρ(F (z1, . . . , zn)) = f(qy1, q
2y1 . . . , q

k1y1, qy2, q
2y2 . . . , q

k2y2, . . . , qyt, q
2yt . . . , q

ktyt)

and define
Sµ,ρd,n := ∩

ρ′�ρ
ker ϕρ′ ,

where � stands for the usual dominance order on partitions, and set Sµ,(n)d,n = Sµd,n. Then the
subspaces Sµ,ρd,n form a filtration of Sµd,n, i.e.

ρ ≺ ρ′ ⇒ Sµ,ρd,n ⊂ Sµ,ρ
′

d,n .

We take F ∈ Sµ,ρd,n and notice that the wheel condition implies ϕρ(F ), vanishes, if

(4.4) yj = q2q
a−byi, a ∈ {1, . . . , ni − 1}, b ∈ {1, . . . , nj} or

(4.5) yj = q1q
a−byi, a ∈ {1, . . . , ni − 1}, b ∈ {1, . . . , nj},
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for i < j as, for example, (4.4) guarantees that there are zi = qa+1yi, zj = q2q
ayi and zk = qayi.

As ϕρ(F ) also belongs to Sµ,ρd,n , it vanishes, whenever

(4.6) yj = qni−b+1yi or yj = q−byi, where b ∈ {1, . . . , nj},

with i < j, as well. We conclude that the Laurent polynomial ϕρ(F ) is divisible by

DF =
∏

1≤i<j≤t

(
nj∏
b=1

(yj − qni−b+1yi)(yj − q−byi)
nj∏
b=1

ni−1∏
a=1

(yj − q1qa−byi)(yj − q2qa−byi)

)
,

a polynomial of degree

deg(DF ) =
∑
i<j

2nj + 2(ni − 1)nj = 2
∑
i<j

ninj = n2 −
∑
i

n2
i

and of degree in each variable yi equal to

degi(DF ) =
∑
j 6=i

2ninj = 2ni
∑
j 6=i

nj = 2ni(n− ni).

. As follows from the definition of elements of S in (4.1), deg(f) = deg(F ) + n(n − 1) =
d+ n(n− 1), and we obtain

deg(ϕρ(F )) = deg(f) = d+ n(n− 1).

Next we use that the slope of ϕρ(F ) is not greater than µ. This and (4.1) provide an upper
bound on the degree of ϕρ(F ):

degi(ϕρ(F ))− (ni(ni − 1) + 2ni(n− ni)) ≤ µni

degi(ϕρ(F )) ≤ 2nni − ni(ni + 1) + µni.

The above allows to conclude

deg(ϕρ(F )/DF ) =
∑
i

ni(ni − 1) + d

degi(ϕρ(F )/DF ) ≤ ni(ni − 1) + µni.

The basis for such polynomials consists of monomials

y
n1(n1−1)+d1
1 , . . . , y

nt(nt−1)+dt
t ,

with d1 + . . .+ dt = d and di ≤ µni. To complete the proof it remains to notice that if ni = nj,
then ϕρ(F ) is invariant under the transposition (ij), so the respective order of di and dj can
be disregarded. �

Corollary 4.3. The subspace of Sd,n, consisting of elements F , s.t.

lim
ξ→∞

F (ξz1, . . . , ξzi, . . . , ξzn)

ξ
di
n

= 0 ∀i ∈ {1, . . . , n}

is at most one-dimensional.
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Proof. In this case µ = d
n
, so di ≤ d

n
ni and d1 + . . .+ dt ≤ d

n
n1 + . . .+ d

n
nt = d. Thus, we must

have that each di = d
n
ni. On the other hand, for the limit above to be zero, the inequalities

di ≤ d
n
ni must be strict. Therefore, the only possibility is n1 = n and d1 = d. �

In [SV] it was shown that the map u1,d → zd extends to an isomorphism

Υ : E+ → S1,

where S1 is the subalgebra of S, generated by C[z, z−1]. This allows us to conclude that the
map E+ → S (which we also denote by Υ) is also injective and the next proposition shows that
it is surjective as well.

Proposition 4.4. The map Υ : E+ → S is surjective.

Proof. We denote by En,d ⊂ E+ the subspace of elements of bidegree (n, d) and

Eµn,d =

{
sums of products of un′,d′ with

d′

n′
≤ µ

}
⊂ En,d.

The dimension of Eµn,d equals to the number of convex paths in Conv+ with slope ≤ µ and
such paths are in bijection with the pairs of tuples from proposition 4.2 (see lemma 5.6 of [BS]).
Therefore, the dimension of Sµd,n does not exceed the dimension of Eµn,d and (due to invectivety
of Υ) it is sufficient to show Υ(Eµn,d) ⊂ Sµd,n. The verification of this can be found in the proof
of proposition 3.5 in [Neg]. �

. We introduce Pk,d := Υ(uk,d).

Corollary 4.5. S is generated by the first graded component, i.e. C[z±1].

5. The Double of Shuffle Algebra

We start with the general construction. Suppose (A, ∗,4) is a bialgebra (we assume that
4 is coassociative and the product and coproduct are compatible in the sense that 4(a ∗ b) =
4(a) ∗ 4(b)) with a symmetric non-degenerate form

(·, ·) : A⊗A → C,

satisfying

(5.1) (a ∗ b, c) = (a⊗ b,4(c)) ∀ a, b, c ∈ A.

Definition. The Drinfeld double DA = Acoop ⊗ A (Acoop has the same product as A,
but the coproduct is opposite) is a free product of algebras with both A− = Acoop ⊗ 1 and
A+ = 1⊗A being subbialgebras, subject to the relations

∑
i,j

a
(1)−
i ∗ b(2)+j (a

(2)−
i , b

(1)+
j ) =

∑
i,j

b
(1)+
j ∗ a(2)−i (a

(1)−
i , b

(2)+
j ), where
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4(a) =
∑
i

a
(1)−
i ⊗ a(2)−i and 4 (b) =

∑
j

b
(1)+
j ⊗ b(2)+j ∀ a ∈ A+, b ∈ A−.

The bialgebra structure on DA is determined uniquely.

Our next goal is to endow the Shuffle algebra S with a coproduct. For this we will need to
consider a slightly larger algebra S̃. It is generated by S and the set of elements hi, i ∈ Z≥0
with the following relations

[hi, hj] = 0

(5.2) F (z1, . . . , zn) ∗ h(w) = h(w) ∗

(
F (z1, . . . , zn)

n∏
i=1

Ω

(
w

zi

))
,

where h(w) :=
∑
n≥0

hnw
−n and

(5.3) Ω(x) =
µ
(
1
x

)
µ(x)

=
(x− q−1)(x− q1)(x− q2)
(x− q)(x− q−11 )(x− q−12 )

= exp

(
−
∑
n≥1

αnx
−n

)
.

We understand (5.2) by expanding the r.h.s. in negative powers of w and setting the corre-
sponding terms equal. Now we can define the coproduct on S̃ (we skip the proof and refer to
the Appendix in [Neg]).

Proposition 5.1. The following formulas define a coassociative coproduct on S̃:

4(h(w)) := h(w)⊗ h(w)

4(F (z1, . . . , zn)) =
n∑
i=0

∏
b>i

h(zb)F (z1, . . . , zi ⊗ zi+1, . . . , zn)∏
a≤i<b

µ
(
zb
za

)(5.4)

. The r.h.s of the second line above should be understood by expanding in nonnegative powers
of za

zb
for a ≤ i < b, obtaining an infinite sum of monomials. Then in each summand all hi’s are

moved to the left, followed by powers of z1, . . . , zi to the left of ⊗ and powers of zi+1, . . . , zn -
to the right. A typical summand looks like

hki+1 . . . hknz
s1
1 . . . zsii ⊗ z

si+1

i+1 . . . z
sn
n ,

here 4(F (z1, . . . , zn)) belongs to the completion S̃⊗̂S̃.

Finally, the bialgebra S̃ has a pairing, given by:

(h(v), h(w−1)) = Ω
(w
v

)
(F,G) =

1

αk1
:

∫
:
F (z1, . . . , zn)G( 1

z1
, . . . , 1

zn
)∏

1≤i 6=j≤n
µ
(
zi
zj

) Dz1 . . . Dzn
(5.5)
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for F,G ∈ Sn,d with Dz := 1
2πiz

and we define the normal-ordered integral :
∫

: by
(5.6)(
Sym

(
zk11 . . . zknn

∏
1≤i 6=j≤n

µ

(
zi
zj

))
, F

)
=

1

αk1

∫
|z1|<<|z2|<<...<<|zn|

zk11 . . . zknn F ( 1
z1
, . . . , 1

zn
)∏

1≤i 6=j≤n
µ
(
zi
zj

) Dz1 . . . Dzn.

This sufficient to define the pairing on S̃ since any element can be written as a linear com-
bination of monomials zi1 ∗ . . . ∗ zik by the corollary of proposition 4.4.

We refer to [Neg] for the proof of the next proposition.

Proposition 5.2. The formulas 5.6 above produce a well-defined pairing on bialgebra S̃:

S̃ ⊗ S̃ → C(q1, q2).

We denote the Drinfeld double of S̃ with respect to the pairing 5.6 by DS̃.

Next we slightly expand the elliptic Hall algebra E+ by adding the commuting elements
{u0,i|i ∈ Z} and a central element c with relations

[u0,d, u1,d′ ] = u1,d+d′ ∀d ∈ Z, d′ ∈ Z>0

and denote the is algebra by Ẽ+.

The coproduct is given by

4(u0,d) = u0,d ⊗ 1 + 1⊗ u0,d, 4(u1,d) = u1,d ⊗ 1 + c
∑
n≥0

θ0,n ⊗ u1,d−n,

where θ0,n are computed according to 3.4. It remains to define a pairing on Ẽ+, which is done
by setting

(u0,d, u0,d) =
1

αd
, (u1,d, u1,d) =

1

α1

.

Theorem 5.3. The morphism of proposition 4.4 can be extended to Υ : Ẽ+ → S̃ by

Υ(c) = h0, and Υ(u0,d) = pd,

where p1, p2, . . . are obtained from the series

h(w) = h0exp

(
∞∑
n=1

αnpnw
−n

)
.

Thus extended Υ preserves the coproduct and bialgebra pairing and, therefore, induces the iso-
morphism of Drinfeld doubles:

Υ̃ : DẼ+ → DS̃.

Proof. First one needs to show that the formulas above indeed extend the isomorphism defined
in proposition 4.4, i.e. respect the relations between elements added to the algebras. Next, we
need to check that Υ preserves the pairing. It is enough to show this for generators, provided
it satisfies conditions 5.1 (this is shown on page 24 of [Neg]). For example,
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(zd1 , z
d
1) =

1

α1

1

2πi

∫
|z1|<1

zd1z
−d
1

z1
dz1 =

1

α1

= (u1,d, u1,d)

�
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