Permutations and Combinations

Section 6.3

Section Summary

- Permutations
- Combinations
- Combinatorial Proofs

Permutations

Definition: A *permutation* of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement of r elements of a set is called an *r-permutation*.

Example: Let $S = \{1,2,3\}$.

- The ordered arrangement 3,1,2 is a permutation of *S*.
- The ordered arrangement 3,2 is a 2-permutation of *S*.
- The number of r-permuatations of a set with n elements is denoted by P(n,r).
 - The 2-permutations of $S = \{1,2,3\}$ are 1,2; 1,3; 2,1; 2,3; 3,1; and 3,2. Hence, P(3,2) = 6.

A Formula for the Number of Permutations

Theorem 1: If n is a positive integer and r is an integer with $1 \le r \le n$, then there are

$$P(n, r) = n(n - 1)(n - 2) \cdots (n - r + 1)$$

r-permutations of a set with n distinct elements.

Proof: Use the product rule. The first element can be chosen in n ways. The second in n-1 ways, and so on until there are (n-(r-1)) ways to choose the last element.

• Note that P(n,0) = 1, since there is only one way to order zero elements.

Corollary 1: If *n* and *r* are integers with $1 \le r \le n$, then

$$P(n,r) = \frac{n!}{(n-r)!}$$

Solving Counting Problems by Counting Permutations

Example: How many ways are there to select a first-prize winner, a second prize winner, and a third-prize winner from 100 different people who have entered a contest?

Solving Counting Problems by Counting Permutations

Example: How many ways are there to select a first-prize winner, a second prize winner, and a third-prize winner from 100 different people who have entered a contest?

Solution:

$$P(100,3) = 100 \cdot 99 \cdot 98 = 970,200$$

Example: Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Example: Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Solution: The first city is chosen, and the rest are ordered arbitrarily. Hence the orders are:

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$$

If she wants to find the tour with the shortest path that visits all the cities, she must consider 5040 paths!

Example: How many permutations of the letters *ABCDEFGH* contain the string *ABC* ?

Example: How many permutations of the letters *ABCDEFGH* contain the string *ABC* ?

Solution: We solve this problem by counting the permutations of six objects, *ABC*, *D*, *E*, *F*, *G*, and *H*.

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

Definition: An *r-combination* of elements of a set is an unordered selection of *r* elements from the set. Thus, an *r*-combination is simply a subset of the set with *r* elements.

- The number of r-combinations of a set with n distinct elements is denoted by C(n, r). The notation $\binom{n}{r}$ is also used and is called a binomial coefficient. (We will see the notation again in the binomial theorem in Section 6.4.)
 - **Example**: Let S be the set $\{a, b, c, d\}$. Then $\{a, c, d\}$ is a 3-combination from S. It is the same as $\{d, c, a\}$ since the order listed does not matter.
- C(4,2) = 6 because the 2-combinations of $\{a, b, c, d\}$ are the six subsets $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, and $\{c, d\}$.

Theorem 2: The number of r-combinations of a set with n elements, where $n \ge r \ge 0$, equals

$$C(n,r) = \frac{n!}{(n-r)!r!}.$$

Proof: By the product rule $P(n, r) = C(n,r) \cdot P(r,r)$. Therefore,

$$C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n!/(n-r)!}{r!/(r-r)!} = \frac{n!}{(n-r)!r!}$$
.

Example: How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a deck of 52 cards?

Example: How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a deck of 52 cards?

Solution: Since the order in which the cards are dealt does not matter, the number of five card hands is:

$$C(52,5) = \frac{52!}{5!47!}$$

$$= \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 26 \cdot 17 \cdot 10 \cdot 49 \cdot 12 = 2,598,960$$

• The different ways to select 47 cards from 52 is

$$C(52,47) = \frac{52!}{47!5!} = C(52,5) = 2,598,960.$$

This is a special case of a general result. \rightarrow

Corollary 2: Let n and r be nonnegative integers with $r \le n$. Then C(n, r) = C(n, n - r).

Proof: From Theorem 2, it follows that

$$C(n,r) = \frac{n!}{(n-r)!r!}$$

and

$$C(n, n-r) = \frac{n!}{(n-r)![n-(n-r)]!} = \frac{n!}{(n-r)!r!}$$
.

Hence, C(n, r) = C(n, n - r).

This result can be proved without using algebraic manipulation. \rightarrow

Combinatorial Proofs

- **Definition** 1: A *combinatorial proof* of an identity is a proof that uses one of the following methods.
 - A *double counting proof* uses counting arguments to prove that both sides of an identity count the same objects, but in different ways.
 - A *bijective proof* shows that there is a bijection between the sets of objects counted by the two sides of the identity.

Combinatorial Proofs

Here are two combinatorial proofs that

$$C(n, r) = C(n, n - r)$$

when r and n are nonnegative integers with r < n:

- *Bijective Proof*: Suppose that S is a set with n elements. The function that maps a subset A of S to \overline{A} is a bijection between the subsets of S with r elements and the subsets with n-r elements. Since there is a bijection between the two sets, they must have the same number of elements.
- Double Counting Proof: By definition the number of subsets of S with r elements is C(n, r). Each subset A of S can also be described by specifying which elements are not in A, i.e., those which are in \overline{A} . Since the complement of a subset of S with r elements has n-r elements, there are also C(n, n-r) subsets of S with r elements.

Example: How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school.

Solution: By Theorem 2, the number of combinations is

$$C(10,5) = \frac{10!}{5!5!} = 252.$$

Example: A group of 30 people have been trained as astronauts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission?

Solution: By Theorem 2, the number of possible crews is

$$C(30,6) = \frac{30!}{6!24!} = \frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 593,775$$
.

Binomial Coefficients and Identities

Section 6.4

Section Summary

- The Binomial Theorem
- Pascal's Identity and Triangle
- Other Identities Involving Binomial Coefficients (not currently included in overheads)

Powers of Binomial Expressions

Definition: A *binomial* expression is the sum of two terms, such as x + y. (More generally, these terms can be products of constants and variables.)

- We can use counting principles to find the coefficients in the expansion of $(x + y)^n$ where n is a positive integer.
- To illustrate this idea, we first look at the process of expanding $(x + y)^3$.
- (x + y)(x + y)(x + y) expands into a sum of terms that are the product of a term from each of the three sums.
- Terms of the form x^3 , x^2y , xy^2 , y^3 arise. The question is what are the coefficients?
 - To obtain x^3 , an x must be chosen from each of the sums. There is only one way to do this. So, the coefficient of x^3 is 1.
 - To obtain x^2y , an x must be chosen from two of the sums and a y from the other. There are $\binom{3}{2}$ ways to do this and so the coefficient of x^2y is 3.
 - To obtain xy^2 , an x must be chosen from of the sums and a y from the other two . There are $\binom{3}{1}$ ways to do this and so the coefficient of xy^2 is 3.

 To obtain y^3 , a y must be chosen from each of the sums. There is only one way to do this. So,
 - the coefficient of y^3 is 1.
- We have used a counting argument to show that $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.
- Next we present the binomial theorem gives the coefficients of the terms in the expansion of $(x + y)^n$.

Binomial Theorem

Binomial Theorem: Let *x* and *y* be variables, and *n* a nonnegative integer. Then:

$$(x+y)^n = \sum_{j=0}^n \left(\begin{array}{c} n \\ j \end{array}\right) x^{n-j} y^j = \left(\begin{array}{c} n \\ 0 \end{array}\right) x^n + \left(\begin{array}{c} n \\ 1 \end{array}\right) x^{n-1} y + \dots + \left(\begin{array}{c} n \\ n-1 \end{array}\right) x y^{n-1} + \left(\begin{array}{c} n \\ n \end{array}\right) y^n.$$

Proof: We use combinatorial reasoning . The terms in the expansion of $(x + y)^n$ are of the form $x^{n-j}y^j$ for j = 0,1,2,...,n. To form the term $x^{n-j}y^j$, it is necessary to choose n-j xs from the n sums. Therefore, the coefficient of $x^{n-j}y^j$ is $\binom{n}{n-j}$ which equals $\binom{n}{j}$.

Using the Binomial Theorem

Example: What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x - 3y)^{25}$?

Solution: We view the expression as $(2x + (-3y))^{25}$. By the binomial theorem

$$(2x + (-3y))^{25} = \sum_{j=0}^{25} {25 \choose j} (2x)^{25-j} (-3y)^j.$$

Consequently, the coefficient of $x^{12}y^{13}$ in the expansion is obtained when j = 13.

$$\begin{pmatrix} 25\\13 \end{pmatrix} 2^{12} (-3)^{13} = -\frac{25!}{13!12!} 2^{12} 3^{13}.$$

A Useful Identity

Corollary 1: With $n \ge 0$, $\sum_{k=0}^{n} \binom{n}{k} = 2^n$.

Proof (using binomial theorem): With x = 1 and y = 1, from the binomial theorem we see that:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{(n-k)} = \sum_{k=0}^{n} \binom{n}{k}.$$

Proof (*combinatorial*): Consider the subsets of a set with n elements. There are $\binom{n}{0}$ subsets with zero elements, $\binom{n}{1}$ with one element, $\binom{n}{2}$ with two elements, ..., and $\binom{n}{n}$ with n elements.

Therefore the total is $\sum_{k=0}^{n} {n \choose k}$.

Since, we know that a set with n elements has 2^n subsets, we conclude:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Generalized Permutations and Combinations

Section 6.5

Section Summary

- Permutations with Repetition
- Combinations with Repetition
- Permutations with Indistinguishable Objects
- Distributing Objects into Boxes

Permutations with Repetition

Theorem 1: The number of r-permutations of a set of n objects with repetition allowed is n^r .

Proof: There are n ways to select an element of the set for each of the r positions in the r-permutation when repetition is allowed. Hence, by the product rule there are n^r r-permutations with repetition.

Example: How many strings of length *r* can be formed from the uppercase letters of the English alphabet?

Solution: The number of such strings is 26^r, which is the number of *r*-permutations of a set with 26 elements.

Example: How many ways are there to select five bills from a box containing at least five of each of the following denominations: \$1, \$2, \$5, \$10, \$20, \$50, and \$100?

Solution: Place the selected bills in the appropriate position of a cash box illustrated below:

 Some possible ways of placing the five bills:

- The number of ways to select five bills corresponds to the number of ways to arrange six bars and five stars in a row.
- This is the number of unordered selections of 5 objects from a set of 11. Hence, there are

$$C(11,5) = \frac{11!}{5!6!} = 462$$

ways to choose five bills with seven types of bills.

Theorem 2: The number of *r*-combinations from a set with *n* elements when repetition of elements is allowed is

$$C(n+r-1,r)=C(n+r-1, n-1).$$

Proof: Each r-combination of a set with n elements with repetition allowed can be represented by a list of n-1 bars and r stars. The bars mark the n cells containing a star for each time the ith element of the set occurs in the combination.

The number of such lists is C(n + r - 1, r), because each list is a choice of the r positions to place the stars, from the total of n + r - 1 positions to place the stars and the bars. This is also equal to C(n + r - 1, n - 1), which is the number of ways to place the n - 1 bars.

Example: How many solutions does the equation

$$x_1 + x_2 + x_3 = 11$$

have, where x_1 , x_2 and x_3 are nonnegative integers?

Solution: Each solution corresponds to a way to select 11 items from a set with three elements; x_1 elements of type one, x_2 of type two, and x_3 of type three.

By Theorem 2 it follows that there are

$$C(3+11-1,11) = C(13,11) = C(13,2) = \frac{13\cdot 12}{1\cdot 2} = 78$$

solutions.

Example: Suppose that a cookie shop has four different kinds of cookies. How many different ways can six cookies be chosen?

Solution: The number of ways to choose six cookies is the number of 6-combinations of a set with four elements. By Theorem 2

$$C(9,6) = C(9,3) = \frac{9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3} = 84$$

is the number of ways to choose six cookies from the four kinds.

Summarizing the Formulas for Counting Permutations and Combinations with and without Repetition

TABLE 1 Combinations and Permutations With and Without Repetition.		
Туре	Repetition Allowed?	Formula
r-permutations	No	$\frac{n!}{(n-r)!}$
<i>r</i> -combinations	No	$\frac{n!}{r!\;(n-r)!}$
<i>r</i> -permutations	Yes	n^r
r-combinations	Yes	$\frac{(n+r-1)!}{r! (n-1)!}$

Permutations with Indistinguishable Objects

Example: How many different strings can be made by reordering the letters of the word *SUCCESS*.

Solution: There are seven possible positions for the three Ss, two Cs, one U, and one E.

- The three Ss can be placed in C(7,3) different ways, leaving four positions free.
- The two Cs can be placed in C(4,2) different ways, leaving two positions free.
- The U can be placed in C(2,1) different ways, leaving one position free.
- The E can be placed in C(1,1) way.

By the product rule, the number of different strings is:

$$C(7,3)C(4,2)C(2,1)C(1,1) = \frac{7!}{3!4!} \cdot \frac{4!}{2!2!} \cdot \frac{2!}{1!1!} \cdot \frac{1!}{1!0!} = \frac{7!}{3!2!1!1!} = 420.$$

The reasoning can be generalized to the following theorem. \rightarrow

Permutations with Indistinguishable Objects

Theorem 3: The number of different permutations of n objects, where there are n_1 indistinguishable objects of type 1, n_2 indistinguishable objects of type 2,, and n_k indistinguishable objects of type k, is:

$$\frac{n!}{n_1!n_2!\cdots n_k!} .$$

Proof: By the product rule the total number of permutations is:

$$C(n, n_1) C(n - n_1, n_2) \cdots C(n - n_1 - n_2 - \cdots - n_k, n_k)$$
 since:

- The n_1 objects of type one can be placed in the n positions in $C(n, n_1)$ ways, leaving $n n_1$ positions.
- Then the n_2 objects of type two can be placed in the $n-n_1$ positions in $C(n-n_1, n_2)$ ways, leaving $n-n_1-n_2$ positions.
- Continue in this fashion, until n_k objects of type k are placed in $C(n n_1 n_2 \cdots n_k, n_k)$ ways.

The product can be manipulated into the desired result as follows:

$$\frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2!)} \cdots \frac{(n-n_1-\cdots-n_{k-1})!}{n_k!0!} = \frac{n!}{n_1!n_2!\cdots n_k!}.$$

Distributing Objects into Boxes

- Many counting problems can be solved by counting the ways objects can be placed in boxes.
 - The objects may be either different from each other (distinguishable) or identical (indistinguishable).
 - The boxes may be labeled (distinguishable) or unlabeled (indistinguishable).

Distributing Objects into Boxes

- Distinguishable objects and distinguishable boxes.
 - There are $n!/(n_1!n_2!\cdots n_k!)$ ways to distribute n distinguishable objects into k distinguishable boxes.
 - (See Exercises 47 and 48 for two different proofs.)
 - Example: There are 52!/(5!5!5!5!32!) ways to distribute hands of 5 cards each to four players.
- Indistinguishable objects and distinguishable boxes.
 - There are C(n + r 1, n 1) ways to place r indistinguishable objects into n distinguishable boxes.
 - Proof based on one-to-one correspondence between n-combinations from a set with k-elements when repetition is allowed and the ways to place n indistinguishable objects into k distinguishable boxes.
 - Example: There are C(8 + 10 1, 10) = C(17,10) = 19,448 ways to place 10 indistinguishable objects into 8 distinguishable boxes.

Distributing Objects into Boxes

- Distinguishable objects and indistinguishable boxes.
 - Example: There are 14 ways to put four employees into three indistinguishable offices (see Example 10).
 - There is no simple closed formula for the number of ways to distribute *n* distinguishable objects into *j* indistinguishable boxes.
 - See the text for a formula involving *Stirling numbers of the second kind*.
- Indistinguishable objects and indistinguishable boxes.
 - Example: There are 9 ways to pack six copies of the same book into four identical boxes (see Example 11).
 - The number of ways of distributing n indistinguishable objects into k indistinguishable boxes equals $p_k(n)$, the number of ways to write n as the sum of at most k positive integers in increasing order.
 - No simple closed formula exists for this number.