
Counting problems can often be harder than 
those from the last few lectures…

For example…

Repeated choice

Combinations with repetition

SUCCESS
USSECCS
SCSCSEU
…

Permuting indistinguishable items



Permutations with repetition

Recall: r-permutations are ordered collections of r 
elements drawn from some set

If an r-permutation is drawn from a set of size n 
without replacement, then there are P(n,r) = n!/(n-r)! 
possible r-permutations

If we select the elements of a permutation with 
replacement, then we can use the product rule to 
count the number of possible r-permutations



How many strings of length r can be created 
using the 26 English letters?

Let our set S = {A, B, C, …, Z}, with |S| = 26

To count the number of r-length strings, note that:
 26 ways to choose 1st letter
 26 ways to choose 2nd letter (not 25)
 26 ways to choose 3rd letter (not 24)
 …
 26 ways to choose rth letter (not 26-r+1)

So, there are 26r possible ways to choose an r-length string from 
the set S with replacement

In general: There are nr possible ways to permute a set of size n 
if repetition of elements is allowed



Many times, we want to examine combinations of 
objects in which repeated choices are allowed

Example: How many ways can four pieces of fruit be chosen 
from a bowl containing at least four apples, four oranges, and 
four pears?  Assume that only the type of fruit chosen matters, 
not the individual piece.

Solution #1:  Explicit enumeration

So, there are 15 possible 4-combinations of a set containing 3 
items if repetition is allowed

4 apples
3 apples, 1 orange
3 oranges, 1 pear
2 apples, 2 oranges
2 apples, 1 orange, 1 pear

4 oranges
3 apples, 1 pear
3 pears, 1 apple
2 apples, 2 pears
2 oranges, 1 apple, 1 pear

4 pears
3 oranges, 1 apple
3 pears, 1 orange
2 oranges, 2 pears
2 pears, 1 apple, 1 orange

This is TEDIOUS!!!



Let’s find a nice closed-form expression for 
counting r-combinations with repetition
Example: Consider a cash box containing $1 bills, $2 bill, $5 bills, 
$10 bill, $20 bills, $50 bills, and $100 bills.  How many ways are 
there to choose 5 bills if order does not matter and bills within a 
single denomination are indistinguishable from one another?  
Assume that there are at least 5 bills of each denomination.

Observations:
 7 denominations of bills
 The order that bills are drawn does not matter
 At least 5 bills of each denomination

Implication: We are counting 5-combinations with repetition from a 
set of 7 items.

$100

$50

$20

$10

$5 $2 $1



An interesting insight…

Note:
 The cash box has 7 compartments 
 These compartments are separated by 6 dividers
 Choosing 5 bills is the same as arranging 5 placeholders (*) and 6 dividers (|)

Examples:
1. |||**|||***

2. *|*|**||*||

$10
$10

$1 $1 $1

$100

$50

$20 $20

$5



This leads us to a nice formula…

Observation:  Arranging 5 stars and 6 bars is the same as choosing 
5 “places” for the stars out of 11 total “places.”  

This can be done in C(11, 5) = 462 ways.

General Theorem: There are C(n+r-1, r) r-combinations from a 
set with n elements when repetition of elements is allowed.

* * * * *| | | | | |



Buying cookies!
Example: How many ways can we choose six cookies at a cookie 
shop that makes 4 types of cookie?  Assume that only the type of 
cookies chosen matters (not the order in which they are chosen or 
the individual cookies within a given type).



Buying cookies!

Example: How many ways can we choose six cookies at a cookie shop 
that makes 4 types of cookie?  Assume that only the type of cookies 
chosen matters (not the order in which they are chosen or the individual 
cookies within a given type).

Solution #1:
 Need six “stars” since we are choosing

six cookies
 Need 3 “bars” to separate the cookies

by type
 So, C(9, 6) = 84 ways to choose places

to put stars.

Solution #2:
 Since we choose six cookies, r = 6
 Four possible cookie types means n = 4
 So, C(6+4-1, 6) = C(9,6) = 84 ways to choose cookies!



Solving equations

Example: How many solutions does the equation x1 + x2 + x3 = 11 
have if x1, x2, and x3 are non-negative integers?



Solving equations

Example: How many solutions does the equation x1 + x2 + x3 = 11 
have if x1, x2, and x3 are non-negative integers?

Observation: Solving this problem is the same as choosing 11 
objects from a set of 3 objects such that x1 objects of type one 
are chose,  x2 objects of type two are chosen, and x3 objects of 
type three are chosen.

Solution:
 n = 3
 r = 11
 So, there are C(3+11-1,11) = C(13, 11) = 78 

ways to solve this equation



How do we deal with indistinguishable items?

Example: How many strings can be formed by permuting the 
letters of the word MOM?

Observation: We can’t simply count permutations
of the letters in MOM.  (Why not?)

Counting permutations leads to an overcount!
 Rewrite MOM as M1OM2

 Possible permutations are:
 M1OM2

 M1M2O
 OM1M2

 M2OM1

 M2M1O
 OM2M1

These are really the same!



Rather than permuting all letters as a group, 
arrange identical letters separately

Note: The string MOM contains two Ms and one O. 

We can count the distinct strings formed by permuting 
MOM as follows:
 Set up 3 “slots” for letters
 Count the ways that the 2 Ms can be

assigned to the these slots C(3,2) = 3
 Count the ways that the O can be

assigned to the remaining slots C(1,1) = 1
 Use the product rule! C(3,2) × C(1,1) = 3



This tactic can be stated more generally

Theorem: The number of different permutations of n 
objects where there are n1 indistinguishable objects of 
type 1, n2 indistinguishable objects of type 2, …, and 
nk indistinguishable objects of type k is:

Ways to place 
objects of type 1

Ways to place 
objects of type 2

There is always only one way 
to place objects of type k!



How many strings can be formed by permuting 
the letters in SUCCESS?

Note: SUCCESS contains
 S × 3
 U × 1
 C × 2
 E × 1

So, we can form C(7,3) × C(4,1) × C(3,2) × C(1,1) = 
7!/(3!2!) = 420 distinct strings using letters from the 
word SUCCESS

Ways to assign each letter group:
 S: C(7,3)
 U: C(4,1)
 C: C(3,2)
 E: C(1,1)



Group Work!

Problem 1: How many ways can we choose 6 donuts 
from a donut shop that sells three types of donut?

Problem 2: How many distinct strings can be formed 
by permuting the letters of the word RADAR?



Many counting problems can be solved by 
“placing items in boxes”

We can consider two types of objects:
1. Distinguishable objects (e.g., “Billy, Chrissy, and Dan”)

2. Indistinguishable objects (e.g., “three students”)

We can also consider two types of “boxes”:
1. Distinguishable boxes (e.g., “room 123 and room 111”)

2. Indistinguishable boxes (e.g., “two homerooms”)

123 111



This leads to four classes of problems…

Distinguishable objects / distinguishable boxes Indistinguishable objects / distinguishable boxes

Distinguishable objects / indistinguishable boxes Indistinguishable objects / indistinguishable boxes

123 111

E.g., How many ways can Billy, Chrissy, and Dan be 
assigned to the homeroom 123 and homeroom 111?

123 111

E.g., How many ways can three students be 
assigned to the homeroom 123 and homeroom 111?

E.g., How many ways can Billy, Chrissy, and Dan be 
assigned to two different homerooms?

E.g., How many ways can three students be 
assigned to two different homerooms?



Counting assignments of distinguishable items to 
distinguishable boxes

Example: How many ways are there to deal 5-card poker hands 
from a 52-card deck to each of four players?



Counting assignments of distinguishable 
items to distinguishable boxes

Example: How many ways are there to deal 5-card poker hands 
from a 52-card deck to each of four players?

Solution:
 Player 1:  C(52,5) ways to deal
 Player 2:  C(47,5) ways to deal
 Player 3:  C(42,5) ways to deal
 Player 4:  C(37,5) ways to deal

Theorem: The number of ways that n distinguishable items can be 
placed into k distinguishable boxes so that ni objects are placed 
into box i (1 ≤ i ≤ k) is:

We can prove this using the 
product rule!



How can we place n indistinguishable items into 
k distinguishable boxes?

This turns out to be the same as counting the n-combinations for 
a set with k elements when repetition is allowed!

Recall: We solved the above problem by arranging placeholders 
(*) and dividers (|).

To place n indistinguishable items into k distinguishable bins:
1. Treat our indistinguishable items as *s
2. Use | to divide our distinguishable bins
3. Count the ways to arrange n placeholders and k-1 dividers 

Result: There are C(n + k – 1, n) ways to place n indistinguishable 
objects into k distinguishable boxes



Let’s see how this works…

Example: How many ways are there to place 10 indistinguishable 
balls into 8 distinguishable bins?



Let’s see how this works…

Example: How many ways are there to place 10 indistinguishable 
balls into 8 distinguishable bins?

Observation:
1. Treat balls as *s
2. Use 8-1 = 7 dividers to separate bins
3. Pick 10 positions out of a total 17

to place balls (all remaining
positions will be bin dividers)

Solution: We have C(10 + 8 – 1, 10) = C(17, 10) = 19,448 ways to 
arrange 10 indistinguishable balls into 8 distinguishable bins.

1 2 3 4

5 6 7 8



Sadly, counting the ways to place distinguishable items 
into indistinguishable boxes isn’t so easy…

Example:  How many ways can Anna, Billy, Caitlin, and Danny be 
placed into three indistinguishable homerooms?



Sadly, counting the ways to place distinguishable items 
into indistinguishable boxes isn’t so easy…

Example:  How many ways can Anna, Billy, Caitlin, and Danny be 
placed into three indistinguishable homerooms?

Solution:
 Let’s call our students A, B, C, and D
 Goal: Partition A, B, C, and D into at most 3 disjoint subsets
 One way to put everyone in the same homeroom

 {A, B, C, D}

 Seven ways to put everyone in two homerooms
 {{A, B, C}, {D}}, {{A, B, D}, {C}}, {{A, C, D}, {B}}, {{B, C, D}, {A}}
 {{A, B}, {C, D}}, {{A, C}, {B, D}}, {{A, D}, {B, C}}

 Six ways to put everyone into three homerooms
 {{A, B}, {C}, {D}}, {{A, C}, {B}, {D}}, {{A, D}, {B}, {C}}
 {{B, C}, {A}, {D}}, {{B, D}, {A}, {C}}, {{C, D}, {A}, {B}}

 Total: 14 ways to assign Anna, Billy, Caitlin, and Danny to three 
indistinguishable homerooms



Is there some simple closed form that we can use to 
solve this type of problem?

No, but there is a complicated one 

S(n,j) is a Stirling number of the second kind that tells us the 
number of ways that a set of n items can be partitioned into j 
non-empty subsets.

S(n, j) is defined as follows:

Result: The number of ways to distribute n distinguishable objects 
into k indistinguishable boxes is:



What about distributing indistinguishable 
objects into indistinguishable boxes?

Example: How many ways can six copies of the same book be 
packed in at most four boxes, if each box can hold up to six 
books?



What about distributing indistinguishable objects into 
indistinguishable boxes?

Example: How many ways can six copies of the same book be 
packed in at most four boxes, if each box can hold up to six 
books?

Solution:

Total: There are 9 ways to pack 6 identical books into at most 4 
indistinguishable boxes.

Example: How many ways can six copies of the same book be 
packed in at most four boxes, if each box can hold up to six 
books?

Solution: 6

5 1 4 2 3 3

4 1 1 3 2 1 2 2 2

3 1 1 1 2 2 1 1



That was ugly…

Unfortunately, no.

Here’s why: Placing n indistinguishable objects into k
indistinguishable boxes is the same as writing n as the sum of at 
most k positive integers arranged in non-increasing order.

 i.e., n = a1 + a2 + … + aj, where a1 ≥ a2 ≥ … ≥ aj and j ≤ k
 We say that a1, a2, …, aj is a partition of n into j integers

There is no simple closed formula for counting the partitions of an 
integer, thus there is no solution for placing n indistinguishable 
items into k indistinguishable boxes.



Final Thoughts

 Many counting problems require us to generalize the 
simple permutation and combination formulas from 
last time

 Other problems can be cast as counting the ways to 
arrange (in)distinguishable objects into 
(in)distinguishable boxes

 Next time:
 Probability theory 


