Today’s Topics

Primes \& Greatest Common Divisors

- Prime representations
- Important theorems about primality
- Greatest Common Divisors
- Least Common Multiples
- Euclid's algorithm

Once and for all, what are prime numbers?

Definition: A prime number is a positive integer p that is divisible by only 1 and itself. If a number is not prime, it is called a composite number.

Mathematically: p is prime $\left.\leftrightarrow \forall x \in Z^{+}[(x \neq 1 \wedge x \neq p) \rightarrow x \mid \not)^{\prime}\right]$

Examples: Are the following numbers prime or composite?

- 23
- 42
- 17
- 3
- 9

Any positive integer can be represented as a unique product of prime numbers!

Theorem (The Fundamental Theorem of Arithmetic): Every positive integer greater than 1 can be written uniquely as a prime or the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:

- $100=2 \times 2 \times 5 \times 5=2^{2} \times 5^{2}$
- $641=641$
- $999=3 \times 3 \times 3 \times 37=3^{3} \times 37$
- $1024=2 \times 2 \times 2=2^{10}$

Note: Proving the fundamental theorem of arithmetic requires some mathematical tools that we have not yet learned.

This leads to a related theorem...

Theorem If n is a composite integer, then n has a prime divisor less than \sqrt{n}.

Proof:

- If n is composite, then it has a positive integer factor a with $1<a<n$ by definition. This means that $n=a b$, where b is an integer greater than 1.
- Assume $\mathrm{a}>\sqrt{\mathrm{n}}$ and $\mathrm{b}>\sqrt{\mathrm{n}}$. Then $\mathrm{ab}>\sqrt{\mathrm{n}} \sqrt{\mathrm{n}}=\mathrm{n}$, which is a contradiction. So either $\mathrm{a} \leq \sqrt{\mathrm{n}}$ or $\mathrm{b} \leq \sqrt{\mathrm{n}}$.
- Thus, n has a divisor less than $\sqrt{\mathrm{n}}$.
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than $\sqrt{n} . \square$

Applying contraposition leads to a naive primality test

Corollary: If n is a positive integer that does not have a prime divisor less than $\sqrt{\mathrm{n}}$, then n prime.

Example: Is 101 prime?

- The primes less than $\sqrt{ } 101$ are $2,3,5$, and 7
- Since 101 is not divisible by $2,3,5$, or 7 , it must be prime

Example: Is 1147 prime?

- The primes less than $\sqrt{ } 1147$ are $2,3,5,7,11,13,17,23$, 29, and 31
- $1147=31 \times 37$, so 1147 must be composite

This approach can be generalized

The Sieve of Eratosthenes is a brute－force algorithm for finding all prime numbers less than some value n

Step 1：List the numbers less than n

2	3	N	5	N	7	N	N	N	11
M	13	3	N	N	17	0	19	N	N
K	23	令	E	K	K	2	29	N	31
	\％	N	E	W	37	\cdots	\％	\％	41
N	43	n	去	N	47	\leqslant	\％	n	N
\％	53	\％	令	\％	N	2	59	会	61
没	没	\％	S	\％	67	2	䫆	\％	71

Step 2：If the next available number is less than \sqrt{n} ，cross out all of its multiples
Step 3：Repeat until the next available number is＞\sqrt{n}
Step 4：All remaining numbers are prime

How many primes are there?

Theoremx There are infinitely many prime numbers.

Proof: By contradiction

- Assume that there are only a finite number of primes p_{1}, \ldots, p_{n}
- Let $\mathrm{Q}=\mathrm{p}_{1} \times \mathrm{p}_{2} \times \ldots \times \mathrm{p}_{\mathrm{n}}+1$
- By the fundamental theorem of arithmetic, Q can be written as the product of two or more primes.
- Note that no p_{j} divides Q, for if $p_{j} \mid Q$, then p_{j} also divides $Q-p_{1}$ $\times p_{2} \times \ldots \times p_{n}=1$.
- Therefore, there must be some prime number not in our list. This prime number is either Q (if Q is prime) or a prime factor of Q (if Q is composite).
- This is a contradiction since we assumed that all primes were listed. Therefore, there are infinitely many primes. $\quad \square$

This is a non-constructive existence proof!

Group work!

Problem 1: What is the prime factorization of 984?

Problem 2: Is 157 prime? Is 97 prime?
Problem 3: Is the set of all prime numbers countable or uncountable? If it is countable, show a 1 to 1 correspondence between the prime numbers and the natural numbers.

Greatest common divisors

Definition: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b, denoted by $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.

Note: We can (naively) find GCDs by comparing the common divisors of two numbers.

Example: What is the GCD of 24 and 36 ?

- Factors of 24: 1, 2, 3, 4, 6, 12
- Factors of 36: 1, 2, 3, 4, 6, 9, (12) 18
- $\therefore \operatorname{gcd}(24,36)=12$

Sometimes, the GCD of two numbers is 1

Example: What is $\operatorname{gcd}(17,22)$?

- Factors of 17: 1, 17
- Factors of 22: 1, 2, 11, 22
- $\quad \therefore \operatorname{gcd}(17,22)=1$

Definition: If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime, or coprime. We say that a_{1}, a_{2}, \ldots, a_{n} are pairwise relatively prime if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ $\forall i, j$.

Example: Are 10, 17, and 21 pairwise coprime?

- Factors of 10: 1, 2, 5, 10
- Factors of 17: 1, 17

Y(오!

- Factors of 21: 1, 3, 7, 21

We can leverage the fundamental theorem of

 arithmetic to develop a better algorithmLet: $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$ and $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}$
Then:

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\min \left(a_{n}, b_{n}\right)}
$$

Greatest multiple of $p_{1} \quad$ Greatest multiple of p_{2} in both a and $b \quad$ in both a and b

Example: Compute $\operatorname{gcd}(120,500)$

- $120=2^{3} \times 3 \times 5$
- $500=2^{2} \times 5^{3}$
- So $\operatorname{gcd}(120,500)=2^{2} \times 3^{0} \times 5=20$

Better still is Euclid's algorithm

Observation: If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$

Proved in section 3.6 page 227 in the book
So, let $r_{0}=a$ and $r_{1}=b$. Then:

- $r_{0}=r_{1} q_{1}+r_{2}$
$0 \leq r_{2}<r_{1}$
- $r_{1}=r_{2} q_{2}+r_{3}$
$0 \leq r_{3}<r_{2}$
- $r_{n-2}=r_{n-1} q_{n-1}+r_{n}$
- $r_{n-1}=r_{n} q_{n}$

$$
\operatorname{gcd}(\mathrm{a}, \mathrm{~b})=r_{n}
$$

Examples of Euclid's algorithm

Example: Compute $\operatorname{gcd}(414,662)$

- $662=414 \times 1+248$
- $414=248 \times 1+166$
- $248=166 \times 1+82$
- $166=82 \times 2+2$
 $\operatorname{gcd}(414,662)=2$
- $82=2 \times 41$

Example: Compute $\operatorname{gcd}(9888,6060)$

- $9888=6060 \times 1+3828$
- $6060=3828 \times 1+2232$
- $3828=2232 \times 1+1596$
- $2232=1596 \times 1+636$
- $1596=636 \times 2+324$
- $636=324 \times 1+312$
- $324=312 \times 1+12$

$\operatorname{gcd}(9888,6060)=12$
- $312=12 \times 26$

Least common multiples

Definition: The least common multiple of the integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted $\operatorname{lcm}(a, b)$.

Example: What is $\operatorname{lcm}(3,12)$?

- Multiples of $3: 3,6,9,12,15, \ldots$
- Multiples of 12: 12, 24, 36, ...
- So $\operatorname{lcm}(3,12)=12$

Note: $\operatorname{lcm}(a, b)$ is guaranteed to exist, since a common multiple exists (i.e., ab).

We can leverage the fundamental theorem of

 arithmetic to develop a better algorithmLet: $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$ and $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}$
Then:

$$
\operatorname{lcm}(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} p_{2}^{\max \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\max \left(a_{n}, b_{n}\right)}
$$

Greatest multiple of $p_{1} \quad$ Greatest multiple of \boldsymbol{p}_{2} in either \mathbf{a} or $b \quad$ in either \mathbf{a} or b

Example: Compute $\operatorname{lcm}(120,500)$

- $120=2^{3} \times 3 \times 5$
- $500=2^{2} \times 5^{3}$
- So $\operatorname{lcm}(120,500)=2^{3} \times 3 \times 5^{3}=3000 \ll 120 \times 500=60,000$

LCMs are closely tied to GCDs

Note: $a b=\operatorname{lcm}(a, b) \times \operatorname{gcd}(a, b)$

Example: $a=120=2^{3} \times 3 \times 5, b=500=2^{2} \times 5^{3}$

- $120=2^{3} \times 3 \times 5$
- $900=2^{2} \times 5^{3}$
- $\operatorname{lcm}(120,500)=2^{3} \times 3 \times 5^{3}=3000$
- $\operatorname{gcd}(120,500)=2^{2} \times 3^{0} \times 5=20$
- $\operatorname{lcm}(120,500) \times \operatorname{gcd}(120,500)$

$$
\begin{aligned}
& = \\
& =2^{5} \times 3 \times 5^{4} \\
& =60,000=120 \times 500
\end{aligned}
$$

Group work!

Problem 1: Use Euclid's algorithm to compute $\operatorname{gcd}(92928,123552)$.

Problem 2: Compute $\operatorname{gcd}(24,36)$ and $\operatorname{lcm}(24,26)$. Verify that $\operatorname{gcd}(24,36) \times \operatorname{lcm}(24,36)=24 \times 36$.

Final Thoughts

\square Prime numbers play an important role in number theory

■ There are an infinite number of prime numbers

■ Any number can be represented as a product of prime numbers; this has implications when computing GCDs and LCMs

