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ON THE BABYLONIAN DISCOVERY OF THE
PERIODS OF LUNAR MOTION

BERNARD R. GOLDSTEIN, University of Pittsburgh

A most impressive achievement in Babylonian astronomy was the development of
lunar theories that yielded very good results enabling the Babylonians to compute
lunar eclipses with great success.! Fundamental to these theories was the discovery
of the periods for lunar motion (the sidereal, synodic, draconitic, and anomalistic
months), and these periods had been accurately determined by about 500 B.c.
It is by no means obvious how the Babylonians were able to find such accurate
parameters, given that their observations were relatively crude, and they do not offer
any indication of the way that these parameters were derived from the observations
at their disposal. The most important description of Babylonian lunar theories was
given by Neugebauer in 1955,? but he did not address the question, How were the
periods derived from observations? Significant progress concerning this question
has been made possible by the publication of the Babylonian Astronomical Diaries
that report almost daily observations of the heavens from the eighth to the first
century B.C. (although many of the tablets in this series have not been preserved,
especially at the beginning of it).* Moreover, Britton and Brack-Bernsen (working
separately) have recently proposed reconstructions of the methods used by the
Babylonians to derive these parameters, and I will follow most of what they have
suggested, adding some arguments for the way the Babylonians may have depended
on simple observations over a relatively short time period.* To be sure, in the
absence of specific derivations by the Babylonians, one can hardly be certain of
any reconstruction, and I do not claim that the Babylonians followed the route
described here. Rather, it is my goal to indicate that reaching initial values for those
parameters required neither precise observations nor a very long time interval, and
the same may also hold true for the very accurate parameters that are embedded in
their theories. I am well aware that others, including some more qualified than I,
interpret the historical data differently, and I encourage them to use this journal as a
forum for discussing the origins of mathematical astronomy.

We begin with the draconitic, synodic, and sidereal months, and then turn to
the more difficult case of the anomalistic month. To find initial values for the
draconitic, synodic, and sidereal months, the Babylonians could have proceeded
from the following data alone:

1. There are 38 eclipse possibilities in 223 synodic months (about 18 years).
2. 235 synodic months = 19 years.
3. 1 Saros = 223 synodic months = 6585;20d.

These assumptions are all well attested in early Babylonian documents, but they
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need some explanation. As for the first assumption, Aaboe ef al. indicate that “by
‘eclipse possibility’ we mean a syzygy [conjunction or oppostion] at which the sun
is within half a month’s progress in elongation from a lunar node. At such times
... occur lunar eclipse possibilities at opposition”.* In other words, a lunar eclipse
is considered possible when at opposition the sun lies in one nodal zone and the
moon in the other, i.e., where the lunar latitude is small. Some eclipses will not
be seen, for example, because they take place during the daytime. Britton offered
a reconstruction of the way the Babylonians could get this relationship from
observable lunar eclipses recorded over a few decades by only the regnal year and
month in the Babylonian calendar, provided that they kept track of the number of
months that had elapsed, and this reconstruction is most persuasive. The insight that
the Babylonians had at an early date is that observed lunar eclipses are separated
either by 6 synodic months, or by one less than multiples of 6 synodic months
(reflecting an occasional 5-month interval).® The Saros canon and related extant
texts provide evidence that the Babylonians were aware of this relationship, for they
list dates of lunar eclipses starting from —490 in columns of 38 entries covering 223
synodic months such that entries in adjacent columns are separated by 223 synodic
months. The beginning of the relevant tablet is broken; in its original unbroken
state, it probably listed eclipses as far back as —526.” The second assumption, that
235 synodic months is equal to 19 years, implies there are 19 complete returns
in longitude for the sun and 254 (= 19 + 235) complete returns in longitude for
the moon.* The third assumption is also attested in early texts.” Note that 3 Saroi
correspond very nearly to an integer number of days; hence, this quantity, as the
others, depends only on counting without appealing to precise measurement.

To find a value for the draconitic month, we may proceed as follows. By
Assumption I, the mean interval between eclipse possibilities is:

223/38 = 5;52,6.18,... m,

where m is a synodic month. Since the distance between successive nodes is
180°, the lunar progress per synodic month with respect to the node, in addition
to a complete revolution, is:

180/5;52,6,18,... = 30;40,21,...°/m.
Hence the total progress of the moon in 223 synodic months is:
223 - 30;40,21,... = 6840°
and this corresponds to 19 revolutions, for
6840/360 = 19 revolutions.
Finally, taking into account a complete revolution in each of the 223 months,
19 + 223 = 242 revolutions (or draconitic months).

We can combine the preceding steps to indicate that 19 revolutions is a precise
value, rather than an approximation:
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(38 - 180 - 223)/(223 - 360) = 19 revolutions.
It follows that the length of the draconitic month is:
6585;20/242 = 27;12,43,38,... d.
This result is very close to the modern value for the draconitic month:'®
1 dra. month = 27d 5;5,35,50h = 27;12,43,59,35d.

We next turn to the sidereal month. The first step is to find the length of a synodic
month from the number of days in 223 synodic months (Assumption 3, above):

6585;20d/223m = 29;31,50,18,... d/m.
Then we can determine the length of 235 months (= 19 years):
29;31,50,18 - 235 = 6939;42d,
or, alternatively, using a rounded value for the mean synodic month:
29;31,50 - 235 = 6939;41d.

Now we can find the length in days of the sidereal month, where 254 (= 235 + 19)
sidereal months is equal to 19 years (based on Assumption 2, above):

6939:41/254 =~ 27;19,17,43d/sid. month.
It follows that the mean motion in longitude is:
360/27;19,17,43 = 13;10,35°/d,

and this is the standard Babylonian value for the daily mean motion in longitude. On
the other hand, if one takes 19 years to equal 6939;42d, one gets a sidereal month
of 27;19,17,57d, and a mean motion of 13;10,34,54°/d = 13;10,35°/d. Again these
results are very close to the modern value for the sidereal month;'!

1 sid. month = 27d 7;43,11,30h = 27;19,17,58,45d.

Unlike other astronomical periodicities known in Antiquity, lunar anomaly is
difficult to observe (its period is the period of lunar velocity) and, until recently,
there was no phenomenon that seemed to allow lunar velocity to be derived from
the kinds of observations available to the ancients. Indeed, it is not obvious how
the phenomenon of lunar anomaly was first noticed. This state of affairs changed in
1993 when Brack-Bernsen demonstrated, using modern data, that a set of related
observed quantities, regularly tracked by the Babylonians, can yield the period of
lunar velocity without the interference of other factors.'? From a modern point of
view, lunar velocity is much more complicated in general than it is at syzygy, and
that makes it difficult to derive the period of velocity from daily increments in
lunar longitude throughout the synodic month. In fact, the Babylonians did not
record daily observations of the moon, and I find it unlikely that the daily progress
of the moon in longitude played any role in the derivation of the period of lunar
anomaly."* Conjunctions of the sun and the moon take place during the period
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of lunar invisibility except on the rare occasions when there is a solar eclipse,
and so conjunctions cannot be used to derive lunar velocity. On the other hand,
the Babylonians in the second millennium had already shown an interest in lunar
eclipses (that take place at oppositions) as we learn from the omen series, Enuma
Anu Enlil,'* and the discovery of the period of lunar anomaly almost certainly came
about from their interest in the phenomena surrounding oppositions.

The period of lunar anomaly underlies what is called in the modern literature
Column @ in Babylonian lunar System A, and the basic arithmetic structure of this
column of numbers has been known for some time." It is a linear zigzag function
with entries to six sexagesimal places, and a period of 6247 synodic months (=
6695 anomalistic months), or about 505 years. Moreover, it is in phase with column
F in lunar System A that lists the lunar velocities at the beginning and the middle
of synodic months. Neugebauer used the entries in Column ® as an indexing
function, for there is no repeat of a value in that column within 505 years; the
entries in Column @ all belong to the same series tabulated at intervals of half
a synodic month, but they are generally separated into @, for conjunctions and
&, for oppositions. We are interested in the way the Babylonians may have first
computed a value for the anomalistic month based on observations over a relatively
short interval of time. A particularly accurate value for the anomalistic month
(27:33,16,30d) appears in Babylonian lunar System A, and a particularly accurate
period relation for lunar anomaly appears in System B (but not explicitly in
System A): 251 synodic months correspond to 269 anomalistic months. Britton
has presented a persuasive argument for the claim that the period of 6247 synodic
months of Column ® in System A was derived arithmetically from the Saros period
of 223 synodic months with the aim of approximating the period of 251 synodic
months which, by modern standards, is more accurate." In Britton’s derivation,
it was assumed that the periods of 223 synodic months and 251 synodic months
were known to the author(s) of System A and, if so, no additional observations
were needed to produce the period of 6247 months that underlies Column @ (see
Appendix 1). But, as far as I am aware, the derivation of the period of 251 months
has not been satisfactorily explained, i.e., there is no plausible hypothesis for the
way this period might have been derived from simple observations over a relatively
short time interval. Here we will seek to provide a way for this period to be derived
arithmetically from shorter periods without recourse to precise measurements. It
will be argued that the length of the synodic month in System B (29;31,50,8,20d)
was probably known to the author(s) of System A as well as the period of 251
synodic months, although neither one is explicitly mentioned in any available
text of System A.

To derive the period relation, 251 synodic months = 269 anomalistic months, we
need some preliminary information. For this purpose we appeal to two different
periods of lunar motion (with their approximate lengths) that we have already
discussed: the synodic month (29;31,50 days), and the sidereal month (27;19 days).
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The most important step in this reconstruction of the discovery of lunar anomaly
was taken by Brack-Bernsen who introduced a function called X that is defined
as the sum of shu, na, me, ge, four quantities measured by the Babylonians in
time-degrees just before and just after opposition.'” The first, shu, is defined as
the time between moonset and sunrise when the moon sets for the last time before
sunrise; the second, na, is the time between sunrise and moonset when the moon
sets for the first time after sunrise; the third, me, is the time between moonrise
and sunset when the moon rises for the last time before sunset; and the fourth, ge,
is the time between sunset and moonrise when the moon rises for the first time
after sunset.”® These quantities, known as the ‘lunar fours’, were, in principle,
observed each month. Surprisingly, this function, X, has the period of lunar velocity
and it is in phase with column ®."

Let us grant that the Babylonians had a series of values for the lunar fours, and
that they were excerpted from the Astronomical Diaries. Moreover, let us assume
that the Babylonians also added the values for the lunar fours (producing a set of
¥s) corresponding to a sequence of oppositions.” The period of 14 synodic months
stands out as the shortest period for Z, but it is not obvious how many returns in
lunar velocity correspond to it, particularly since the data only relate to oppositions.
Something is needed to get started, and I think it reasonable that initially the
anomalistic period was assumed to be roughly the same as the sidereal period. In
the case of the sun, it is in fact true that velocity depends on longitude alone (and
so it is in the Babylonian theories for solar motion), and it is plausible to consider
this for the moon as well. On the other hand, the Babylonians had probably already
determined that the draconitic month is slightly different from the sidereal month.
So let us first assume that 14 synodic months is approximately equal to 15 sidereal
months. How then would one recognize that the sidereal month is different from the
anomalistic month? After three periods of 14 months or 42 months, the difference
between them is surely noticeable:

42m =42 - 29;31,50d = 1240;17d
and, where the mean motion in longitude of the moon is 13;10,35°/d,
1240;17d - 13;10,35°/d = 45 rotations + 142°,

i.c., after 42 synodic months there is not a return in lunar longitude. But, if it is
still maintained that 14 synodic months correspond to 15 returns in Z, then 42
synodic months correspond to 45 returns in X or, in other words, to 45 returns
in velocity. Hence

1240;17d/45 = 27;33d,

which is about the anomalistic period. Thus it would be noticed very quickly that the
anomalistic period is greater than the sidereal period of about 27;19 days.

Further, one- can improve this result by using the Saros cycle. Although this
cycle was probably first invoked as a good period for lunar eclipses (as noted
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above), it is also a good period for lunar anomaly. It has been suggested that, by
comparing the values for ¥ at intervals of 223 months, one might notice that the
complicated fine structure of the T curve repeats, very nearly, after 223 months.?!
But, more simply, if the length of an anomalistic month had already been estimated
to be about 27:33d, it follows that

6585;20/27;33 = 239 anomalistic months.

We can then compute the length of an anomalistic month from the number of
days in 223 synodic months:

6585;20/239 = 27;33,13,18d.

This value for the anomalistic month is an improvement over the first value we found
for this parameter, but the Babylonians were able to do even better.

Brack-Bernsen showed, on the basis of the function, X, that usually the anomaly
returns in 14 synodic months, but sometimes there is a period of 1 less than a
multiple of 14 synodic months.”> One may then ask, How often are there units
of 13m in periods of anomaly? In 223m there are 15 units of 14m and only 1
unit of 13m, for 15 - 14 + 13 = 223, i.e., the ratio of synodic to anomalistic
month is greater than 15 to 14. After how many more units of 14m is there a
unit of 13m? If the Babylonians knew that 223 was a little shorter than 239
anomalistic months (ma), then

14 ma 223
57 m ~ 239
Now, a theorem known in Antiquity>* states that if
a C
b°d
then
a+ C C
5> bvdd

Applying this theorem, we can arrive at the refined Babylonian period relation for
the anomalistic month, used in System B:

14 28 223 +28 5 223 223

15 30 239+30 239

or

14 251)223
15 269 239

Thus, the period relation, 251m = 269 anomalistic months, can be determined
without requiring any additional observations. Moreover, with the ratio, 251 to 269,
and a Babylonian value for the length of the mean synodic month (see Appendix 2),
one can easily get 27;33,16,30d as the length of the anomalistic month in System
A without additional observations,> for:
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(251/269) - 29:31,50,8,20d = 27;33,16,27d = 27;33,16,30d.
Note again that the modern value for this parameter is 27:33,16,30,48,...d (for —500),
and the Babylonian value in System A is very close to it.”

The evidence for this refined value of the anomalistic month comes from
the so-called Saros text that belongs to System A where 1 anomalistic month
is set equal to 2 - 82;39.49.30H (where 6H = 1d), or 1 anomalistic month =
27:33,16,30d. Moreover, in the same text the length of the synodic month is given as
29:31,50,19,11,4,56d.2 As Neugebauer noted, in System A the ratio of the synodic
to the anomalistic month is 6695 to 6247. Hence:

(6247/6695) - 29:31,50,19,11,4,56 = 27;33,16,29,59,58,...d = 27;33,16,30d
or, alternatively:
(6695/6247) - 27,33,16,30 = 29;31,50,19,11,6,45,...d.

How should we interpret the two sets of values for the period relations of 251
and 6247 synodic months, respectively, both of which are coherent? They have in
common the same value for the anomalistic month, but the three other numbers
differ. With Britton, I will assume that the relationship of 251 synodic months
was known prior to the relationship of 6247 synodic months, and this leads to the
question of whether the length of the anomalistic month was derived from that of
the synodic month in the period of 251 synodic months, or vice versa. It is difficult
to decide because there is no simple way to account for the accuracy of either
parameter. Nevertheless, in the absence of a viable way to get this length of the
anomalistic month directly from observations or from some combination of simpler
parameters,”’ I think it better to assume that the length of the synodic month was
used to derive the length of the anomalistic month, using the period of 251 synodic
months. According to this scenario, when the period relation was changed from 251
months to 6247 months, one of the month lengths had to be changed as well. And
the decision by the Babylonians was to keep the length of the anomalistic month,
while changing the synodic month to accord with it. So, ex hypothesi, the length of
the synodic month, 29:31,50,19,11,4,56d, should have been derived from the length
of the anomalistic month, 27;33,16,30d, using the period of 6247 synodic months,
and, indeed, this is the procedure described in the Saros text. It is relatively unusual
to find a computational error in a Babylonian astronomical text, but in this case there
is no doubt: the text reads ...4,56d, whereas Neugebauer computed correctly that it
should be ...6,45d.% To be sure this error is of no consequence, for the Babylonians
carried out the computation to too many places. Moreover, while this value for the
synodic month is worse than the value of 29;31,50,8,20d (from a modern point of
view), it does conform to the Saros, for:

223 - 29;31,50,19,11,4,56 = 6585;20,1.,...d,

which is very close to the standard value of 6585;20d.
Critical to the previous argument are values for the ratio of ma to m. We may now
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consider the plausibility of this result, compared to similar computed values. Let us
consider seven possibilities for this ratio (see below). We first compute a value
for the anomalistic month based on a synodic month of 29;31,50d. Then, with
a synodic month of 29;31,50,8,20d, and an anomalistic month of 27;33,16,30d
(both of which are virtually indistinguishable from ‘reality’), we compute the
difference between the number of days in an integer number of synodic months and
the number of days in the corresponding integer number of anomalistic months.
Our goal is to minimize this difference.

1. Let

ma _14
=I5 =0;56.
Then ma = 27;33,42,40d, where m = 29;31,50 days. But, where m = 29;31,50,8,20d
and ma = 27;33,16,30d, 14m = 413;26d and 15ma = 413;19d, i.e., the difference
is 0;7d.
2. Let

ma _223_ 14 -15+13
m - 239" 15154 14 = 02389,

Then ma = 27;33,12,38d, where m = 29;31,50 days. But, where m = 29;31,50,8,20d
and ma = 27;33,16,30d, 223m = 6585;19d and 239ma = 6585:33d, i.e., the
difference is —0;14d.

3. Let

ma_223+14 _ 14-16+13 _g.
m 239415 = 15 16414 ~ 0903

Then ma = 27;33,14,36d, where m = 29;31,50 days. But, where m = 29;31,50,8,20d
and ma = 27;33,16,30d, 237m = 6998;45d and 254ma = 6998;52d, i.e., the
difference is —0;7d.

4. Let

ma_223+2 -14 _ 14-17+13 _ 251 _
m  239+2-15  15-17+14 ~ 269 =0,35,59.6.

Then ma = 27;33,16,5d, where m = 29;31,50 days. But, where m = 29;31,50,8,20d
and ma = 27;33,16,30d, 251m = 7412;11d and 269ma = 7412;114d, i.e., the
difference is 0;0d.

5. Let
ma_14-16+2-13_250 _125 _
m 15-16+2-14 268 134 =0;35,58,13.

Then ma = 27;32,50d, where m = 29;31,50 days. But, where m = 29;31,50,8,20d
and ma = 27;33,16,30d, 125m = 3691;19d and 134ma = 3692;184d, i.e., the
difference is —0;59d.
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6. Let

ma _ 14- 18 + 13 _ 265

m 15 18+ 14264 ~ 0;55,59.,9.

Then ma = 27;33,17,42d, where m = 29;31,50 days. But, where m = 29;31,50,8,20d
and ma = 27;33,16,30d, 265m = 7825;36d and 284ma = 7825;30d, i.e., the
difference is 0;6d.

7. Let

ma _14-17+2-13 _ 264 _ .
m 15-17+2-14 283 0;55,58,18.

Then ma = 27;32,52d, where m = 29;31,50 days. But, where m = 29;31,50,8,20d
and ma = 27:;33,16,30d, 264m = 7796;4d, but 283ma = 7797;57d, i.c., the
difference is —1;53d.

From the differences obtained using the refined Babylonian values for the
synodic and anomalistic months, clearly Item 4 is best, but Items 3 and 6 are very
good. It seems unlikely that the relative quality of these three period relations
could be decided observationally by the Babylonians. But they could conclude that
there was no reason to insert a second unit of 13 months within a time interval
of 265 synodic months.

In sum, despite the absence of a Babylonian story telling us how they arrived
at fundamental astronomical parameters from their observational data, one can
reconstruct simple methods that do not require precise observations or the appeal
to long time periods of observational records. However, it is not possible, without
further indications by the Babylonians themselves, to say why these values
were preferred over similar values that are very close to, and observationally
indistinguishable, from them. But this may not be the right way to consider the
question, for in some instances the Babylonian astronomers accepted multiple
values for the same parameter that are very close to each other, as is the case for the
period of lunar anomaly. As has long been known, the values for the lunar period
relations in Ptolemy’s Almagest are clearly indebted to the Babylonians® and, once
these values were in hand, it was much easier to confirm them, or redetermine
them in other ways. It is fair to say that, at least as far as lunar theory is concerned,
science began in Babylon.

APPENDIX 1: THE PERIOD OF COLUMN @

Britton argued that a quantity, €, was found by equating the Saros and the anomalistic
period relations:*

223 +&_251

239 +¢ 269

It follows that € = 1/9 (exactly):
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223 +1/9 _ 251
230+ 1/9 260

for
e =(251-239-223.269)/(269 - 251) = 2/18 = 1/9.

As Britton noted, a value of € equal to 1/9 corresponds to a zigzag function with
only 251 discrete values, and this is too few for the purpose of indexing successive
oppositions over a long period of time. So a value of € near 1/9 was sought (to
preserve the period relation, very nearly) from the following choices that are just
below and just above 1/9, in the order of increasing numerators: 2/17 and 2/19;
3/26 and 3/28; 4/35 and 4/37; etc. And £ = 3/28 (or 1/9;20) was chosen by the
Babylonians, in Britton’s words, “perhaps because ... it contains the smallest
irregular number as a factor, or possibly because 14 turns up elsewhere in the
theory of lunar anomaly” (where ‘regular’ numbers only have factors 2, 3, and
5, while all other numbers are considered ‘irregular’). The two periods are very
nearly equal, for

251/269 = 0;55,59,6,28,6
and
6247/6695 = 0;55,59,6,13,42,
where 6247 =28 - 223 + 3, and 6695 = 28 - 239 + 3.

APPENDIX 2: THE SYNODIC MONTH

It is not easy to reconstruct how the Babylonians obtained the value for the synodic
month in System B, 29;31,50,8,20 days, that is very close to the modern value
of 29:31,50,8,40 days. On the other hand, it is not very hard to imagine that they
found a value of 29;31,50d, which is equivalent to saying that 12 synodic months
= 354:22d, a parameter that served in the Middle Ages as the basis of the Hijra
calendar. But the difference between it and 29;31,50,8,20d accumulates to only
about 4 hours in 500 years; in 60 years, the difference accumulates to only about
0;40h, For this reason, 1 doubt that the precise Babylonian value was based on
observations directly. Admittedly, I have not found a simple way of combining
known cycles to get this basic parameter, but I found a computation that comes
close to yielding it.

As a lower bound, take 10631d = 360m (m = 29;31,50d), and as an upper
bound, the Saros: 6585;20d = 223m (m = 29;31,50,18,50,... d). As indicated in
Almagest (iv.2), 3 Saroi are very close to an integer number of days. Then, using
the theorem presented above,

10631 _ 10631 + 6585:20 _ 6585;20
360 360 + 223 223
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and

1721620
——=—=129;31,50,7,12,..d
583

This value is very close to the Babylonian parameter, and the difference between
them accumulates to only a little more than 0;45h in 4267 synodic months
(about 500 years).”!

On the other hand, Britton has argued that the refined Babylonian value for
the synodic month can be derived, very nearly, from the sidereal and anomalistic
months. First, Britton derived this Babylonian parameter from the 19-year cycle
of 235 synodic months and the Babylonian value for the daily mean motion
in longitude:*

(254/235) - (360/13;10,35) = 29;31,50.4,54.... d,

and the implied value for the sidereal month is 27;19,17.45,... d (= 360°/13;10,35°/d).
More recently, Britton derived the synodic month from the cycle of 251 synodic
months and the refined Babylonian value for the number of days in an anomalistic
month:

(269/251) - 27;33,16,30d = 29;31,50,11,36d.

He then averaged the two, and got 29;31,50,8,15d, adding that “such an origin,
however, would make [the accuracy of this parameter] wholly fortuitous, which
is difficult to accept in light of the consistent excellence of System B parameters
generally”.** Before accepting this reconstruction, it would be helpful to see
if there are other examples of averaging parameters in ancient astronomy, and
to offer a motive for averaging in this case (since either value would seem to
be acceptable).
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