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This document is a compilation of problems and questions recorded at the workshop Rational Points
and Galois Representations, hosted by the University of Pittsburgh. The first four items are summaries
of advance contributions to the workshop’s problem session, which occurred on May 12, 2021. The
organizers thank the problem contributors as well as the session moderator, David Zureick-Brown.
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A CHABAUTY–COLEMAN SOLVER FOR CURVES OVER NUMBER FIELDS

JENNIFER BALAKRISHNAN

For a number of applications (in particular, computing K-rational points on curves over number

fields K [Col85a]), it would be very useful to have an implementation of Coleman integration [Col85b]

for curves over extensions of the p-adics. In [BT20], Tuitman and I gave an algorithm and Magma
implementation [BT] of Coleman integration for curves over Qp. It would be great to extend this to

handle curves defined over unramified extensions of Qp. (See the work of Best [Bes21] for the case of

superelliptic curves over unramified extensions of Qp, combined with algorithmic improvements along

the lines of work of Harvey [Har07].)

With this in hand, one could then further implement a Chabauty–Coleman solver for curves over

number fields that would take as input a genus g curve X defined over a number field K with Mordell–

Weil rank r less than g, a prime p of good reduction, and r generators of the Mordell–Weil group modulo

torsion and output the finite Chabauty–Coleman set X(Kp)1, which contains the set X(K).
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GALOIS ACTION ON SLIGHTLY NONABELIAN FUNDAMENTAL GROUPS

JORDAN S. ELLENBERG

Much of what we know how to say about a variety X over a field K has to do with the action of Gal(K)
on the étale cohomology of XK̄ . More precisely, this Galois action, if Gal(K) is “big enough,” tells us a lot
about the arithmetic of the Jacobian J(X), from which in turn we can learn a lot about X itself. A huge
amount of energy has gone into understanding properties of this Galois representation and explicit methods
for computing it for varieties we may encounter.

The first étale cohomology group – or, more precisely, its dual – can be thought of as the maximal abelian
quotient of the étale fundamental group of XK̄ , a profinite group denoted ⇡1(XK̄) which also carries an action
of Gal(K). This action often carries much more information than its abelianization does. For example, if
X is a curve, the étale cohomology only “knows about” the Jacobian of X; in particular, two curves with
isogenous Jacobians will have the same Galois representations (at least after tensoring coe�cients with Q.)
By contrast, the “anabelian philosophy” suggests that knowledge of the profinite group ⇡1(XK̄) together
with the action of Gal(K), when K is a number field, should encode not only the isomorphism class of X
but also the set of rational points X(K). (This last part is the section conjecture of Grothendieck.) Even
very small quotients of the fundamental group encode important geometric invariants of a curve such as its
Ceresa class – see e.g. “Group-theoretic Johnson classes and a non-hyperelliptic curve with torsion Ceresa
class” by Bisogno, Li, Litt and Srinivasan for a recent view on this story.

However, a computational apparatus comparable to what we have for étale cohomology is completely
lacking. Whether this is because there’s a fundamental di�culty or because people haven’t tried that hard
is not clear to me. Of course, the étale fundamental group is a very big place and trying to understand
the entire Galois action on it, computationally or otherwise, is probably too big a cookie to chew. But it
would even be interesting to understand how Galois acts on natural quotients of the fundamental group.
For instance, the action of Galois on the quotient of ⇡1 by the third term of its lower central series is what
encodes the Ceresa class. To what extent is this action computable in practice? Alternately, one can consider
very special cases, like that where U is an genus-1 curve X with two rational points removed. In this case,
⇡1 is isomorphic to a profinite free group on three generators. The data of U is essentially equivalent to the
data of an elliptic curve E (the Jacobian of X) together with a rational point P on that elliptic curve (the
di↵erence of the two punctures.) What is the relationship between the Galois action on the fundamental
group and the pair (E,P )?

For all these questions, we have a pretty good picture of what happens when K is C((t)), in which case
we are talking about a situation that can be well-modelled by topology. (See my paper with Daniel Corey
and Wanlin Li for a description of this.) The case where K is a number field is of course a lot richer and
harder. But even the case where K is finite, so we’re just asking about Frobenius, seems to me to have a lot
of arithmetic interest!

Date: 12 May 2021.



Diophantine Geometry and Reciprocity Laws
Minhyong Kim

Question

Given a variety X over a number field F , are there nice equations defining X(F ) inside
X(AF )?

Examples

1. (Manin) We have

X(F ) ⇢ X(AF )
Br

Here, given any element b 2 Br(X) = H
2(X,Gm), get a function

fb : X(AF ) - Q/Z

(xv) 7! (x⇤
v(b)) 2

M
H

2(Fv,Gm) '
M

Q/Z
P
- Q/Z.

2. Classical reciprocity for X = Gm:

Gm(F ) ⇢ Ker[Gm(AF )
rec- G

ab
F ].

In particular, given a function � on G
ab
F that vanishes at the origin, e.g., a p�adic character, get

Gm(F ) ⇢ Z(� � rec).

For a concrete example, take � = log�p
cyc.

3. For a smooth variety X satisfying some cohomological conditions,

· · · X(AF )
4 ⇢ X(AF )

3 ⇢ X(AF )
2 ⇢ X(AF )

|| || || ||

· · · rec
�1
3 (0) ⇢ rec

�1
2 (0) ⇢ rec

�1
1 (0) ⇢ X(F )

· · · R4

rec4

?
R3

rec3

?
R2

rec2

?
R1

rec1

?

where

Rn := H
1(GF , Z

_
n (1))

_

and Zn are the graded subquotients of the lower central series of the Qp-unipotent fundamental group

of X.

Fact:
X(F ) ⇢ \1

n=1Ker(recn).

Conjecture: When F = Q,

X(Q) = Prp(\1
n=1Ker(recn)) ⇢ X(Qp)

Challenge:

(1) Make these explicit;

(2) Find a general formulation.



A question about quadratic points on X0(N)

Barry Mazur

A general theorem of Faltings has as a particular consequence that,
fixing any positive integer N and ranging over all non-CM elliptic
curves defined over Q there are only finitely many such curves that
have a sporadic cyclic N -isogeny rational over some quadratic field.
“Sporadic” means that the N -isogeny is not a member of a family of
such “quadratic” cyclic N -isogenies that can be parametrized either by

• rational points on a curve of genus 0 or 1, the parametrization
given by a degree two correspondence between the curve and
X0(N);

• or in the case where X0(N) is of genus two, by a degree two
correspondence between an abelian surface and X0(N).

It is natural to ask

• whether there are only finitely many sporadic cyclic isogenies;
equivalently, whether there are none at all when N � 0.

• related questions about specific examples.



A family of examples with r > g and some questions

Kirti Joshi

May 12, 2021

§ 0.1 In [Joshi and Tzermias, 1999] we showed proved the following.
Theorem 0.1.1. Let p � 5 be a prime. Let a0, a1, . . . , ap�1 2 Z be integers and let d 6= 0 be
an integer. Suppose that

(1) for 1  i 6= j  p � 1, one has ai 6= aj mod p (i.e. the p residue classes ai mod p are
pairwise distinct),

(2) f(x) = (x� a0)(x� a1) · · · (x� ap�1) + p2d2 2 Q[x] is an irreducible polynomial, and

(3) Let X/Q be the hyperelliptic curve

X : y2 = f(x) = (x� a0)(x� a1) · · · (x� ap�1) + p2d2.

Then X/Q has 2g rational points (ai,±pd) 2 X(Q) which generate a subgroup of rank r � 2g
in the Mordell-Weil group J(Q) of the Jacobian J of X .
§ 0.2 Note X has genus g = p�1/2 and has good reduction modulo p = 2g+1. The classical
Coleman-Chabauty Theorem requires p � 2g + 1, so in the above examples p = 2g + 1 is at
the smallest allowed prime in the classical Coleman-Chabauty method.

§ 0.3 The lower bound we prove is not optimal. Homero R. GALLEGOS–RUIZ showed that
for

y2 = (x+ 19)(x+ 20)(x+ 21)(x+ 22)(x+ 23) + 52 · 42,
one has r = 5 � 4.

§ 0.4 Evidently the family of examples above lie beyond r  g case of Coleman-Chabauty-
Kim method. So my questions: (perhaps ignorant questions, perhaps difficult)

(1) Can one make Coleman-Chabauty-Kim explicit in these examples?

(2) Can one understand bounds for #X(Q) (explicit bounds obtained by Betts, ... by Coleman-
Chabauty-Kim method) as a function of (a0, a1, · · · , ap�1, d, p)?

(3) For these curves, write X(Qp) ◆ X(Qp)1 ◆ X(Qp)2 ◆ · · · ◆ X(Qp)n · · · � X(Q) for
the loci provided by Coleman-Chabauty-Kim. One expects X(Qp)n = X(Q) for some
n < 1. Suppose this does happen for every X considered here. Can one understand the
variation of the minimal such n as a function of (a0, a1, · · · , ap�1, d, p) or as a function
of (a0, a1, · · · , ap�1, d) with p fixed?

(4) Is it true that for p fixed (so J has dimension 2g = p� 1) one has

sup(r((a0, a1, · · · , ap�1, d))) < 1?

(5) Perhaps these question are naive, or difficult and perhaps there is no simple answer to
any of these questions. But I am unclear on what is known or what to expect here.
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Restriction of Scalars Chabauty and Solving
Systems of Simultaneous p-adic Power Series

Nicholas Triantafillou

June 14, 2021

1 Restriction of Scalars Chabauty and Solving
Systems of Simultaneous p-adic Power Series

1.1 Summary of RoS Chabauty

When X/K is a curve over a number field of degree d, it is possible to refine
Chabauty’s method by replacing X and its Jacobian J with their restrictions
of scalars ResK/QX and ResK/QJ . We will assume that we have fixed a base-
point P0 2 (ResK/QX)(Q) = X(K) and that j : ResK/QX ,! ResK/QJ is the
Abel-Jacobi map with respect to this embedding. The strategy is as follows:

1. Compute generators for the Mordell-Weil group (ResK/QJ)(Q) = J(K).

2. Compute (at least) d annihilating di↵erentials !1, . . . ,!d 2 H
0((ResK/QJ)Qp ,⌦

1).

3. In each p-adic polydisc of (ResK/QX)(Qp), choose a point P and local pa-

rameters t1, . . . , td and compute the integrals Fi(t1, . . . , td) :=
R P+(t1,...,td)
P0

j
⇤
!i .

4. On each p-adic polydisc, compute the common zeros of the Fi, hopefully
as a finite list of isolated points, but possibly as a finite list of irreducible
analytic subvarieties.

This restriction of scalars variant will often produce a finite list of points
when rank J(K)  d(genus(X)�1) .However, the restriction of scalars Chabauty’s
method can produce an infinite set even if this inequality is satisfied. For a more
detailed description of the method, including reasons why it may not always
produce a finite set, see [Sik13] and [Tri19].

1.2 Project: Computing simultaneous zeros of several (sep-
arable) multivariate p-adic power series

The main additional input needed to run restriction of scalars Chabauty is a
practical implementation to compute the common zero set of several multivari-
able p-adic power series. As such, we propose the following project.
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Project 1a: Develop a practical implementation of an algorithm with the
following specifications.

Given: A set of d power series F1, . . . , Fd 2 Qp[[t1, . . . td]] which converge
on the p-adic polydisc (pZp)d.
Returns: Either:

1. The simultaneous zeros in (pZp)d of F1, . . . , Fd as a finite list of points
P1, . . . , Pr 2 (pZp)d, with enough p-adic precision to determine the points
Pj completely via Hensel-lifting, or

2. Information why the algorithm failed. For instance, it could report if the
Fi are not specified to large enough p-adic or ti-adic precision, or if the
common vanishing locus might have a positive-dimensional component.

This project is asking for an implementation of a multivariate version of
Hensel’s lemma. See Appendix A of [BBBM] for a discussion and implementa-
tion of the 2-variable case, based on [Con].

Project 1b: Complete a Kp-adic version of the project under the additional
assumption that the power series F1, . . . , Fd 2 Kp[[t1, . . . td]] are separable, i.e.

that there exist Fi,k 2 Kp[[tk]] satisfying Fi =
Pd

k=1 Fi,k .

Project 2: Building on the other projects, develop a full implementation
of Restriction of Scalars Chabauty’s method to compute K-rational points on
curves over number fields.
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ADDITIONAL QUESTIONS AND COMMENTS

COMPILED BY JACKSON S. MORROW

ABSTRACT. This note contains some questions and comments from participants during the work-
shop Rational Points and Galois Representations, May 2021.

1. Questions related to Jennifer Balakrishnan’s presentation in the Problem Session

Nils Bruin. As part of Chabauty–Coleman solver infrastructure, also pay attention to the case of
curves mapping into Weil restrictions of elliptic curves. These cases happen surprisingly often
in practical cases and information on the Mordell–Weil group is much more accessible on such
abelian varieties. Support for these is already available in Magma, so efforts in this direction
should probably build on that and/or port over the functionality to another platform.

Kevin Buzzard. Produce a certificate for the computation of the points on the curve of the Chabauty–
Coleman solver.

2. Other questions

Jordan Ellenberg. Suppose you have two elliptic curves E1,E2/Q of conductors N1 and N2, and
write N for gcd(N1,N2). Then X0(N) maps to E1 ⇥ E2, which is an abelian surface with elevated
NS rank, which ought to provide a quadratic function in the sense of Padma Srinivasan’s talk on
X0(N). Does this story have a good "meaning" in terms of the arithmetic E1 and E2? (This is more
of a vague gesture than an actual question I know!)

David Zureick-Brown. Another quadratic Chabauty challenge (not cursed though): the "next"
modular curve to consider is Xns(17). It has genus 6, and its Jacobian breaks up as A1 ⇥A2 ⇥A3,
where the dimension of Ai is i. (The associated newforms are 289.2.a.a, 289.2.a.b, 289.2.a.d)
Is this out of reach for quadratic Chabauty? The curve has some rational CM points.

Jackson Morrow. David Cantor has developed a theory of division polynomials for hyperelliptic
curves (see here and see here for an article of Robin de Jong expositing them nicely). The theory
is very similar to that of elliptic curves in that one uses recursions to define them for arbitrary
n. These division polynomials have not been implemented in any compute algebra system, and
so the question is can one computationally implement this theory of division polynomials for
hyperelliptic curves so that with a click of a button one can get their hands on the n-division
polynomial of a given hyperelliptic curve?

There are some immediate difficulties, which were brought up by Nils Bruin. First, the n-torsion
scheme on a g-dimensional principally polarized abelian variety does not map in an obvious way
to a natural subscheme of A1, so it is not so easy to write down a univariate polynomial that
captures the integral structure uniformly. Second, there is the issue of what to use as parameter
space. It may be attractive to parametrize the Jacobian of a hyperelliptic curve C : y2 = f(x) using
the coefficients of f(x). For larger primes that works well for the curve, but the Jacobian can have
good reduction when the curve does not.

As there seem to be some immediate difficulties, perhaps one can try to write down the division
polynomials for hyperelliptic curves of the form y2 = x5+ax3+b where a,b 2 Q⇥? Or if it makes
life easier, let a be the coefficient of some other non-constant term of the defining polynomial.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/289/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/289/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/289/2/a/d/
https://eudml.org/doc/153593
http://www.math.leidenuniv.nl/reports/files/2011-10.pdf


3. Additional comments

Here are some additional comments made during the problem session.

Discussion of Minhyong Kim’s contribution.

• There is work of John Pridham (here), which is very relevant to the discussion.

Discussion of Jordan Ellenberg’s contribution.

• Davis–Pries–Wickelgren compute this action in the case of Fermat curves, which are max-
imally symmetric.

• Also, there is work of Anderson–Ihara and Coleman.
• In the case of hyperlliptic curves with a marked rational Weierstrass point, the Ceresa class

is trivial.
• For hyperelliptic curves, the thing to look at is the Collino class which is in K1, and see

Wantanabe’s thesis for more information.

https://arxiv.org/abs/1704.03021

