p-adicity Barbara T. Faires Allegheny Mountain Colloquium

Carl Wang-Erickson

University of Pittsburgh

November 12, 2024

There was \mathbb{Z} . 0, 1, 2, 3, 4, ...

But what is \mathbb{Z} really? Key structures:

- A ring: it has + and \cdot and they behave well
- Not just a ring but a <u>domain</u>: if xy = 0, then x = 0 or y = 0
- Ordered: has inequality <... \rightsquigarrow notion of *positive*

Good! But so does $\mathbb{Q} = \text{rationals...} \mathbb{R} = \text{reals...} \text{ and } \mathbb{Z}[\frac{1}{2}] = \left\{\frac{a}{2b}\right\}$

What sets \mathbb{Z} apart: the well-ordering principle.

• Any non-empty subset of $\mathbb{Z}_{>0}$ has a least (minimum) element.

Elementary number theory:

- $\bullet\,$ Prove there are no integers between 0 and 1 \rightsquigarrow induction
- Unique factorization into primes

Carl Wang-Erickson (Pitt)

The real numbers \mathbb{R} , right? Number line, continuum, measurements, ...

What is \mathbb{R} *really*?

- An <u>ordered</u> <u>field</u>
- every non-empty subset of ℝ that is bounded above has a supremum (least upper bound) in ℝ. This property is called completeness.

From \mathbb{R} , we go on to calculus, metrics and topologies, complex analysis, functional analysis; manifolds, geometric analysis, etc...

It's foundational to investigations of change, shapes, approximation, and much more.

Metric spaces (like \mathbb{R}^n): a set X with a notion of <u>R-valued</u> distance

$$d:X imes X o \mathbb{R}_{\geq 0}$$

satisfying these axioms of metric space: $\forall x, y, z \in X$,

•
$$d(x,y) = 0 \iff x = y;$$
 and $d(x,y) = d(y,x)$
• $d(x,y) \le d(x,z) + d(z,y)$ - the triangle inequality

When X has a 0, then an *absolute value* or *norm* is distance from 0:

$$|\cdot|: X \to \mathbb{R}_{\geq 0}, \quad x \mapsto |x| := d(x, 0).$$

Another perspective: \mathbb{R} is a *completion* of \mathbb{Q} according to the usual metric.

What if we did something else next, after \mathbb{Z} ?

Question

Is there a metric on $\mathbb Q$ other than the usual one, and which respects the arithmetic structure "+, \cdot " of $\mathbb Q?$

Let's define "respects arithmetic structure."

Definition (Norm $|\cdot|_{\star}$ on \mathbb{Q}) A function $|\cdot|_{\star} : \mathbb{Q} \to \mathbb{R}_{\geq 0}$ such that (a) $|x|_{\star} = 0 \iff x = 0$ (c) $|x+y|_{\star} \le |x|_{\star} + |y|_{\star}$ (triangle inequality) (c) $|x \cdot y|_{\star} = |x|_{\star} \cdot |y|_{\star}$ (multiplicativity)

Note: norm \rightsquigarrow metric, by $d_{\star}(x,y) = |x-y|_{\star}$.

Answer

```
"Yes" ... because of p-adicity.
```

p-adicity as seen on \mathbb{Q}

Let p be a prime number.

Definition (The standard *p*-adic norm $|\cdot|_p$ on \mathbb{Q})

Let
$$\frac{a}{b} \in \mathbb{Q}$$
. Let $e \in \mathbb{Z}$ satisfy $\frac{a}{b} = p^e \cdot \frac{a'}{b'}$, where $p \nmid a'b'$. Define
 $\left|\frac{a}{b}\right|_p := p^{-e}$.

Using words: p^e is the "<u>p-part</u>" of $\frac{a}{b} \rightsquigarrow p$ -adic norm = inverse p-part.

Intuitively: two rational numbers are *p*-adically \rightsquigarrow close together when their difference has numerator highly divisible by *p* \rightsquigarrow far away when their difference has denominator highly divisible by *p*.

To prove: $|\cdot|_p$ satisfies the axioms of norm/metric. Ostrowski's theorem.

Carl Wang-Erickson (Pitt)

Drawing \mathbb{R} -small integers and their *p*-adic distances

- (日)

First fun phenomena of p-adicity on \mathbb{Q}

- \mathbb{Z} is bounded in any *p*-adic metric
- $|\cdot|_p$ is *ultrametric* that is, it satisfies the "strong triangle inequality"

$$|x+y|_{p} \le \max\{|x|_{p}, |y|_{p}\}.$$

The opposite of ultrametric is "Archimedean", such as $|\cdot|$ on \mathbb{R} .

• In any ultrametric metric, every triangle is isoceles. In \mathbb{Q} :

$$|5-2|_3 = \frac{1}{3}, \quad |2-29|_3 = \frac{1}{27}, \quad |29-5|_3 = \frac{1}{3}.$$

• The series $\sum_{n=0}^{\infty} n!$ is Cauchy in any *p*-adic metric.

• In the 2-adic metric, the series $\sum_{n=0}^{\infty} 2^n$ converges. To what?

p-adic completion

Definition (Completion of \mathbb{Q} with respect to a norm)

Given any norm $|\cdot|_{\star}$ on \mathbb{Q} , consider two Cauchy sequences $(a_n)_{n\geq 1}, (b_n)_{n\geq 1}$ in \mathbb{Q} to be equivalent when their difference converges to zero, that is,

$$\lim_{n \to +\infty} a_n - b_n = 0; \qquad equivalently, \ \lim_{n \to +\infty} |a_n - b_n|_{\star} = 0.$$

The equivalence classes comprise the completion \mathbb{Q}_{\star} of \mathbb{Q} with respect to $|\cdot|_{\star}$.

Exercise: Because norms respect $+, \cdot, \mathbb{Q}_{\star}$ inherits $+, \cdot$.

Example: Usual $|\cdot|$ completes \mathbb{Q} to \mathbb{R} ... while $|\cdot|_p$ completes \mathbb{Q} to \mathbb{Q}_p , the <u>p</u>-adic numbers.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

First fun phenomena in \mathbb{Q}_p

• If
$$a_n \to 0$$
 as $n \to +\infty$, then $\sum_{n=1}^{\infty} a_n$ converges in \mathbb{Q}_p . E.g.: $\sum_{n=0}^{\infty} n!$.
Idea: Ultrametric convergence is easier! Archimedean contrast: $\sum_{n=0}^{\infty} \frac{1}{n}$.

• Any $x \in \mathbb{Q}_p$ has a *unique* digit expansion

$$x = \sum_{n=m}^{\infty} x_i p^i, \qquad x_i \in \{0, 1, \dots, p-1\}$$

Idea: $p \leftrightarrow \frac{1}{10}$ as p-adic \leftrightarrow decimal; and ultrametric \Rightarrow uniqueness!

Z completes to a subring Z_p ⊂ Q_p. All of the metric balls centered at 0 are: ··· ⊃ p⁻²Z_p ⊃ p⁻¹Z_p ⊃ Z_p ⊃ pZ_p ⊃ p²Z_p ⊃ ···.

Idea: Balls have discrete radii, hence "closed = open" !

Carl Wang-Erickson (Pitt)

Kurt Hensel

Kunt Henred

In 1897, Hensel wrote down a *p*-adic digit expansion in Über eine neue Begründung der Theorie der algebraischen Zahlen.

Carl Wang-Erickson (Pitt)

p-adicity

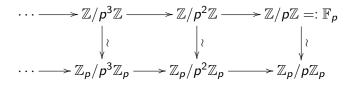
November 12, 2024 11 / 34

\mathbb{Z}_p is an *algebraic* limit

Notice that $p^m \mathbb{Z}_p$ consists of exactly those digital expansions of the form

$$\sum_{n=m}^{\infty} x_i p^i, \qquad x_i \in \{0, 1, \dots, p-1\}$$

In fact $p^m \mathbb{Z}_p$ is an ideal of \mathbb{Z}_p for $m \ge 0$, and we can compare:



We call a system of choices in the upper line " $\varprojlim_m \mathbb{Z}/p^m\mathbb{Z}$ ", which is another construction of \mathbb{Z}_p .

Hensel's lemma

To see algebraic and analytic ideas come together, we display Hensel's lemma for $\mathbb{Z}_p \twoheadrightarrow \mathbb{Z}_p / p\mathbb{Z}_p = \mathbb{F}_p$.

Theorem (Hensel's lemma)

Let $f(x) \in \mathbb{Z}_p[x]$ be a monic polynomial and let $\overline{f}(x) \in \mathbb{F}_p[x]$ be its reduction modulo p. If $\overline{a} \in \mathbb{F}_p$ is a simple root of $\overline{f}(x)$, then there exists a unique $a \in \mathbb{Z}_p$ such that $\overline{a} = a \pmod{p}$ and f(a) = 0.

In words: a simple root $\bar{a} \pmod{p}$ lifts uniquely to a simple root $a \in \mathbb{Z}_p$.

Example

Because $\#\mathbb{F}_p^{\times} = p - 1$, the polynomial $x^{p-1} - 1$ has p - 1 distinct (thus, simple) roots in \mathbb{F}_p . Namely, the roots are \mathbb{F}_p^{\times} . By Hensel's lemma, \mathbb{Z}_p contains the p - 1 roots of unity.

Proof method: "Newton's method always works" in \mathbb{Z}_{p} !

Helmut Hasse

Hasse

Theorem (The "Hasse principle", 1921)

A quadratic equation $0 = \sum_{1 \le i,j \le n} a_{ij} x_i x_j$ $(a_{ij} \in \mathbb{Q}; indeterminants x_i)$ has a non-trivial solution in \mathbb{Q} if and only if it has a non-trivial solution in \mathbb{R} and in \mathbb{Q}_p for all primes p.

Carl Wang-Erickson (Pitt)

Brave new *p*-adic world ...

→ consider *p*-adic completion on par with Archimedean completion

p-adicity

p-adicity is a confluence of algebra, topology, and analysis.

$$p$$
-adic completion of $\mathbb{Z} \rightsquigarrow \mathbb{Z}_p \cong \varprojlim_n \mathbb{Z}/p^n \mathbb{Z}$

- metrics and topologies: adic things are first examples of *profinite* topologies
- analysis: the rest of this talk illustrates an example
- manifolds: some challenges and diverse progress over many decades in algebraic geometry and *p*-adic analytic geometry

p-adic notions are ubiquitous in number theory.

Recent number theory results using *p*-adic tools

Balakrishnan

Dogra

use the Chabauty–Kim (very *p*-adic!) method to determine Q-points on algebraic curves

Caraiani

Scholze

use *p*-adic tools to study the geometry and cohomology of Shimura varieties

Dustin Clausen and Peter Scholze

Clausen

Scholze

Recently, Clausen and Scholze have proposed a new theory of *condensed mathematics* that is capable of encompassing *p*-adic analytic and real analytic geometry into a single framework.

A story from number theory: The Riemann zeta function

The RZF:
$$\zeta(s) = 1 + 2^{-s} + 3^{-s} + 4^{-s} + 5^{-s} + 6^{-s} + 7^{-s} + \cdots$$

$$= (1 + 2^{-s} + 4^{-s} + 8^{-s} + \cdots) \cdot (1 + 3^{-s} + 9^{-s} + \cdots)$$

$$\cdot (1 + 5^{-s} + 25^{-s} + \cdots) \cdot \cdots$$

$$= \prod_{\ell: \text{ prime}} (1 + \ell^{-s} + \ell^{-2s} + \ell^{-3s} + \cdots)$$

$$= \prod_{\ell: \text{ prime}} (1 - \ell^{-s})^{-1} \quad \leftarrow \text{ this is the Euler product.}$$

Here are some key facts about $\zeta(s)$ in the Archimedean world.

- Converges for $s \in \mathbb{C}$ such that $\operatorname{Re}(s) > 1$.
- Analytically continues to $\mathbb{C}\smallsetminus \{1\}$, has Taylor series at s=1

$$\zeta(s) = (s-1)^{-1} + a_0 + a_1(s-1) + \cdots$$

• Has a functional equation:

$$\xi(s) = s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$$
 satisfies $\xi(s) = \xi(1-s)$

Bernhard Riemann

Riemann

Riemann's 1859 paper Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse introduced the notation $\zeta(s)$, its analytic continuation, its functional equation, and the "Riemann hypothesis."

$$\zeta(s) = \prod_{\ell: \text{ prime}} (1 - \ell^{-s})^{-1}.$$

- Analytically continues to $\mathbb{C}\smallsetminus \{1\}.$
- Has a functional equation:

$$\xi(s) = s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$$
 satisfies $\xi(s) = \xi(1-s)$.

- The "zeros of ζ ", which are those $\rho \in \mathbb{C}$ with $\zeta(\rho) = 0$, are: -2, -4, -6,..., and values in the *critical strip*, $0 \leq \operatorname{Re}(\rho) \leq 1$
- Riemann hypothesis: Those ρ in the critical strip have $\operatorname{Re}(\rho) = \frac{1}{2}$.
- A further conjecture: these zeros are *simple*.

The values of the Riemann zeta function at non-positive integers are *rational* and determined by the sequence of <u>Bernoulli numbers</u>

$$\zeta(1-n)=-rac{B_n}{n}$$
 for $n\in\mathbb{Z}_{\geq 1}.$

$$B_0 = 1, \quad B_1 = \frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = B_5 = B_7 = \dots = 0$$
$$B_4 = -\frac{1}{30}, \quad B_6 = \frac{1}{42}, \quad B_8 = -\frac{1}{30}, \quad B_{10} = \frac{5}{66}, \quad B_{12} = -\frac{691}{2370}, \quad \dots$$

... but what are the Bernoulli numbers really?

The Bernoulli numbers

What are Bernoulli numbers? They give the answer to this question.

Question (Power sum formula)

Let $x, k \in \mathbb{Z}_{\geq 1}$. What function of x calculates $P_k(x) := \sum_{n=1}^{x} n^k$?

Answer (A definition of Bernoulli numbers)

$$(k+1)P_{k}(x) = B_{0}x^{k+1} + \binom{k+1}{1}B_{1}x^{k} + \dots + \binom{k+1}{k}B_{k} = \sum_{n=0}^{k} \binom{k+1}{n}B_{n}x^{k+1-n}.$$

For example, $P_{4}(x) = \frac{1}{5} \cdot \left(\boxed{1}x^{5} + 5\boxed{\frac{1}{2}}x^{4} + 10\boxed{\frac{1}{6}}x^{3} + 5\boxed{\frac{-1}{30}}x\right)$

A few other facts:
$$\frac{t}{1-e^{-t}} = \sum_{n=0}^{\infty} \frac{B_n}{n!} t^n. \qquad \sum_{n=0}^{k-1} \binom{k}{n} B_n = 0.$$

Jacob Bernoulli and Seki Takakazu

Takakazu

Bernoulli and Takakazu independently (both \sim 1700, both published posthumously in 1710s) identified the constants B_n in terms of their role in power sums.

The Bernoulli numbers and arithmetic

Now let's start approaching B_n *p*-adically: the first step is divisibility by *p*.

Definition (Regular primes)

Call a prime regular if $p \nmid (numerator of B_n)$ for even $n, 0 \le n \le p - 3$.

Irregular primes: 37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619, 631, 647, 653, 659, 673, 677, 683, 691, ...

Conjecture (Siegel)

The proportion of primes that are regular is $e^{-\frac{1}{2}} \approx 60.6\%$.

Unfortunately, not even the infinitude of regular primes is known.

Ernst Kummer: Bernoulli numbers and arithmetic

Kummer

Theorem ("Kummer's criterion", 1850)

A prime p is irregular if and only if there exists an ideal I in the ring $\mathbb{Z}[e^{2\pi i/p}]$ such that I is not principal and I^p is principal.

Theorem (Kummer's work on Fermat's last theorem)

If p is regular, then Fermat's last theorem for the exponent p can be proven using 19th century technology. $\rightsquigarrow x^p + y^p = z^p$ has no \mathbb{Z} -solution

The Kummer congruences

Remarkably, the Bernoulli numbers are *p*-adically continuous as follows.

Theorem (von Staudt – Clausen: denominators are under control!)

$$B_{2n} + \sum_{\substack{(p-1)|2n \\ p: \text{ prime}}} \frac{1}{p} \in \mathbb{Z}; \text{ in particular, denominator}(B_{2n}) = \prod_{\substack{(p-1)|2n}} p.$$

Ex:
$$B_2 = \frac{1}{2}$$
, $B_4 = -\frac{1}{30}$, $B_6 = \frac{1}{42}$, $B_8 = -\frac{1}{30}$, $B_{10} = \frac{5}{66}$

Theorem (Kummer congruences: *p*-adic continuity)

Let
$$m, n \in \mathbb{Z}_{\geq 1}$$
, not divisible by $(p-1)$. Let $a \in \mathbb{Z}_{\geq 0}$.
• If $(p-1) \mid m-n$, then $\frac{B_m}{m} \equiv \frac{B_n}{n} \pmod{p}$.
• If $(p-1)p^a \mid m-n$, then $(1-p^{m-1})\frac{B_m}{m} \equiv (1-p^{n-1})\frac{B_n}{n} \pmod{p^{a+1}}$

Ex: p = 5, $2 \equiv 10 \pmod{(5-1)}$, $\frac{B_2}{2} - \frac{B_{10}}{10} = \frac{65}{264}$

Theorem (Kummer congruences)

Let $m, n \in \mathbb{Z}_{\geq 1}$, not divisible by (p-1). Let $a \in \mathbb{Z}_{\geq 0}$. • If $(p-1)p^a \mid m-n$, then $(1-p^{m-1})\frac{B_m}{m} \equiv (1-p^{n-1})\frac{B_n}{n} \pmod{p^{a+1}}$

Let's say the same thing using $\zeta(s)$ and $\zeta(1-n) = -\frac{B_n}{n}$.

Theorem (Kummer congruences, $\zeta(s)$ version) Let $s, t \in \mathbb{Z}_{\leq 0}$ such that $s, t \not\equiv 1 \pmod{(p-1)}$. Let $a \in \mathbb{Z}_{\geq 0}$. • If $(p-1)p^a \mid s-t$, then $(1-p^{-s})\zeta(s) \equiv (1-p^{-t})\zeta(t) \pmod{p^{a+1}}$.

Remember that $\zeta(s) = \prod_{\ell: \text{ prime}} (1 - \ell^{-s})^{-1} \dots$

Thus the Kummer congruences say: when you *remove* the Euler factor $(1-p^{-s})^{-1}$ from $\zeta(s)$, you get a *p*-adically continuous function on $\mathbb{Z}_{\leq 0}$.

イロト 不得下 イヨト イヨト 二日

Summing up the story of $\zeta : \mathbb{Z}_{\leq 0} \to \mathbb{Q}$ so far...

- $\zeta(s) = \prod_{\ell: \text{ prime}} (1 \ell^{-s})^{-1}$ extends, using complex analysis, to all $s \in \mathbb{C} \setminus \{1\}$.
- The values $\zeta(1-n)$ of the zeta-function at non-positive integers are given by Bernoulli numbers, $\zeta(1-n) = -\frac{B_n}{n}$.
- The function $\zeta_p(s) := \zeta(s) \cdot (1 p^{-s}) = \prod_{\ell: \text{ prime}, \ell \neq p} (1 \ell^{-s})^{-1}$ is *p*-adically continuous* as a function $\mathbb{Z}_{\leq 0} \to \mathbb{Q}$.

Upshot: because $\mathbb{Z}_{\leq 0} \subset \mathbb{Z}_p$ is dense,

there is a unique continuous^{*} extension $\zeta_p : \mathbb{Z}_p \to \mathbb{Q}_p$.

(*): *p*-adically continuous $\zeta_{p,i}$ defined on $s \in (i + (p-1)\mathbb{Z}) \cap \mathbb{Z}_{\leq 0}$.

The Kubota-Leopoldt *p*-adic zeta function

Corollary (Construction of the *p*-adic zeta function, 1964)

There is a list $\zeta_{p,i}$, i = 1, ..., p - 1, of meromorphic functions $\zeta_{p,i} : \mathbb{Z}_p \to \mathbb{Q}_p$ characterized by the equality, for $s \in \mathbb{Z}_{\leq 0}$,

$$(1-p^{-s})\zeta(s)=\zeta_{p,i}(s)$$
 for $s\equiv i \pmod{(p-1)}$.

The $\zeta_{p,i}$ are analytic other than $\zeta_{p,1}$ having a single simple pole at s = 1.

Leopoldt

What we ask about this new world of zeta-functions

Compare with Riemann's Archimedean-analytic study:

- Analytic continuation: Radius of convergence of $\zeta_{p,i}$ goes beyond \mathbb{Z}_p , which is the ball of radius 1
- $\zeta_{p,i}$ has a zero (for some *i*) \iff *p* is *irregular*
 - In the p-adic world, the existence of zeros of power series can be detected modulo p
- Folklore conjecture: the zeros of ζ_p are simple.

Question

What do the zeros of ζ_p mean?

As Kummer's criterion suggests, there is a connection:

 \exists zeros of $\zeta_{p,i} \Leftrightarrow p$ is irregular \Leftrightarrow arithmetic of $\mathbb{Z}[e^{2\pi i/p}]$ more complicated

Arithmetic meaning of zeros of ζ_p : Iwasawa theory

Each $\zeta_{p,i}$ can be considered to be an element of $\Lambda := \mathbb{Z}_p[\![s]\!]$.

The (*i*-part of the) *p*-power part of the finite abelian ideal class groups X_n of the cyclotomic fields $\mathbb{Q}(e^{2\pi i/p^n})$ as $n \to \infty$ can be considered to be a module X_∞ over the ring $\Lambda = \mathbb{Z}_p[\![s]\!]$.

The main conjecture of Iwasawa theory (Theorem of Mazur–Wiles) Up to a finite defect, $X_{\infty} \simeq \Lambda/f_1 \Lambda \oplus \cdots \oplus \Lambda/f_s \Lambda$ for some f_j $(1 \le j \le s)$ such that $\prod_{j=1}^{s} f_j = \zeta_{p,i}$.

In other words: the Iwasawa main conjecture dictates that the zeros of ζ_p are determined by the arithmetic of $\mathbb{Q}(e^{2\pi i/p^{\infty}})$.

Kenkichi Iwasawa, Barry Mazur, Kenneth Ribet, and Andrew Wiles

Iwasawa formulated the main conjecture in the 1960s. Mazur and Wiles proved it in a paper published in 1980, building upon methods that Ribet instigated in a paper published in 1976.

Ways that *p*-adicity appears:

If a collection of mathematical objects is defined over Q or Z, interpolate them *p*-adically.

If a mathematical object is defined over Q or Z, use its behavior over Q_p (and R) to gain insight into its behavior over Q.

③ Build a mathematical object over \mathbb{Z}_p by taking a limit over $\mathbb{Z}/p^n\mathbb{Z}$.

Thank you for your attention!

Feel free to reach out to me at carl.wang-erickson@pitt.edu!

Web: https://sites.pitt.edu/~caw203/