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In the beginning...

There was Z. 0, 1, 2, 3, 4, ...

But what is Z really? Key structures:

A ring: it has + and · and they behave well

Not just a ring but a domain: if xy = 0, then x = 0 or y = 0

Ordered: has inequality <...  notion of positive

Good! But so does Q = rationals... R = reals... and Z[12 ] =
{

a
2b

}
What sets Z apart: the well-ordering principle.

Any non-empty subset of Z>0 has a least (minimum) element.

Elementary number theory:

Prove there are no integers between 0 and 1  induction

Unique factorization into primes
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If Z is the beginning, what comes next?

The real numbers R, right? Number line, continuum, measurements, ...

What is R really?

An ordered field

every non-empty subset of R that is bounded above has a supremum
(least upper bound) in R. This property is called completeness.

From R, we go on to calculus, metrics and topologies, complex analysis,
functional analysis; manifolds, geometric analysis, etc...

It’s foundational to investigations of change, shapes, approximation, and
much more.
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Metric spaces

Metric spaces (like Rn): a set X with a notion of R-valued distance

d : X × X → R≥0

satisfying these axioms of metric space: ∀ x , y , z ∈ X ,

1 d(x , y) = 0 ⇐⇒ x = y ; and d(x , y) = d(y , x)

2 d(x , y) ≤ d(x , z) + d(z , y) – the triangle inequality

When X has a 0, then an absolute value or norm is distance from 0:

| · | : X → R≥0, x 7→ |x | := d(x , 0).

Another perspective: R is a completion of Q according to the usual metric.
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What if we did something else next, after Z?

Question

Is there a metric on Q other than the usual one, and which respects the
arithmetic structure “ +, ·” of Q?

Let’s define “respects arithmetic structure.”

Definition (Norm | · |? on Q)

A function | · |? : Q→ R≥0 such that

1 |x |? = 0 ⇐⇒ x = 0

2 |x + y |? ≤ |x |? + |y |? (triangle inequality)

3 |x · y |? = |x |? · |y |? (multiplicativity)

Note: norm  metric, by d?(x , y) = |x − y |?.

Answer

“Yes” ... because of p-adicity.
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p-adicity as seen on Q

Let p be a prime number.

Definition (The standard p-adic norm | · |p on Q)

Let a
b ∈ Q. Let e ∈ Z satisfy

a

b
= pe · a

′

b′
, where p - a′b′. Define∣∣∣a

b

∣∣∣
p

:= p−e .

Using words: pe is the “p-part” of a
b  p-adic norm = inverse p-part.

Intuitively: two rational numbers are p-adically
 close together when their difference has numerator highly divisible by p
 far away when their difference has denominator highly divisible by p.

To prove: | · |p satisfies the axioms of norm/metric.
Ostrowski’s theorem.
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Drawing R-small integers and their p-adic distances
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First fun phenomena of p-adicity on Q

Z is bounded in any p-adic metric

| · |p is ultrametric – that is, it satisfies the “strong triangle inequality”

|x + y |p ≤ max{|x |p, |y |p}.

The opposite of ultrametric is “Archimedean”, such as | · | on R.

In any ultrametric metric, every triangle is isoceles. In Q:

|5− 2|3 =
1

3
, |2− 29|3 =

1

27
, |29− 5|3 =

1

3
.

The series
∑∞

n=0 n! is Cauchy in any p-adic metric.

In the 2-adic metric, the series
∑∞

n=0 2n converges. To what?
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p-adic completion

Definition (Completion of Q with respect to a norm)

Given any norm | · |? on Q, consider two Cauchy sequences
(an)n≥1, (bn)n≥1 in Q to be equivalent when their difference converges to
zero, that is,

lim
n→+∞

an − bn = 0; equivalently, lim
n→+∞

|an − bn|? = 0.

The equivalence classes comprise the completion Q? of Q with respect to
| · |?.

Exercise: Because norms respect +, ·, Q? inherits +, ·.

Example: Usual | · | completes Q to R ...
while | · |p completes Q to Qp, the p-adic numbers.
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First fun phenomena in Qp

If an → 0 as n→ +∞, then
∞∑
n=1

an converges in Qp. E.g.:
∞∑
n=0

n!.

Idea: Ultrametric convergence is easier! Archimedean contrast:
∞∑
n=1

1

n
.

Any x ∈ Qp has a unique digit expansion

x =
∞∑

n=m

xip
i , xi ∈ {0, 1, . . . , p − 1}

Idea: p ↔ 1
10 as p-adic ↔ decimal; and ultrametric ⇒ uniqueness!

Z completes to a subring Zp ⊂ Qp. All of the metric balls centered at
0 are: · · · ⊃ p−2Zp ⊃ p−1Zp ⊃ Zp ⊃ pZp ⊃ p2Zp ⊃ · · · .

Idea: Balls have discrete radii, hence “closed = open” !
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Kurt Hensel

In 1897, Hensel wrote down a p-adic digit expansion in Über eine neue
Begründung der Theorie der algebraischen Zahlen.
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Zp is an algebraic limit

Notice that pmZp consists of exactly those digital expansions of the form

∞∑
n=m

xip
i , xi ∈ {0, 1, . . . , p − 1}

In fact pmZp is an ideal of Zp for m ≥ 0, and we can compare:

· · · // Z/p3Z //

o
��

Z/p2Z //

o
��

Z/pZ =: Fp

o
��

· · · // Zp/p
3Zp

// Zp/p
2Zp

// Zp/pZp

We call a system of choices in the upper line “lim←−m
Z/pmZ”, which is

another construction of Zp.
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Hensel’s lemma

To see algebraic and analytic ideas come together, we display Hensel’s
lemma for Zp � Zp/pZp = Fp.

Theorem (Hensel’s lemma)

Let f (x) ∈ Zp[x ] be a monic polynomial and let f̄ (x) ∈ Fp[x ] be its
reduction modulo p. If ā ∈ Fp is a simple root of f̄ (x), then there exists a
unique a ∈ Zp such that ā = a (mod p) and f (a) = 0.

In words: a simple root ā (mod p) lifts uniquely to a simple root a ∈ Zp.

Example

Because #F×p = p − 1, the polynomial xp−1 − 1 has p − 1 distinct (thus,
simple) roots in Fp. Namely, the roots are F×p . By Hensel’s lemma, Zp

contains the p − 1 roots of unity.

Proof method: “Newton’s method always works” in Zp !
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Helmut Hasse

Hasse

Theorem (The “Hasse principle”, 1921)

A quadratic equation 0 =
∑

1≤i ,j≤n aijxixj (aij ∈ Q; indeterminants xi ) has
a non-trivial solution in Q if and only if it has a non-trivial solution in R
and in Qp for all primes p.
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Brave new p-adic world ...

 consider p-adic completion on par with Archimedean completion

p-adicity

p-adicity is a confluence of algebra, topology, and analysis.

p-adic completion of Z Zp
∼= lim←−

n

Z/pnZ

metrics and topologies: adic things are first examples of profinite
topologies

analysis: the rest of this talk illustrates an example

manifolds: some challenges and diverse progress over many decades in
algebraic geometry and p-adic analytic geometry

p-adic notions are ubiquitous in number theory.
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Recent number theory results using p-adic tools

Balakrishnan Dogra

use the
Chabauty–Kim (very p-adic!)

method to determine
Q-points on algebraic curves

Caraiani Scholze

use p-adic tools to study
the geometry and cohomology

of Shimura varieties
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Dustin Clausen and Peter Scholze

Clausen Scholze

Recently, Clausen and Scholze have proposed a new theory of condensed
mathematics that is capable of encompassing p-adic analytic and real
analytic geometry into a single framework.
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A story from number theory: The Riemann zeta function

The RZF: ζ(s) = 1 + 2−s + 3−s + 4−s + 5−s + 6−s + 7−s + · · ·
= (1 + 2−s + 4−s + 8−s + · · · ) · (1 + 3−s + 9−s + · · · )
· (1 + 5−s + 25−s + · · · ) · · · ·

=
∏

`: prime

(1 + `−s + `−2s + `−3s + · · · )

=
∏

`: prime

(1− `−s)−1 ← this is the Euler product.

Here are some key facts about ζ(s) in the Archimedean world.

Converges for s ∈ C such that Re(s) > 1.

Analytically continues to Cr {1}, has Taylor series at s = 1

ζ(s) = (s − 1)−1 + a0 + a1(s − 1) + · · ·

Has a functional equation:

ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s) satisfies ξ(s) = ξ(1− s).
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Bernhard Riemann

Riemann

Riemann’s 1859 paper Ueber die Anzahl der Primzahlen unter einer
gegebenen Grösse introduced the notation ζ(s), its analytic continuation,
its functional equation, and the “Riemann hypothesis.”
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Meet the Riemann zeta function (R-based perspective)

ζ(s) =
∏

`: prime

(1− `−s)−1.

Analytically continues to Cr {1}.
Has a functional equation:

ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s) satisfies ξ(s) = ξ(1− s).

The “zeros of ζ”, which are those ρ ∈ C with ζ(ρ) = 0, are:
−2,−4,−6, . . . , and values in the critical strip, 0 ≤ Re(ρ) ≤ 1

Riemann hypothesis: Those ρ in the critical strip have Re(ρ) = 1
2 .

A further conjecture: these zeros are simple.
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Bernoulli numbers and ζ(s)

The values of the Riemann zeta function at non-positive integers are
rational and determined by the sequence of Bernoulli numbers

ζ(1− n) = −Bn

n
for n ∈ Z≥1.

B0 = 1, B1 =
1

2
, B2 =

1

6
, B3 = B5 = B7 = · · · = 0

B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2370
, · · ·

... but what are the Bernoulli numbers really?
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The Bernoulli numbers

What are Bernoulli numbers? They give the answer to this question.

Question (Power sum formula)

Let x , k ∈ Z≥1. What function of x calculates Pk(x) :=
∑x

n=1 n
k ?

Answer (A definition of Bernoulli numbers)

(k+1)Pk(x) = B0x
k+1+

(k+1
1

)
B1x

k +· · ·+
(k+1

k

)
Bk =

k∑
n=0

(k+1
n

)
Bnx

k+1−n.

For example, P4(x) = 1
5 ·

(
1 x5 + 5

1

2
x4 + 10

1

6
x3 + 5

−1

30
x

)

A few other facts:
t

1− e−t
=
∞∑
n=0

Bn

n!
tn.

k−1∑
n=0

(
k

n

)
Bn = 0.
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Jacob Bernoulli and Seki Takakazu

Bernoulli Takakazu

Bernoulli and Takakazu independently (both ∼1700, both published
posthumously in 1710s) identified the constants Bn in terms of their role
in power sums.
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The Bernoulli numbers and arithmetic

Now let’s start approaching Bn p-adically: the first step is divisibility by p.

Definition (Regular primes)

Call a prime regular if p - (numerator of Bn) for even n, 0 ≤ n ≤ p − 3.

Irregular primes: 37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353,

379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619, 631, 647, 653, 659,

673, 677, 683, 691, . . .

Conjecture (Siegel)

The proportion of primes that are regular is e−
1
2 ≈ 60.6%.

Unfortunately, not even the infinitude of regular primes is known.
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Ernst Kummer: Bernoulli numbers and arithmetic

Kummer

Theorem (“Kummer’s criterion”, 1850)

A prime p is irregular if and only if there exists an ideal I in the ring
Z[e2πi/p] such that I is not principal and I p is principal.

Theorem (Kummer’s work on Fermat’s last theorem)

If p is regular, then Fermat’s last theorem for the exponent p can be
proven using 19th century technology.  xp + yp = zp has no Z-solution
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The Kummer congruences

Remarkably, the Bernoulli numbers are p-adically continuous as follows.

Theorem (von Staudt – Clausen: denominators are under control!)

B2n +
∑

(p−1)|2n
p: prime

1

p
∈ Z; in particular, denominator(B2n) =

∏
(p−1)|2n

p.

Ex: B2 = 1
2 , B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 , B10 = 5
66

Theorem (Kummer congruences: p-adic continuity)

Let m, n ∈ Z≥1, not divisible by (p − 1). Let a ∈ Z≥0.

If (p − 1) | m − n, then Bm
m ≡

Bn
n (mod p).

If (p − 1)pa | m− n, then (1− pm−1)Bm
m ≡ (1− pn−1)Bn

n (mod pa+1)

Ex: p = 5, 2 ≡ 10 (mod (5− 1)),
B2

2
− B10

10
=

65

264
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The Kummer congruences for values of ζ(s)

Theorem (Kummer congruences)

Let m, n ∈ Z≥1, not divisible by (p − 1). Let a ∈ Z≥0.

If (p − 1)pa | m− n, then (1− pm−1)Bm
m ≡ (1− pn−1)Bn

n (mod pa+1)

Let’s say the same thing using ζ(s) and ζ(1− n) = −Bn
n .

Theorem (Kummer congruences, ζ(s) version)

Let s, t ∈ Z≤0 such that s, t 6≡ 1 (mod (p − 1)). Let a ∈ Z≥0.

If (p − 1)pa | s − t, then (1− p−s)ζ(s) ≡ (1− p−t)ζ(t) (mod pa+1).

Remember that ζ(s) =
∏
`: prime(1− `−s)−1 ...

Thus the Kummer congruences say: when you remove the Euler factor
(1− p−s)−1 from ζ(s), you get a p-adically continuous function on Z≤0.
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Summing up the story of ζ : Z≤0 → Q so far...

1 ζ(s) =
∏
`: prime(1− `−s)−1 extends, using complex analysis, to all

s ∈ C \ {1}.

2 The values ζ(1− n) of the zeta-function at non-positive integers are
given by Bernoulli numbers, ζ(1− n) = −Bn

n .

3 The function ζp(s) := ζ(s) · (1− p−s) =
∏

`: prime,`6=p

(1− `−s)−1 is

p-adically continuous* as a function Z≤0 → Q.

Upshot: because Z≤0 ⊂ Zp is dense,

there is a unique continuous* extension ζp : Zp → Qp.

(*): p-adically continuous ζp,i defined on s ∈ (i + (p − 1)Z) ∩ Z≤0.
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The Kubota–Leopoldt p-adic zeta function

Corollary (Construction of the p-adic zeta function, 1964)

There is a list ζp,i , i = 1, . . . , p − 1, of meromorphic functions
ζp,i : Zp → Qp characterized by the equality, for s ∈ Z≤0,

(1− p−s)ζ(s) = ζp,i (s) for s ≡ i (mod (p − 1)).

The ζp,i are analytic other than ζp,1 having a single simple pole at s = 1.

Kubota Leopoldt
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What we ask about this new world of zeta-functions

Compare with Riemann’s Archimedean-analytic study:

Analytic continuation: Radius of convergence of ζp,i goes beyond Zp,
which is the ball of radius 1

ζp,i has a zero (for some i) ⇐⇒ p is irregular
In the p-adic world, the existence of zeros of power series can be
detected modulo p

Folklore conjecture: the zeros of ζp are simple.

Question

What do the zeros of ζp mean?

As Kummer’s criterion suggests, there is a connection:

∃ zeros of ζp,i ⇔ p is irregular ⇔ arithmetic of Z[e2πi/p] more complicated
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Arithmetic meaning of zeros of ζp: Iwasawa theory

Each ζp,i can be considered to be an element of Λ := Zp[[s]].

The (i-part of the) p-power part of the finite abelian ideal class groups Xn

of the cyclotomic fields Q(e2πi/p
n
) as n→∞ can be considered to be a

module X∞ over the ring Λ = Zp[[s]].

The main conjecture of Iwasawa theory (Theorem of Mazur–Wiles)

Up to a finite defect, X∞ ' Λ/f1Λ⊕ · · · ⊕ Λ/fsΛ for some fj (1 ≤ j ≤ s)

such that
s∏

j=1

fj = ζp,i .

In other words: the Iwasawa main conjecture dictates that the zeros of ζp
are determined by the arithmetic of Q(e2πi/p

∞
).
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Kenkichi Iwasawa, Barry Mazur, Kenneth Ribet, and
Andrew Wiles

Iwasawa Ribet Mazur Wiles

Iwasawa formulated the main conjecture in the 1960s. Mazur and Wiles
proved it in a paper published in 1980, building upon methods that Ribet
instigated in a paper published in 1976.
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p-adicity in modern number theory

Ways that p-adicity appears:

1 If a collection of mathematical objects is defined over Q or Z,
interpolate them p-adically.

2 If a mathematical object is defined over Q or Z, use its behavior over
Qp (and R) to gain insight into its behavior over Q.

3 Build a mathematical object over Zp by taking a limit over Z/pnZ.
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Thank you for your attention!

Feel free to reach out to me at carl.wang-erickson@pitt.edu!

Web: https://sites.pitt.edu/~caw203/
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