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Abstract

For 300 years since its conception, Fermat’s last theorem went unsolved. At first, only

special cases were demonstrated. Fermat himself proved the exponent 4 case. Euler proved the

exponent 3 case. Dirichlet proved the exponent 5 case. Lamé’s proof for the exponent 7 case

was quite complicated. Most of these early proofs went by descent.

It was Lamé who first noticed that cyclotomic fields are the right environment to work

with in regards to Fermat’s last theorem. He showed that Fermat’s last theorem for exponent

p would follow from unique prime factorization in the ring Z[ζp], but he incorrectly assumed

that unique prime factorization holds in all such rings. Here is where Kummer comes into the

picture. He arguably had the most impact on Fermat’s last theorem before Wiles.

Kummer introduced the concept of ideal numbers, a precursor to ideals, in order to fix

unique prime factorization when it fails. He proved that ideal numbers have unique prime

factorization, and fixed Lame’s proof, even though it was limited to prime exponents satisfying

a certain condition. These primes were called regular. Statistically, around 61% of primes are

regular, although the infinitude of regular primes is still an unsolved problem.

This document is the result of a UROP project undertaken in the summer of 2018 at

Imperial College London. The preliminaries assumed in this document include definitions from

an undergraduate course in commutative algebra and results from Galois theory. In later

chapters we make use of class field theory and Kummer theory, and refer the reader to some

sources where this theory is developed.

Section 1 provides a comprehensive introduction to some topics in algebraic number theory

at the level of an advanced undergraduate course. Section 2 uses the theory developed in

Section 1 to study specific examples and families of number fields. Section 3 gives a crash

course on the theory of adeles, assuming some knowledge of local fields. This will be used to

prove Dirichlet’s unit theorem and the finiteness of the ideal class group.

Section 4 introduces Dirichlet L-series and proves Dirichlet’s theorem on primes in arith-

metic progression. We also introduce Dedekind zeta functions and derive the analytic class

number formula. We then study the relationship between Dirichlet characters of abelian Ga-

lois groups and their associated intermediate number fields. Section 5 is where we actually

begin studying the arithmetic of cyclotomic fields. We apply our results to prove Fermat’s last

theorem for regular primes, following Kummer. We then build upon results in Section 4 and

derive the relative class number formula for prime cyclotomic fields.

In Section 6, our main aim is to prove Kummer’s criterion for the regularity of a prime. We

give both an analytic and algebraic derivation for the preliminary criterion of whether p divides

the relative class number. The analytic method uses p-adic L-functions whilst the algebraic

method uses the Stickelberger relation to prove Herbrand’s theorem. Along the way we study

Gauss sums which will hep us prove Stickelberger’s relation. Finally we use Kummer theory

to relate the relative class number to the class number of a prime cyclotomic field.
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1 Dedekind domains and their ideals

Number theory began as the study of the integers. They act as a scaffolding for the field of

rational numbers. During the 19th century mathematicians realized that number fields, that is,

field extensions of Q of finite degree, have similar properties to Q and are the right context to

study solutions of polynomial equations with integer coefficients in one variable. The ”number

theory” of a number field can be developed in a similar way to that of Q. There is an analogue

to the integers for every number field, called its ring of integers, which acts as the scaffolding of

the number field and contains many of its number-theoretic properties. In this section we will

study number fields and their rings of integers. The important properties satisfied by these rings

of integers are summarized in the abstract object known as a Dedekind domain, which is defined

below. In this document every ring is commutative and has a multiplicative identity.

The material in this section is based on a variety of sources. The main source is a course in

algebraic number theory that the author has undertaken at the summer school PROMYS Europe

2017. This is also supplemented by [Cox13] and several expository papers by Keith Conrad and

William Stein. At the beginning of every subsection, the specific sources used will be mentioned.

If not, then the material of the subsection originates from the algebraic number theory course that

the author took.

Definition 1.0.1. A Dedekind domain is an integral domain R which is also

• Noetherian

• of Krull dimension 1

• integrally closed in Frac(R), the fraction field of R

1.1 Rings of integers are Dedekind domains

Why are we interested in Dedekind domains? It is because the ring of integers OK of a number

field K is a Dedekind domain. Recall that the ring of integers is the integral closure of Z in K, and

these are objects of central importance in algebraic number theory.

The first two conditions above can be thought of as some sort of restriction on the size of the

ring. Note that one does not imply the other; there are examples of Krull dimension 1 rings which

are not Noetherian. The next lemma proves that the rank of the ring of integers as a Z-module

equals the vector space dimension of the number field over Q. This will be the crucial step in

proving that rings of integers satisfy the first two conditions.

Lemma 1.1.1. Let K be a number field. Then OK is a free Z−module of rank [K : Q].

Proof. Let K = Q(a1 . . . an) so that {a1 . . . an} is a Q-basis for K. We will show that the ai can

be chosen to be elements of OK . Assume ai is not such an element and let fi =
∑m
j=0 bi,jx

j be its
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minimal polynomial with bi,j integers and bi,m non-zero. Then we can multiply fi by bm−1
i,m to get

bm−1
i,m fi =

m∑
j=0

bi,jb
m−j−1
i,m (bi,mai)

j = 0

As a result the polynomial bm−1
i,m fi(b

−1
i,mx) is monic and has a root bi,mai which is an element of OK .

Hence we can replace ai with bi,mai since bi,m is a non-zero integer.

Now Z[a1 . . . an] ⊂ OK is a free Z-module of rank n, because the a1 . . . an being linearly inde-

pendent over Q implies that they are linearly independent over Z. To show that OK is also a free

Z-module of rank n, we will consider the embedding

ψ : OK → Zn

ψ : g 7→ (Tr(g · a1) . . . T r(g · an))

where Tr(·) is the absolute trace in K. This is clearly a Z-module homomorphism. If each Tr(g ·ai)
is zero then Tr(g ·h) = 0 for any h ∈ K since the trace is Q-linear and {a1 . . . an} is Q-basis for K.

In particular that means Tr(N(g)) = 0 by selecting h = N(g)
g , where N(·) is the absolute norm in

K. This implies that g = 0 because N(g) is an integer and the trace of integers satisfies

Tr(N(g)) = n ·N(g)

This shows that ψ is injective, and so it is indeed an embedding. This means that OK is a finitely

generated Z-module. It is obviously torsion-free, becauseK is, and therefore free by the fundamental

theorem of finitely generated abelian groups. Its rank is therefore at most n, since we embedded it

in Zn, but it must also be at least n as it contains Z[a1 . . . an] as a submodule. This completes the

proof of this lemma.

Proposition 1.1.2. Let K be a number field. Then OK is Noetherian.

Proof. Let a be an ideal of OK . We claim that a can be generated by [K : Q] = n elements.

Suppose not, then we can find n+ 1 elements in a which are linearly independent over Z, but this

is impossible to do in OK , which has Z-rank equal to n by Lemma 1.1.1.

Lemma 1.1.3. Let OK be the ring of integers of a number field K. Then every non-zero ideal a

of OK is a free Z-module of rank n = [K : Q]

Proof. We’ve shown in Proposition 1.1.2 that every ideal of OK is a finitely generated Z-module.

These ideals are torsion-free, because OK is, and so they are free Z-modules by the fundamental

theorem of finitely generated abelian groups. In Proposition 1.1.2 we showed that these ideals can

be generated by n elements, so they have Z-rank at most n.

We claim that every OK-ideal a contains some non-zero integer m. Just take the norm of any

non-zero element in the ideal, which is a non-zero integer and must also be in the ideal. Let us

suppose that {a1 . . . an} is a Z-basis for OK . Then Z[ma1 . . .man] is also a free Z-module of rank

n, which embeds into a by inclusion. Thus the Z-rank of a is at least n, so it must be exactly n.
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Proposition 1.1.4. OK has Krull dimension 1.

Proof. Let a be an ideal and m ∈ a a non-zero integer, which we showed exists in Lemma 1.1.3.

Then (m) ⊂ a as ideals. By the order reversing inclusions of ideals and their quotient rings, we

have OK/a ⊂ OK/(m). By restriction of scalars, OK/(m) = OK ⊗Z Z/(m) is a free Z/(m)-module

of rank [K : Q]. By looking at the sizes of these quotient rings we have

|OK/a| < |OK/(m)| = |Z/(m)|[K:Q]

and so the quotient rings of all non-zero ideals a are finite. Note that finite integral domains are

fields, and as a result every prime ideal is maximal. Hence OK has Krull dimension 1.

We defined the ring of integers to be the integral closure of Z in K, and so the third condition

is automatically satisfied.

Corollary 1.1.5. OK is a Dedekind domain.

1.2 Unique prime factorization (UPF) of ideals in Dedekind domains

The next step is to show that failure of unique prime factorization in rings of integers of number

fields can be remedied by working with ideals instead, which can be factored uniquely into prime

ideals. This is a characteristic property of Dedekind domains, although we only prove one direction,

that Dedekind domains as defined in Section 1.1 admit unique prime factorization of ideals.

Definition 1.2.1. A fractional ideal of an integral domain R is an R-submodule i of Frac(R), so

that there is a non-zero element r ∈ R so that ri ⊂ R.

Definition 1.2.2. Let R be a Dedekind domain with fraction field K. We denote by IK the monoid

of non-zero fractional ideals of R under multiplication, and by PK the group of non-zero principal

fractional ideals under multiplication.

We will need to work with the more general notion of fractional ideals later on. For now we

prove some general results about ideals which lead up to our desired result.

Theorem 1.2.3. Let R be a commutative domain with a subring S. Let M be a finitely generated

nonzero free S-submodule of R and let b ∈ R. Then bM ⊂M =⇒ b is integral over S.

Proof. Let {m1 . . .mn} ⊂ R be a basis for M over S. As bM ⊂M , we can write

bmi =

n∑
j=1

ai,jmj
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for each i = 1 . . . n, where ai,j ∈ S. In matrix form this comes out as
a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

. . . . . . . . . . . . . . . . . . . . .

an,1 an,2 . . . an,n

 ·

m1

m2

. . .

mn

 = b


m1

m2

. . .

mn


so b is an eigenvalue of the matrix A of coefficients ai,j . Hence it satisfies its characteristic polyno-

mial, which is monic and has coefficients in S. Therefore b is integral over S.

Lemma 1.2.4. Let R be a Noetherian ring. Then every ideal of R not equal to R itself contains a

finite product of prime ideals.

Proof. Let i 6= R be an ideal. If it is prime, we are done, and if not, there exist elements a, b ∈ R
such that ab ∈ i but a, b /∈ i. We can therefore write (i + a)(i + b) ⊂ i and repeat the procedure on

the two ideals (i + a) and (i + b). This process leads to a potentially infinite chain of ideals under

inclusion, but since R is Noetherian, it must terminate. Therefore i contains a finite product of

prime ideals.

Lemma 1.2.5. Let p be a prime ideal of a ring R and let i, j be ideals such that ij ⊂ p. Then i ⊂ p

or j ⊂ p.

Proof. Let a ∈ i, b ∈ j. Then ab ∈ ij ⊂ p and so either a ∈ p or b ∈ p. This occurs for every such

pair (a, b) ∈ i × j. If i ⊂ p then we are done. Otherwise there is an element m ∈ i not in p. Then

mn ∈ p for all n ∈ j and since m /∈ p, we must have n ∈ p for all n ∈ j. As a result j ⊂ p.

Lemma 1.2.6. Let R be a Dedekind domain. If p is a prime ideal of R, then there is an element

q ∈ Frac(R)\R such that qp ⊂ R.

Proof. Let x ∈ p be a non-zero element. (x) contains some minimal product of prime ideals p1 · · · pn
by Lemma 1.2.4, so that p1 · · · pn−1 6⊂ (x). Since p is prime and p1 · · · pn ⊂ (x) ⊂ p, we can say

W.L.O.G. that pn ⊂ p by Lemma 1.2.5. These ideals also happen to be maximal, because R has

Krull dimension 1, and so pn = p.

Let y ∈ p1 · · · pn−1 so that y /∈ (x), which is possible because p1 · · · pn−1 6⊂ (x). Then yp ⊂
p1 · · · pn ⊂ (x) ⊂ p and so y

xp ⊂ OK . However y
x /∈ OK , so q = y

x satisfies the conditions of the

lemma.

Proposition 1.2.7. If p is a prime ideal of a Dedekind domain R, then there is a fractional ideal

p−1 so that pp−1 = OK .

Proof. Let q ∈ K\OK so that qp ⊂ OK , which exists by Lemma 1.2.6. Then we have p ⊂ p + qp ⊂
OK , But p is maximal and so either p + qp = p or p + qp = OK . The first case would imply that

(1, q)p ⊂ p, which would mean that q is an algebraic integer by Theorem 1.2.3. So q ∈ OK since
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OK is integrally closed in K, which contradicts the assumptions on q. We must have (1, q)p = OK
instead, which means that (1, q) = p−1 is the inverse ideal of p.

Example 1.2.8. This example illustrates the above results, where we have actually given a method

for finding inverses of prime ideals. Let’s take K = Q(
√
−13). In this case OK = Z(

√
−13).

Finding inverses of principal prime ideals would be easy, so we will instead find the inverse of the

nonprincipal prime ideal p = (11, 3 +
√
−13).

From the notation above we set x = 11 ∈ p. We factor (x) = (11, 3 −
√
−13)(11, 3 +

√
−13),

and set y = 3 −
√
−13 ∈ (11, 3 −

√
−13)\(x). We check that y

xp = 3−
√
−13

11 (11, 3 +
√
−13) =

(3−
√
−13, 2) ⊂ OK and that y

x is not an algebraic integer, since its trace is 6
11 .

Then by our results above the fractional ideal ( 3−
√
−13

11 , 1) is the inverse p−1. To check we see

that ( 3−
√
−13

11 , 1)(11, 3 +
√
−13) = (3−

√
−13, 2, 11, 3 +

√
−13) = OK .

Proposition 1.2.9. Let R be a Dedekind domain and i an ideal of R not equal to R itself. Then i

can be factored into a finite number of prime ideals.

Proof. The ideal (0) is already prime. By Zorn’s lemma, every non-zero ideal of R not equal to R

itself is contained in a maximal ideal. Let us assume that i ⊂ p for some maximal ideal p. Then we

have p−1i ⊂ OK because the inverse p−1 exists by Proposition 1.2.7. We call this new ideal i0 and

repeat the process, getting a potentially infinite chain of ideals i ⊂ i0 ⊂ i1 ⊂ . . . with ij+1 = p−1
j ij

for all j as long as some maximal ideal pj exists by Zorn’s lemma. Since R is Noetherian, this chain

must terminate and so eventually in = R for some n. Hence we can write i = p · p0 · · · pn−1.

This proves that factorization of ideals into primes exists. Now we have to show uniqueness,

but first we will see what the above result says from the viewpoint of fractional ideals.

Theorem 1.2.10. Let R be a Dedekind domain with fraction field K. Then IK is an abelian group.

Proof. Let i be a non-zero ideal of R not equal to R itself. Then i can be factored into a finite

number of prime ideals by Proposition 1.2.9, each of which has an inverse by Proposition 1.2.9.

Therefore, the ideal i itself has an inverse.

Now let i be a non-zero fractional ideal of R. By the definition of fractional ideals, there is some

non-zero element r ∈ R so that ri ⊂ R. ri is an ideal too, which has an inverse j. The inverse of i

is therefore rj. This proves the statement.

Definition 1.2.11. Let R be a Dedekind domain with fraction field K. The ideal class group of R

is defined to be the quotient IK/PK , which is an abelian group.

Theorem 1.2.12. Let R be a Dedekind domain. If i ⊂ j as non-zero ideals of R, then there is

some ideal h of R such that i = jh.

Proof. Inverses of arbitrary non-zero ideals exist by Theorem 1.2.10. As a result we can write

i ⊂ j =⇒ j−1i ⊂ R and so h = ij−1 is an ideal of R, which satisfies i = jh.
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This theorem is sometimes remembered as ”to contain is to divide”. Unique prime factorization

of ideals is almost a direct consequence of this theorem.

Theorem 1.2.13. Let R be a Dedekind domain. Then every ideal of R not equal to R itself can

be factored uniquely into a finite product of prime ideals.

Proof. Proposition 1.2.9 demonstrates existence. To show uniqueness, let’s take an ideal i 6= R and

suppose we have two distinct factorizations into prime ideals i = pe11 · · · penn = qf11 · · · qfmm .

By Theorem 1.2.10, a cancellation law exists and so we can assume that the two factorizations

have been reduced to pg11 · · · pgnn = qh1
1 · · · qhmm with no factors in common and h1 6= 0 by rearrange-

ment. This means we have pg11 · · · pgnn ⊂ q1 and so pi ⊂ q1 for some i. In particular pi = q1 since R

has Krull dimension 1. This is a contradiction and so the two initial factorizations must have been

identical.

Example 1.2.14. This is the example all undergraduate number theorists see. The ring Z[
√
−5]

is not a UFD. Indeed, we have

2 · 3 = (1 +
√
−5) · (1−

√
−5)

where all elements involved are prime. However, when passing to ideals, we see that the relevant

ideals are not prime. In fact we can factorize each of them as follows:

(2) = (2, 1 +
√
−5)(2, 1−

√
−5)

(3) = (3, 1 +
√
−5)(3, 1−

√
−5)

(1 +
√
−5) = (2, 1 +

√
−5)(3, 1 +

√
−5)

(1−
√
−5) = (2, 1−

√
−5)(3, 1−

√
−5)

It is then clear that (6) can be factored uniquely into prime ideals.

1.3 Ideal factorization

In this subsection we state some results that will allow us to factorize ideals into products of prime

ideals and determine whether an ideal is prime or not. We will first introduce the notion of ideal

norm, which is a way to measure the ”size” of the ideal. In fact, the norm of an ideal is exactly the

size of the corresponding quotient ring. We will later make use of the Chinese remainder theorem,

which we shall prove now.

Theorem 1.3.1 (Chinese remainder theorem). Let R be a commutative ring and let i1 . . . in be a set

of pairwise coprime ideals of R. That is, ii + ij = R for all i 6= j. Then R/(
∏n
i=1 ii)

∼=
⊕n

i=1R/ii.
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Proof. It suffices to prove this in the case of 2 coprime ideals i1, i2. Let a1 ∈ i1, a2 ∈ i2 so that

a1 +a2 = 1. We define the map R/i1i2 → R/i1⊕R/i2 by sending x to the componentwise reduction

(x (mod i1), x (mod i2)). This is a ring homomorphism, because we are simply reducing modulo

ideals in each component.

To show surjectivity, let (m,n) ∈ R/i1⊕R/i2 and choose representatives m′, n′ for m,n respec-

tively in R/i1i2. Let ā1 and ā2 denote the reduction of a1 and a2 respectively modulo i1i2. Then

m′ā2 + n′ā1 will certainly map to (m,n).

To show injectivity, let x ∈ R/i1i2 be congruent to 0 modulo both i1 and i2. Choose a represen-

tative x′ ∈ R of x. Then x′ is contained in both i1 and i2. Now a1x
′ and a2x

′ are both contained

in i1i2, and thus (a1 + a2)x′ = x′ is contained in i1i2. As a result x′ must be congruent to 0 modulo

i1i2 and so x = 0. This completes the proof.

Definition 1.3.2. Let K be a number field and let i be an ideal of OK . Then the absolute norm of

i is defined as

N(i) := |OK/i|

It is important to note that the absolute ideal norm exists. This follows from Section 1.1, where

we showed that quotient rings of non-zero ideals in OK are finite. We define the norm of the zero

ideal to be zero. In this way the absolute ideal norm is multiplicative, and we will prove this fact

soon. We will need to set up a linear algebra viewpoint of ideals in order to do so.

Let K be a number field and let i be an ideal of OK . Let n = [K : Q] and fix a Z-basis {a1 . . . an}
for OK . Let {b1 . . . bn} be a Z-basis for i and write

bk =

n∑
g=1

sg,kag

for each k = 1 . . . n and some integers sg,k. By using the Z-basis {a1 . . . an} we may write any

element e =
∑n
k=1 skak of OK , where sk are integers, as a column vector

l(e) =


s1

s2

. . .

sn


Now consider the matrix 

s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

. . . . . . . . . . . . . . . . . . . . .

sn,1 sn,2 . . . sn,n


The Zn-image of this matrix generates the set {l(e) : e ∈ i}. To see this, let e =

∑n
k=1 rkbk be an

10



element of i for integers ri. Then we have

(


s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

. . . . . . . . . . . . . . . . . . . . .

sn,1 sn,2 . . . sn,n



r1

r2

. . .

rn

) ·


a1

a2

. . .

an

 =

n∑
k=1

rkbK = e

so this matrix can be thought of as a manifestation of the ideal i. The co-volume of i, denoted

covol(i), is then defined as

covol(i) = |det(


s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

. . . . . . . . . . . . . . . . . . . . .

sn,1 sn,2 . . . sn,n

)|

This is a well-defined quantity because changing the Z-basis of i will not change the determinant

of the matrix involved, since its Zn-image will be the same.

Lemma 1.3.3. Let K be a number field with [K : Q] = n and let i be an ideal of OK . Then

N(i) = covol(i).

Proof. Under the embedding l : OK → Zn defined above, ideals can be realized as n-dimensional

lattices. Then the co-volume of an ideal is just the volume of the fundamental parallelepiped of the

lattice corresponding to the ideal, by linear algebra.

By a simple geometrical argument, N(i) = |OK/i| is simply the number of translates of l(i)

required to cover l(OK). How does this relate to the co-volumes of OK and i? It means we require

N(i) fundamental parallelepipeds of l(OK) to cover l(i). As a result N(i)covol(OK) = covol(i). It is

easy to see that the embedding l is surjective, and so the volume of the fundamental parallelepiped

of OK under this embedding is 1. Then N(i) = covol(i).

Proposition 1.3.4. Let K be a number field with [K : Q] = n, and let i, j be ideals of OK . Then

the absolute ideal norm is multiplicative. In other words

N(ij) = N(i) ·N(j)

Proof. We can assume that neither of the ideals j or i is the zero ideal or the whole ring, as then

the statement would follow immediately. Fix a Z-basis {a1 . . . an} for OK . By Lemma 1.3.3 it is

sufficient to prove that

covol(i)covol(j) = covol(ij)

Let [ij : i] denote the size of the additive group quotient quotient i/ij. Geometrically, this is the

number of translates of the lattice l(ij) needed to cover l(i). As a result we have

[ij : i]covol(i) = covol(ij)
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We already know that [j : OK ] = covol(j) by definition. Therefore it is sufficient to show that

[ij : i] = [j : OK ]. It is also sufficient to do so when j is a prime ideal, as then we can factorize j

into prime ideals and then apply the result to each prime consequentially. We now follow [Cond,

Theorem 7.5] to finish the proof.

Now OK/j becomes a field and i/ij becomes a vector space over OK/j, since j annihilates i/ij.

We have to show that dim(i/ij) = 1. We have dim(i/ij) ≥ 1 because there exists some nonzero

element a ∈ i\ij since i 6= ij by UPF of ideals.

Since j is prime and (a) ⊂ j but (a) 6⊂ ij we must have (a) + ij = i. Therefore every element x

in i can be written as x = y + ab for some y ∈ ij and b ∈ OK . Then x ≡ ab (mod ij) and it follows

that a spans i/ij over OK .

Let us write b = mj + k for some j ∈ j and m, k ∈ OK . Then ab ≡ amj + ak ≡ ak (mod ij)

since aj ∈ ij. Therefore a spans i/ij as a vector space over OK/j. Hence dim(i/ij) = 1 and we are

done.

Proposition 1.3.5. Let K be a number field and let i be an ideal of OK . Then

• N(i) is prime =⇒ i is a prime ideal.

• i is a prime ideal =⇒ N(i) is a prime power.

Proof. The first statement follows from the fact that the only ideal with unit absolute norm is OK
itself, and the absolute norm is multiplicative by Proposition 1.3.4. Let i be an ideal of OK with

N(i) prime. Suppose i is not prime. Then it could be factored as a product of ideals i = ab where

neither of the ideals on the right are OK . Then N(i) = N(a)N(b) where neither of the integers on

the right are units, a contradiction.

To show the second statement, recall that quotient rings of prime ideals in the ring of integers

of a number field are finite fields. It is a well known fact in field theory that the size of finite fields

must be prime powers.

Example 1.3.6. Consider the ideal i = (x + 126, x − 5) in the ring R = Z[x]/(x3 + x + 1).

The results above apply to this ring as well, since the only assumptions we used are that the ring

involved is finitely generated over Z. {1, x, x2} is clearly a Z-basis for R. Now the set {x+126, x2 +

126x, 126x2 − x − 1, x − 5, x2 − 5x,−5x2 − x − 1} must span i over Z. After doing some linear

algebra, we get a Z-basis for i. Here is the calculation:

126 1 0

0 126 1

−1 −1 126

−5 1 0

0 −5 1

−1 −1 −5


→



0 −125 15876

0 126 1

1 1 −126

0 6 −630

0 −5 1

0 0 −131


→



0 0 −62749

0 0 79255

1 0 503

0 1 −629

0 0 −3144

0 0 −131


→



0 0 0

0 0 0

1 0 114

0 1 21

0 0 0

0 0 131



12



The determinant of the rightmost matrix minus the zero rows is 131, which is the norm of the ideal

i by previous results. This is prime and so the ideal i is a prime ideal.

Suppose we have a number field extension L : K and an ideal i of OK . Then we can realize i

as an ideal of OL as follows. Write i = (a1 . . . an) for some ai ∈ OK . Then i as an ideal of OL
is simply the OL-module generated by {a1 . . . an}. This is called the extension of i to OL and is

denoted iOL.

Conversely, suppose we have an ideal i of OL. Then its contraction to OK is simply defined

as the ideal i ∩ OK . We leave it up to the reader to show that extension and contraction respects

multiplication of ideals.

Definition 1.3.7. Let L : K be a number field. We say L is monogenic over K if OL = OK [θ] for

some algebraic integer θ.

We now prove a result called the Dedekind–Kummer theorem. This is the bread and butter of

ideal factorization, even though it only applies to monogenic extensions of number fields. Given a

monogenic number field extension L : K and an element θ as above, we can factor the extensions of

primes of K into primes of L using the minimal polynomial of θ. This theorem will be generalized

to all number field extensions in Section 1.5.

Theorem 1.3.8. Let L : K be a monogenic number field extension, so that OL = OK [θ] for some

algebraic integer θ. Let f be the minimal polynomial of θ over K and let p be a prime ideal of OK .

Let’s say we can factorize f into irreducible factors modulo pOK as

f ≡
m∏
j=1

fj
ej

(mod pOK)

Then we get a corresponding factorization of the ideal p extended to OL into prime ideals as

pOL =

m∏
j=1

(pOL + (fj(θ)))
ej

Proof. There is a canonical isomorphism OL ∼= OK [x]/(f) by sending θ to x. Let px be the image of

the prime ideal pOL under this isomorphism. Then we have OL/pOL ∼= OK [x]/((f) + px). We use

a bar to denote reduction modulo pOL or ((f)+px). From the assumptions, there is a factorization

of ideals in OL/pOL as

(f(θ)) = (0) =

m∏
j=1

(fj(θ))
ej

Applying the Chinese remainder theorem then yields

(OL/pOL)/(0) ∼= OL/pOL ∼=
m∏
j=1

(OL/pOL)/(fj(θ))
ej ∼=

m∏
j=1

OL/(pOL + (fj(θ))
ej )

13



Furthermore, OK/p is a field, and as a result OK [x]/px is a PID because it is a polynomial ring

over a field with transcendence degree 1. It follows that OL/pOL ∼= OK [x]/((f) +px) is also a PID.

Therefore the ideals (fj(θ)), being generated by irreducible elements, are prime in OL/pOL. Hence

OL/(pOL + (fj(θ))) are also fields and so pOL + (fj(θ)) are prime ideals of OL.

The containment (pOL + (fj(θ)))
ej ⊂ pOL + (fj(θ))

ej is clear and thus pOL + (fj(θ))
ej =

(pOL+(fj(θ)))
rj for some rj ≤ ej by UPF of ideals. However there is a chain of proper containments

pOL + (fj(θ)) ( pOL + (fj(θ))
2 ( · · · ( pOL + (fj(θ))

ej

so finally we must have rj = ej and (pOL + (fj(θ)))
ej = pOL + (fj(θ))

ej . This makes

OL/pOL ∼=
m∏
j=1

OL/(pOL + (fj(θ)))
ej

Finally pOL =
∏m
j=1(pOL + (fj(θ)))

ej by the Chinese remainder theorem.

Example 1.3.9. Let us see an example of the above when the base field is Q. Let L = Q(
√

67) in

which case OL = Z[
√

67] and so this is a monogenic extension. The minimal polynomial of θ =
√

67

is f = x2 − 67. Let’s factorize the ideal i = (10 +
√

67) in OL using what we learned so far.

The norm of this ideal can be calculated as 33. In particular (33) ⊂ i so we can factor i by

factoring the primes (3), (11) using the above result. We have

x2 − 67 ≡ (x− 1)(x+ 1) (mod 3)

x2 − 67 ≡ (x− 1)(x+ 1) (mod 11)

The Dedekind–Kummer theorem then gives (3) = (3,
√

67 − 1)(3,
√

67 + 1) and (11) = (11,
√

67 −
1)(11,

√
67 + 1). After a finite number of checks we arrive at

(3,
√

67 + 1)(11,
√

67− 1) = (33, 66, 3
√

67− 3, 11
√

67 + 11) = (10 +
√

67)

1.4 Decomposition of primes in field extensions.

Let L : K be a number field extension. This automatically implies that OK ⊂ OL. Prime ideals

of OK may no longer be prime when extended to OL, as we saw in the previous subsection. The

Dedekind–Kummer theorem gave a method to factorize the extension of prime ideals in monogenic

extensions. In this subsection we develop further results about the prime factorization of a prime

ideal of OK extended to OL. This is called decomposition of primes. The material in this section

is explained in [Cox13, 5.A] without proof.

Definition 1.4.1. Let L : K be a number field extension and let p be a prime ideal of OK . Let P

be a prime ideal of OL containing pOL. Then P is called a prime above p in the extension L : K,

and p is called a prime below P in the extension L : K.
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Proposition 1.4.2. Let L : K be a number field extension. Then for any prime ideal P of OL,

there is a unique prime p of OK below P.

Proof. We claim that p = P ∩ OK . Assume it is not prime. Then we can write p = ij for some

ideals i, j of OK not equal to OK . When we extend the ideals p, i, j to OL we have

ijOL ⊂ pOL ⊂ P

P is a prime ideal so iOL ⊂ P or jOL ⊂ P. Let’s say iOL ⊂ P and so iOL ∩ OK ⊂ P ∩ OK = p.

Since iOL∩OK = i, we have the containment i ⊂ p and so p = i. However, this contradicts j 6= OK .

It follows that p is a prime. In particular, it is a prime below P.

Suppose q is another prime below P. Then p = P ∩ OK ⊂ q. But this implies q = p since we

are in a Dedekind domain. This proves uniqueness.

Definition 1.4.3. Let L : K be a number field extension. Let P1 be a prime ideal of OL and let p

be the unique prime below P1. Let pOL =
∏n
i=1 P

ei
i be the unique prime factorization of pOL into

prime ideals in OL. The ramification degree of P1 in the extension L : K is defined to be

eL:K(P1) := e1

and the inertia degree of P1 in the extension L : K is defined to be

fL:K(P1) := [OL/P1 : OK/p]

Proposition 1.4.4. Let M : L : K be number field extensions and let p be a prime ideal of OK . Let

P be a prime above p in L and let P be a prime above P in M . Then the inertia and ramification

degrees are multiplicative in the sense that

fM :K(P) = fM :L(P) · fL:K(P)

eM :K(P) = eM :L(P) · eL:K(P)

Proof. The multiplicativity of inertia degrees is equivalent to

[OM/P : OK/p] = [OM/P : OL/P][OL/P : OK/p]

which is a result in field theory. By Proposition 1.4.2, POM is the only prime ideal in OL that

P divides, and it does so with multiplicity eM :L(P). Meanwhile, P divides pOL with multiplicity

eL:K(P). Multiplicities are multiplicative, so P divides pOM with multiplicity eM :L(P)eL:K(P).

But this also equals the ramification degree eM :K(P).

Proposition 1.4.5. Let L : K be a number field extension. Let p be a prime ideal of OK . Let

pOL =
∏n
i=1 P

ei
i be the unique prime factorization of pOL into prime ideals in OL. Then

n∑
i=1

eL:K(Pi) · fL:K(Pi) = [L : K]

15



Proof. Firstly, by restriction of scalars we have

N(pOL) = |OL/pOL| = |OK/p|[L:K] = N(p)[L:K]

Then using our definition of inertia degree we get

N(Pi) = |OL/Pi| = |OK/p|[OL/P1:OK/p] = N(p)[OL/P1:OK/p]

Applying the absolute ideal norm to the prime factorization of pOL yields

N(

n∏
i=1

Pei
i ) =

n∏
i=1

·N(Pi)
eL:K(pi) =

n∏
i=1

N(p)eL:K(pi)·fL:K(pi)

Putting everything together gives us

N(p)[L:K] = N(pOL) = N(

n∏
i=1

Pei
i ) =

n∏
i=1

N(p)eL:K(pi)·fL:K(pi)

Staring at the exponents yields [L : K] =
∑n
i=1 eL:K(Pi) · fL:K(Pi).

We will now draw our attention to Galois extensions, where we can say more about the decom-

position of primes in terms of Galois actions. Let L : K be a Galois extension and let P be a prime

ideal of OL. Let p = P ∩ OK be the unique prime below P and let σ ∈ Gal(L : K). Then

pOL ⊂ P =⇒ σ(pOL) = pOL ⊂ σ(P)

so σ(P) is another prime ideal above p. To show that it is prime, suppose σ(P) = ij. Then we

have P = σ−1(i)σ−1(j) and so either σ−1(i) or σ−1(j) must be the entire ring OL. It follows that

i = OL or j = OL and we conclude that σ(P) is a prime ideal. Therefore Gal(L : K) acts on the

prime ideals above p. The next result shows that this action is transitive.

Proposition 1.4.6. Let L : K be a Galois extension and let p be a prime ideal of OK . Let

pOL =
∏n
i=1 P

ei
i be its prime factorization into prime ideals of OL. Then for any pair of prime

ideals Pi,Pj there is some element σ ∈ Gal(L : K) such that σ(Pi) = Pj.

Proof. Suppose that is not the case for a proof by contradiction. Then by the Chinese remainder

theorem there is an element a ∈ OL satisfying

• a ≡ 0 (mod Pi)

• a ≡ 1 (mod σ(Pj)) ∀σ ∈ Gal(L : K)

since none of the prime ideals σ(Pj) are equal to Pi. However

NL:K(a) =
∏

σ∈Gal(L:K)

σ(a) ∈ Pi ∩ Ok = p
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so in particular NL:K(a) ⊂ pOL ⊂ Pj . Therefore NL:K(a) ≡ 0 (mod Pj) which means that

σ(a) ≡ 0 (mod Pj) for some σ ∈ Gal(L : K), because OL/Pj is an integral domain. As a result

a ≡ 0 (mod σ−1(Pj)), which contradicts the Chinese remainder theorem. We must therefore have

σ(Pi) = Pj for some σ.

Proposition 1.4.7. Let L : K be a Galois extension and let p be a prime ideal of OK . Let Pi and

Pj be two primes above p. Then we have

eL:K(Pi) = eL:K(Pj)

fL:K(Pi) = fL:K(Pj)

Proof. By Proposition 1.4.6, there is some σ ∈ Gal(L : K) so that σ(Pi) = Pj . Then pOL =

σ(pOL) =
∏n
k=1 σ(Pk)ek and therefore σ(Pi)

ei = Pei
j = P

ej
j by UPF of ideals. It follows that

eL:K(Pi) = eL:K(Pj).

Galois actions on ideals induce homomorphisms of their quotient rings as

σ : OL/Pi → OL/Pj

Since σ(Pi) ⊂ Pj . However, this homomorphism is invertible since Gal(L : K) is a group, and so

the homomorphism above is actually an isomorphism. It follows that N(Pi) = N(Pj) since the

size of their quotient rings must be the same. Hence |OK/p|fL:K(Pj) = |OK/p|fL:K(Pi) so it follows

that fL:K(Pi) = fL:K(Pj).

From the above proposition, we see that in a Galois extension L : K, the inertia and ramification

degrees of a prime Pi in L is determined solely by their unique prime p below. We can therefore

denote eL:K(p) := eL:K(Pi) and fL:K(p) = fL:K(Pi) when we work with Galois extensions.

Corollary 1.4.8. Let L : K be a Galois extension and let p be a prime ideal of OK . Let pOL =∏n
k=1 P

ek
k be its prime factorization into prime ideals of OL. Then we have

[L : K] = n · eL:K(p) · fL:K(p)

Example 1.4.9. Let f = x3−3x+ 1. Then K = Q[x]/(f) turns out to be a Galois extension of Q.

The formula from the corollary above tells us that for every prime ideal p of Z, one of the following

cases occurs with the same notation:

eK:Q(p) = 3, fK:Q(p) = 1, n = 1

eK:Q(p) = 1, fK:Q(p) = 3, n = 1

eK:Q(p) = 1, fK:Q(p) = 1, n = 3
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We will look at a prime ideal which splits completely (case 3) when extended to K. It turns out that

we can apply the Dedekind–Kummer theorem to this extension. We factorize the ideal (19)OK as

x3 − 3x+ 1 ≡ (x− 3)(x− 7)(x− 10) (mod 19)

(19)OK = (19, x− 3)(19, x− 7)(19, x− 10)

Then the Galois group should act transitively on the ideals on the LHS.

1.5 Orders of number fields in general

Here we will describe some tools to find the rings of integers of number fields. The idea is to start

with an order, which we will define shortly, and then gradually extend the order until we get the

entire ring of integers. We will introduce the discriminant, which will act as a measure of the

size of an order, and allow us to find the ring of integers in a finite number of steps, since each

algebraic integer we add to our order will decrease the discriminant of the order by some factor.

We will also study orders for their own sake and apply their theory to produce a generalization of

the Dedekind–Kummer theorem.

Definition 1.5.1. Let K be a number field. An order O of K is defined to be a subring of K that

• has fraction field equal to K

• is a finitely generated Z-module

Proposition 1.5.2. Let K be a number field with [K : Q] = n. Then O is an order of K if and

only if it is a subring of OK whose rank as a free Z-module is n.

Proof. We prove the forward direction. Let a ∈ O. Then Z[a] is a finitely generated Z-module

because it is a subring of O. Clearly aZ[a] ⊂ Z[a] and Z ⊂ Z[a]. By applying Theorem 1.2.3 we get

that a is an algebraic integer. This occurs for every a ∈ O and so O ⊂ OK . A submodule of a free

Z-module is free so O is also free. Let’s say {a1 . . . ak} is a Z-basis for O. Then Frac(O) = K and

so {a1 . . . ak} is in fact also a Q-basis for K. It follows that k = n = rank(O).

Now we prove the other direction. Let O be a subring of OK whose rank as a free Z-module is

n. A submodule of a finitely generated Z-module is also finitely generated, and so O is a finitely

generated Z-module. It remains to show that Frac(O) = K. We have rank(O) = n and so there

is a set {a1 . . . an} ⊂ O which is linearly independent over Z. This implies that {a1 . . . an} is

linearly independent over Q. By linear algebra {a1 . . . an} is in fact a Q-basis for K and so indeed

Frac(O) = K.

The ring of integers of a number field is sometimes referred to as the maximal order. The above

proposition makes sense of this fact, because every order is contained in the ring of integers.

18



Example 1.5.3. Let us see a simple example of an order. Let K = Q(
√

5). Then Z[
√

5] is an

order of K, since Frac(Z[
√

5]) = K and {1,
√

5} is a Z-basis for Z[
√

5] so it is finitely generated.

However, as we shall see in Section 2, the maximal order of K is Z[ 1+
√

5
2 ].

Note that Z is not an order of K, since Frac(Z) = Q 6= K.

Definition 1.5.4. Let K be a number field with [K : Q] = n and O an order of K. Let σ1 . . . σn be

the embeddings of K into C. Let ω1 . . . ωn be a Z-basis for O. We define the discriminant of O as

∆(O) := det


σ1(ω1) σ1(ω2) . . . σ1(ωn)

σ2(ω1) σ2(ω2) . . . σ2(ωn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(ω1) σn(ω2) . . . σn(ωn)


2

Proposition 1.5.5. Let K be a number field and let O be an order of K. The discriminant of O
is well-defined and it is an integer.

Proof. Suppose we have a different Z-basis for the order in the definition. Let it be {r1 . . . rn}. Let

the integer change of basis matrix from {r1 . . . rn} to {ω1 . . . ωn} be M so that
ω1

ω2

. . .

ωn

 = M


r1

r2

. . .

rn


M must be invertible in GLn(Z) since we can also specify an integer change of basis matrix from

{ω1 . . . ωn} to {r1 . . . rn} which is the inverse of M . Hence the determinant of M must be a unit of

Z, so we must have det(M)2 = 1. We also have
σ1(ω1) σ1(ω2) . . . σ1(ωn)

σ2(ω1) σ2(ω2) . . . σ2(ωn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(ω1) σn(ω2) . . . σn(ωn)

 =


σ1(r1) σ1(r2) . . . σ1(rn)

σ2(r1) σ2(r2) . . . σ2(rn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(r1) σn(r2) . . . σn(rn)

MT

and so it is clear upon taking the square determinant of both sides, that the discriminant is the

same when calculated using different integral bases. Hence it is well-defined.

Now we prove the discriminant is an integer. Let’s apply an embedding σi to the matrix in

question. We get

σi(


σ1(ω1) σ1(ω2) . . . σ1(ωn)

σ2(ω1) σ2(ω2) . . . σ2(ωn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(ω1) σn(ω2) . . . σn(ωn)

) =


σiσ1(ω1) σiσ1(ω2) . . . σiσ1(ωn)

σiσ2(ω1) σiσ2(ω2) . . . σiσ2(ωn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σiσn(ω1) σiσn(ω2) . . . σiσn(ωn)
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The embeddings form a groupoid so applying σi just permutes the rows of this matrix. The

determinant of the matrix is changed by a factor of ±1. Since we are taking the square of the

determinant, the discriminant of O is unaffected. Therefore the discriminant must be a rational

number, because it is fixed by all embeddings. However, the matrix entries are all algebraic integers,

and so is the discriminant. Hence the discriminant is an integer.

Proposition 1.5.6. Let K be a number field and let O,O′ be orders of K so that O ⊂ O′. Then
∆(O)
∆(O′) is a perfect integer square.

Proof. Let {ω1 . . . ωn} be a Z-basis for O and {r1 . . . rn} a Z-basis for O′. Since O ⊂ O′, there is

an integer matrix M so that 
ω1

ω2

. . .

ωn

 = M


r1

r2

. . .

rn


In terms of discriminants this says that

σ1(ω1) σ1(ω2) . . . σ1(ωn)

σ2(ω1) σ2(ω2) . . . σ2(ωn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(ω1) σn(ω2) . . . σn(ωn)

 =


σ1(r1) σ1(r2) . . . σ1(rn)

σ2(r1) σ2(r2) . . . σ2(rn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(r1) σn(r2) . . . σn(rn)

MT

so that after taking determinants, ∆(O) = ∆(O′)det(M)2 and the result follows.

Remark 1.5.7. If O,O′ are orders of K so that O ⊂ O′ and ∆(O) = ∆(O′), then O = O′. This

is because in this case the integer matrix M has determinant 1 or −1, and is therefore invertible.

It follows that it is a change of basis matrix.

Example 1.5.8. Let K = Q(
√

5). Recall that the order Z[
√

5] has a Z-basis {1,
√

5} and so it has

discriminant

∆(Z[
√

5]) = det(

[
1
√

5

1 −
√

5

]
)2 = (−2

√
5)2 = 20

The only square factor of 20 is 4, and so the maximal order could potentially have discriminant 5.

This turns out to be the case, since the ring of integers of K is Z[ 1+
√

5
2 ] and so

∆(OK) = det(

[
1 1+

√
5

2

1 1−
√

5
2

]
)2 = (−

√
5)2 = 5

We will now describe a process for finding the ring of integers of a number field K, inspired by

the example above. This will take a finite number of steps given a starting order O because ∆(O)

has a finite number of square prime factors. Let {r1 . . . rn} be an integral basis for O.
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Since the fraction field of O is K, every algebraic integer in K will take the form x =
∑n
i=1 airi
m

for ai and m integers. We can suppose (aj ,m) = 1 for some j. By adding integer multiples of ri

to x, we can assume that the coefficients ai lie in {0 . . .m − 1}. Then, by multiplying x by some

integer, we can assume additionally that aj = 1. In this case x can replace rj to form the integral

basis {r1 . . . x . . . rn} of an extended order O′.
Note then that {r1 . . .mx . . . rn} is an integral basis for O. Then ∆(O) = m2 ·∆(O′) because

det(


σ1(r1) . . . σ1(mx) . . . σ1(rn)

σ2(r1) . . . σ2(mx) . . . σ2(rn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(r1) . . . σn(mx) . . . σn(rn)

) = m · det(


σ1(r1) . . . σ1(x) . . . σ1(rn)

σ2(r1) . . . σ2(x) . . . σ2(rn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(r1) . . . σn(x) . . . σn(rn)

)

We can now describe an algorithm to finding the ring of integers of K.

1. Begin with an order O with integral basis {r1 . . . rn}. Calculate its discriminant ∆(O) and

choose a prime factor m so that m2 divides ∆(O).

2. An algebraic integer in K would have to take the form x =
∑n
i=1 airi
m where each coefficient

ai lies in {0 . . .m − 1}. If any such algebraic integers are found, extend the order by adding

them in, and go back to step 1 with the new order. This will decrease the discriminant by a

factor of m2.

3. If no algebraic integers are found, go back to step 1 and choose a different prime factor m.

4. If no square prime factors remain, then the current order must be the maximal one.

There is a very nice way of determining whether an algebraic number is an algebraic integer

using linear algebra. Combining this with our recipe for finding the ring of integers is particularly

nice, and lends itself well to a computer program.

Remark 1.5.9. Let K be a number field and fix a vector space basis {r1 . . . rn} for K over Q. Let

a =
∑n
i=1 airi ∈ K. Then a can be viewed as the column vector

a1

a2

. . .

an


in Qn. Multiplication by a fixed element becomes linear map on Qn. Let Ma be the matrix cor-

responding to multiplication by a. By Cayley-Hamilton, Ma will satisfy its characteristic equation

which has degree at most n. Therefore a will be a root of this equation, and so the minimal polyno-

mial of a will divide the characteristic equation. Hence a is an algebraic integer if and only if the

characteristic equation of Ma is monic with integer coefficients.
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Example 1.5.10. The above method allows us to find minimal polynomials of elements in abstract

number fields. Let K = Q[x]/(x3 + 7x− 5). We will compute the minimal polynomial of x2, whose

degree must be 3. We have x3 = 5− 7x and x4 = 5x− 7x2. Therefore

Mx2 =

0 5 0

0 −7 5

1 0 −7


The characteristic polynomial of this matrix is

x3 + 14x2 + 49x− 25

which has degree 3 so it must be the minimal polynomial of x2.

See Section 2 for more examples of computations of the ring of integers.

The important thing to remember now that we move on to general orders is that the situation

is not so drastically different. What we actually proved in Section 1.2 is that all good ideals are

invertible. In Dedekind domains, which are integrally closed, all ideals are good. In general orders,

it turns out that most ideals are good, and have an inverse. The conductor ideal will measure those

ideals of the order which are not good. We follow [Cona] for the remainder of this subsection.

Definition 1.5.11. Let K be a number field and O an order of K. The conductor ideal of O is

defined as

CO := {x ∈ OK : xOK ⊂ O}

Note that the conductor ideal is an ideal in both OK and O. To see this, for any element x ∈ CO

we have x · 1 ∈ xOK ⊂ O and so x ∈ O. In fact, the conductor ideal is the largest ideal of OK
which is also contained in O, as the following proposition shows.

Proposition 1.5.12. Let K be a number field and O an order of K. Any ideal i of OK which is

contained in O is also contained in CO.

Proof. If i ⊂ O then for every element x ∈ i we have xOK ⊂ i ⊂ O. As a result x ∈ CO for every

element x ∈ i and so i ⊂ CO.

Definition 1.5.13. Let K be a number field and O an order of K. An ideal i of O is good if

{x ∈ K : xi ⊂ i} = O

and otherwise it is called bad.

Proposition 1.5.14. Let K be a number field and O an order of K. If an ideal i of O is coprime

to the conductor ideal CO, then it is good.
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Proof. Assume i ⊂ O is coprime to the conductor ideal so that i + CO = O. Then there are

elements b ∈ i, c ∈ CO so that b + c = 1. Let x ∈ K so that xi ⊂ i. We have to show that x ∈ O.

We have xb ∈ i ⊂ O and xc ∈ CO ⊂ O. Since x = xb + xc we have that x ∈ O. Therefore

{x ∈ K : xi ⊂ i} = O and i is a good ideal.

We prove next that good prime ideals of any order are invertible, and their inverse is a good

fractional ideal. Notice the parallels with Lemma 1.2.6 and Proposition 1.2.7.

Lemma 1.5.15. Let K be a number field and O and order of K. Let p be a prime ideal of O.

Then there is some element q ∈ K\O so that qp ⊂ O.

Proof. Let p be a prime ideal. Let x ∈ p be a nonzero element element. (x) contains a minimal

product of prime ideals p1 · · · pn by Lemma 1.2.4, such that p1 · · · pn−1 6⊂ (x). Since p is prime and

p1 · · · pn ⊂ (x) ⊂ p, we can say W.L.O.G. that pn ⊂ p by Lemma 1.2.5. O has Krull dimension 1

and so in fact we must have pn = p.

Let y ∈ p1 · · · pn−1 such that y /∈ (x), which exists because p1 · · · pn−1 6⊂ (x). Then yp ⊂
p1 · · · pn ⊂ (x) ⊂ p. As a result y

xp ⊂ O, but y
x /∈ O because y /∈ (x). Thus q = y

x is an element of

K\O so that qp ⊂ O.

Proposition 1.5.16. Let K be a number field and O and order of K. Every good prime ideal of

O is invertible, and their inverse is a good fractional ideal.

Proof. By Lemma 1.5.15 there is some element q ∈ K\O so that qp ⊂ O. Now p ⊂ (1, q)p ⊂ O
as before and so either (1, q)p = p or (1, q)p = O. In the first case qp ⊂ p, but p is a good ideal

and so q ∈ O which is a contradiction. Therefore we must have (1, q)p = O and so the inverse is

p−1 = (1, q). It remains to show that (1, q) is a good fractional ideal.

Suppose not. Then there is some x ∈ K\O so that x(1, q) ⊂ (1, q). However, this means

x(1, q)p ⊂ (1, q)p and in particular x ⊂ O, a contradiction. Hence p−1 is a good fractional ideal.

What follows is a weak version of unique prime factorization of ideals in arbitrary orders. It

states that ideals coprime to the conductor ideal can be factored uniquely into prime ideals coprime

to the conductor ideal.

Proposition 1.5.17. Let K be a number field and O an order of K. Let i be an ideal of O not

equal to O itself, and coprime to CO. Then i can be factored into a finite number of prime ideals

coprime to CO.

Proof. The ideal (0) is already prime. By Zorn’s lemma, every non-zero ideal of O not equal to O
itself is contained in a maximal ideal. Let us assume that i ⊂ p for some maximal ideal p. Then p

must be coprime to CO, since O = CO + i ⊂ CO + p.

Then we have i ⊂ p−1i ⊂ O, since the inverse p−1 exists by Proposition 1.5.16. We denote the

ideal p−1i by i0 and note that it must also be coprime to CO by the same reason that p is coprime
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to CO. We repeat the process on i0, getting a potentially infinite chain of ideals i ⊂ i0 ⊂ i1 ⊂ . . .

with ij+1 = p−1
j ij for all j as long as some maximal ideal pj exists by Zorn’s lemma. All the

ideals mentioned will be coprime to CO. Since O is Noetherian, this chain must terminate and so

eventually in = O for some n. Hence we can write i = p · p0 · · · pn−1.

This proves the existence of a prime factorization of ideals coprime to the conductor ideal. To

prove uniqueness, we develop a cancellation law by showing that ideals coprime to the conductor

ideal are invertible. Note that UPF of good ideals in general is not always true.

Proposition 1.5.18. Let K be a number field and O an order of K. Let i be an ideal of O coprime

to CO. Then i is invertible.

Proof. i can be written as a finite product of prime ideals coprime to CO by Proposition 1.5.17,

each of which is invertible by Proposition 1.5.16. Therefore i itself is invertible.

Corollary 1.5.19. Let K be a number field and O an order of K. Then ideals of O coprime to

CO will factor uniquely into a product of prime ideals coprime to CO.

We will now work towards a generalization of the Dedekind–Kummer theorem.

Lemma 1.5.20. Let K be a number field and O and order of K. Let i be an ideal of OK which is

coprime to CO. Then O/i ∩ O ∼= OK/i and i ∩ O is a good ideal.

Proof. To show this, note that i+CO = OK by assumption. Hence i+O = OK because CO ⊂ O ⊂
OK . Therefore the quotient map composed with the inclusion O → OK → OK/i is surjective. The

kernel is clearly O ∩ i, and so O/i ∩ O ∼= OK/i.
From i + CO = OK we get i ∩ O + CO = O, since CO ⊂ O. As a result i ∩ O is a good ideal by

Proposition 1.5.14, since it is coprime to the conductor ideal.

Theorem 1.5.21. Let L : K be a number field extension and let θ ∈ OL so that K(θ) = L. Then

O = OK [θ] is an order of L. Let C be its conductor ideal. Let p be a prime ideal of OK so that

pOL is relatively prime to C. Let f be the minimal monic polynomial of θ over K.

We claim that under these conditions, we can apply the Dedekind–Kummer theorem. In other

words, if we can factorize f modulo p into irreducibles as

f̄ ≡
n∏
i=1

f̄i
ei (mod p)

then p factorizes into prime ideals of OL as

pOL =

n∏
i=1

(pOL + (fi(θ)))
ei
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Proof. By Lemma 1.5.20 we get that O/p∩O ∼= OL/pOL since pOL is coprime to C. We also know

that O ∼= OK [x]/(f). Let px denote the image of the ideal p under this isomorphism. Then

O/p ∩ O ∼= OK [x]/(px ∩ OK [x] + (f)) ∼= (OK/(p ∩ OK))[x]/(f̄)

We get a factorization of the zero element as

f̄(θ) = (0) ≡
n∏
i=1

f̄i(θ)
ei (mod p)

Then by applying Chinese remainder theorem gives us

O/p ∩ O ∼=
n∏
i=1

(OK/(p ∩ OK))[x]/(fi)
ei ∼=

n∏
i=1

(O/(p ∩ O))/(fi(θ))
ei ∼=

n∏
i=1

O/(p ∩ O + (fi(θ))
ei)

We will repeat the same argument as with Theorem 1.3.8. Firstly note that (OK/(p ∩ OK))[x]

is a PID, because it is a polynomial ring over a field with transcendence degree 1. Therefore the

ideals (fi(θ)) are prime in O/p∩O, because they are generated by irreducible elements. Hence the

quotients O/(p ∩ O + (fi(θ))) are fields, and so (p ∩ O + (fi(θ))) are prime ideals of O.

p∩O is coprime to C by Lemma 1.5.20. Furthermore, (p∩O+ (fi(θ))) is coprime to C, since it

contains the ideal p∩O. (p∩O+ (fi(θ))
ei) is also coprime to C because it is a factor of p∩O. Now

we have the containment of ideals (p∩O+ (fi(θ)))
ei ⊂ (p∩O+ (fi(θ))

ei) ⊂ (p∩O+ (fi(θ))) as in

Theorem 1.3.8, each of which is coprime to C. By unique prime factorization of ideals coprime to

the conductor ideal, we have (p ∩ O + (fi(θ))
ei) = (p ∩ O + (fi(θ)))

r for some integer r. However,

there are chains of proper containments

(p ∩ O + (fi(θ))) ( (p ∩ O + (fi(θ))
2) ( · · · ( (p ∩ O + (fi(θ))

ei)

(p ∩ O + (fi(θ))) ( (p ∩ O + (fi(θ)))
2 ( · · · ( (p ∩ O + (fi(θ)))

ei

All of these ideals are coprime to C, so one can argue (p ∩ O + (fi(θ))
ei) = (p ∩ O + (fi(θ)))

ei by

UPF of ideals coprime to the conductor ideal. Therefore, by Lemma 1.5.20 we get

OL/pOL ∼= O/p∩O ∼=
n∏
i=1

O/(p∩O+(fi(θ))
ei) ∼=

n∏
i=1

(O/p∩O+(fi(θ)))
ei ∼=

n∏
i=1

OL/(pOL+(fi(θ)))
ei

It follows that pOL =
∏n
i=1(pOL + (fi(θ)))

ei . Each of the ideals on the RHS are prime because

their quotient rings are fields. This completes the proof.

Now we get some information on the conductor ideal, which will help us produce a slick corollary

of the above theorem. Then we will see an example of its use.

We work in the absolute case: a number field extension K : Q. Let θ ∈ K so that K = Q(θ)

and let f be its minimal polynomial. Then the absolute discriminant of the order Z[θ] is just

|disc(f)|, the discriminant of the polynomial. The algebraic integers in OK\Z[θ] will all have
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reduced denominator dividing |disc(f)|, due to our algorithm for finding the ring of integers. Hence

(disc(f)) ⊂ CZ[θ]. To see this, let g be the least common multiple of the denominators. Then

(disc(f)) ⊂ (g) and (g)OK = Z[θ] since it cancels out the denominators in a minimal way. Therefore

(g) ⊂ CZ[θ] by Proposition 1.5.12.

Corollary 1.5.22. Let K = Q[x]/(f) be a number field for f a monic irreducible polynomial with

integer coefficients. Let p be an integer prime whose square does not divide the discriminant of

f . Then (p) is coprime to the conductor ideal of Z[x]/(f) and so it can be factorized using the

generalized Dedekind–Kummer theorem.

Example 1.5.23. The polynomial f = x5 + 3x + 3 is irreducible by Eisenstein’s criterion. Let

K = Q[x]/(f). Then f has discriminant 315333. 5 does not divide this discriminant so we can

factor (5)OK using the above method. We have

x5 + 3x+ 3 ≡ (x− 3)(x4 + 3x3 + 4x2 + 2x+ 4) ≡ (x− 3)((x+ 2)4 + 3) (mod 5)

By doing the substitution y = x+ 2, we see that the polynomial y4 + 3 has no roots modulo 5, so it

is either irreducible or factorizes into two quadratic factors. In the latter case we may write

y4 + 3 = (y2 + ay + b)(y2 +my + n) = (y4 + (a+m)y3 + (b+ n+ am)y2 + (an+ bm)y + bn)

A quick check of the cases shows that this cannot occur, and so x4 +3x3 +4x2 +2x+4 is irreducible

modulo 5 and we may write

(5) = (5, x− 3)(5, x4 + 3x3 + 4x2 + 2x+ 4)

229 divides the discriminant with multiplicity 1, and so (229)OK can also be factored using the

above method. After running a computer program we see that the only roots of x5 + 3x+ 3 modulo

229 are 180 and 56. By looking at the roots of the derivative of x5 + 3x+ 3, we see that 56 is a root

with multiplicity 2 and 180 is a root with multiplicity 1. Therefore we can factorize

x5 + 3x+ 3 ≡ (x− 180)(x− 56)2(x2 + 63x+ 138) (mod 229)

Now x2 + 63x+ 138 is irreducible since there are no other roots. As a result we finally have

(229) = (229, x− 180)(229, x− 56)2(229, x2 + 63x+ 138)

1.6 More on prime decomposition

Let L : K be a Galois extension with Galois group G throughout this subsection. We will study

more carefully the prime decomposition of Galois extensions. We follow [Stea] and [Steb].

Definition 1.6.1. Let P be a prime ideal in OL. DL:K(P) is defined as the decomposition group

of P. This is the subgroup of G that fixes P. That is,

DL:K(P) = {σ ∈ G : σ(P) = P}
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Definition 1.6.2. Let P be a prime ideal in OL. IL:K(P) is defined as the Inertia group of P.

This is the subgroup of G that fixes OL/P. That is,

IL:K(P) = {σ ∈ G : σ(a) ≡ a (mod P) ∀a ∈ OL/P}

Note that IL:K(P) necessarily fixes P, and so it a subgroup of DL:K(P).

Lemma 1.6.3. Let p be a prime ideal of OK . Let P be the prime above p in the extension L : K.

Then |DL:K(P)| = fL:K(P)eL:K(P)

Proof. From Section 1.4, we have the formula [L : K] = nfL:K(P)eL:K(P) where n is the number

of distinct primes above p. Let’s say P1 . . .Pn are those primes with P = P1. Then G acts

transitively on these primes, and DL:K(P) is the stabilizer of the element P, whilst {P1 . . .Pn} is

the orbit. By the orbit-stabilizer theorem, |DL:K(P)| = |G|
n = fL:K(P)eL:K(P).

Lemma 1.6.4. Let p be a prime ideal of OK . Then the decomposition groups of the primes above

p are conjugate in G.

Proof. Let P1,P2 be two primes above p. From Section 1.4, we know that there is an element

σ ∈ G so that σ(P1) = P2. Then σ−1DL:K(P2)σ ⊂ DL:K(P1). However, by Lemma 1.6.3 we have

|DL:K(P2)| = |DL:K(P1)| = fL:K(P)eL:K(P) and so in fact σ−1DL:K(P2)σ = DL:K(P1). This

completes the proof.

Keep in mind that decomposition groups are not necessarily normal in G. However, we can

still construct their fixed fields. Let p be a prime ideal in OK . The fixed fields of the decomposi-

tion groups of the primes above p will be isomorphic by the above lemma, which states that the

corresponding groups are conjugate in G.

Lemma 1.6.5. Let P be a prime ideal in OL and let p be the prime below P in K. Then P ∩
LDL:K(P) has inertia and ramification degree 1 over the extension LDL:K(P) : K and it does not

split in the extension L : LDL:K(P).

Proof. By Lemma 1.6.3 and field theory we have

[LDL:K(P) : K] =
[L : K]

|DL:K(P)|
=

[L : K]

eL:K(P)fL:K(P)
= n

Let q = P∩LDL:K(P). By this definition, P is a prime above q. Note that L : LDL:K(P) is a Galois

extension with Galois group DL:K(P) and so we can use the more specific tools we have developed.

We will show that q does not split in the extension L : LDL:K(P). DL:K(P) = Gal(L : LDL:K(P))

fixes P, a prime above q in the extension L : LDL:K(P). Since the Galois group acts transitively, P

must be the only prime above q, and so q is inert (does not split) in L : LDL:K(P).

Recall that the inertia and ramification degrees are multiplicative. In particular we have

|DL:K(P)| = eL:K(P)fL:K(P) = eL:LDL:K (P)(P)eLDL:K (q):K(P)fL:LDL:K (P)(P)fLDL:K (P):K(q)
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On the other hand, since q is inert in L : LDL:K(P), we get

|DL:K(P)| = eL:LDL:K (P)(P)fL:LDL:K (P)(P)

so we can conclude that

eLDL:K (P):K(q)fLDL:K (P):K(q) = 1

It follows that q has inertia and ramification degrees 1 over the extension LDL:K(P) : K.

Proposition 1.6.6. Let P be a prime ideal in OL and let p be the prime below P in K. Then

DL:K(P)/IL:K(P) ∼= Gal(OL/P : OK/p), the group of automorphisms of OL/P that fixes the

natural embedding of OK/p.

Proof. OL/P : OK/p is an extension of finite fields, and so its Galois group is cyclic of order

fL:K(P). Its generator is induced by the Frobenius automorphism FrobOK/p, that sends x to xN(p)

in OL/P. Each element of DL:K(P) defines an automorphism of OL/P that fixes OK/p. This

gives a group homomorphism from DL:K(P) to Gal(OL/P : OK/p) whose kernel is IL:K(P) by

definition. It remains to show that this homomorphism is surjective.

Since we have a finite extension of fields, we can use the primitive element theorem to get some

element a ∈ OL/P so that OL/P = (OK/p)(a). Let a′ be a representative of a in OL and let f be

the polynomial

f =
∏

σ∈DL:K(P)

(x− σ(a′))

over LDL:K(P). Let q be the prime below P in LDL:K(P). Then OLDL:K (P)/q ∼= OK/p since the

corresponding inertia degree is 1, by Lemma 1.6.5. Hence the reduction of f modulo q can be

made to have coefficients in OK/p. Let this polynomial be f̄ . It splits completely in the extension

OL/P : OK/p because it has roots σ(a′) = σ(a) for every σ ∈ DL:K(P).

Now FrobOK/p(a) is also a root of f̄ since the Frobenius automorphism fixes the coefficients of f̄ ,

which are in OK/p. Hence FrobOK/p(a) = σ(a) for some σ ∈ DL:K(P). Since OL/P = (OK/p)(a),

and both σ and the Frobenius automorphism fix OK/p, we must actually have FrobOK/p = σ. As

a result σ is sent to FrobOK/p which generates Gal(OL/P : OK/p), and so the homomorphism

DL:K(P)→ Gal(OL/P : OK/p) is surjective. This completes the proof.

With this last proposition the entire picture can be painted. We shall see that for any Galois

extension L : K and prime ideal P of OL, there are intermediate fields L : A : B : K so that

• The prime below P in B has inertia and ramification degrees 1 in the extension B : K.

• The prime below P in B remains inert in A : B.

• The prime below P in A totally ramifies in L : A.
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Proposition 1.6.7. Let P be a prime ideal in OL and let p be the prime below P in K. Then

|IL:K(P)| = eL:K(P) and P∩LIL:K(P) ramifies completely with ramification degree eL:K(P) in the

extension L : LIL:K(P).

Proof. From Galois theory we have the equality

|DL:K(p)|
|IL:K(p)|

= |Gal(OL/P : OK/p)| = fL:K(P)

As a result |IL:K(P)| = eL:K(P) by Lemma 1.6.3. By field theory the extension L : LIL:K(P) has

degree eL:K(P), and so the extension LIL:K(P) : LDL:K(P) has degree fL:K(P).

Let q = P ∩ LIL:K(P). The extension L : LIL:K(P) is Galois with Galois group IL:K(P).

The group IL:K(P) fixes the quotient ring of P, which is a prime above q. It follows that

[OL/P : OLIL:K (P)/q] = 1 because the entire Galois group fixes the quotient ring and so |Gal(OL/P :

OLIL:K (P)/q)| = fL:LIL:K (P)(P) = 1. Recall also that fLDL:K (P):K(q∩LDL:K(P)) = 1 from Lemma 1.6.5.

Since the inertia degree is multiplicative, we get

fL:K(P) = fL:LIL:K (P)(P) ·fLIL:K (P):LDL:K (P)(q) ·fLDL:K (P):K(q∩LDL:K(P)) = fLIL:K (P):LDL:K (P)(q)

so all the inertia must occur in the extension LIL:K(p) : LDL:K(p). By applying Proposition 1.4.5 we

get

fLIL:K (P):LDL:K (P)(q) = [LIL:K(p) : LDL:K(p)] =

=
∑

r|(P∩LDL:K (P))O
LIL:K (P)

fLIL:K (P):LDL:K (P)(r)eLIL:K (P):LDL:K (P)(r)

Since the sum on the RHS consists of integers, q must be the only prime above P ∩ LDL:K(P)

in LIL:K(P), and it is unramified. In other words, eLIL:K (P):LDL:K (P)(q) = 1. We also have

eLDL:K (P):K(q ∩ LDL:K(P)) = 1 by Lemma 1.6.5. The ramification degree is multiplicative, so

we get

eL:K(P) = eL:LIL:K (P)(P) · eLIL:K (P):LDL:K (P)(q) · eLDL:K (P):K(q ∩ LDL:K(P)) = eL:LIL:K (P)(P)

As a result all ramification must occur in the extension L : LIL:K(p).

Here is a table that illustrates the results thus far:

We will now define the Artin symbol for unramified ideals in Galois extensions, which relates them

to elements of the Galois group. For a Galois extension L : K, the corresponding Artin symbol is

a group homomorphism from the group of fractional ideals of L coprime to the ramified primes, to

the Galois group Gal(L : K). This turns out to be very special in abelian extensions.
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Number field

extension
Degree Prime below P Ramification degree Inertia degree

L : LIL:K(P) eL:K(P) P ∩ LIL:K(P) eL:K(P) 1

LIL:K(P) : LDL:K(P) fL:K(P) P ∩ LDL:K(P) 1 fL:K(P)

LDL:K(P) : K n p 1 1

Definition 1.6.8. Let L : K be a Galois extension and P an unramified prime ideal of OL. Let

p be the prime below P in K. Then the inertia group IL:K(P) is trivial because P is unramified.

Therefore DL:K(P) ∼= Gal(OL/P : OK/p). As a result there is a unique σ ∈ Gal(L : K) that

corresponds to the Frobenius automorphism of OK/p in OL/P.

We define the Artin symbol of the prime P in the extension L : K as

(
L : K

P
) = σ

Proposition 1.6.9. Let L : K be an abelian Galois extension and p a prime ideal of OK that does

not ramify. Then the Artin symbol for any prime above p in L is the same.

Proof. Let P,P′ be two primes above p in L. Let σ ∈ Gal(L : K) so that σ(P) = P′. Since we are

in a Galois extension, we have OL/P ∼= OL/P′. This isomorphism is given by σ. As a result, the

corresponding Galois groups are isomorphic, and the isomorphism is given by conjugation with σ.

Under this isomorphism, the Frobenius automorphisms are mapped to each other, and so

(
L : K

P′
) = σ(

L : K

P
)σ−1

Since Gal(L : K) is abelian, we get (L:K
P′ ) = (L:K

P ).

As a result of the above proposition, the Artin symbol for unramified primes is solely determined

by the prime below, in abelian Galois extensions. Let L : K be an abelian Galois extension which

is unramified, meaning that no prime ideal in OL is ramified. Let P be a prime ideal in OL and

let p be the prime below P in K. Then we can define without loss of generality

(
L : K

p
) := (

L : K

P
)

Definition 1.6.10. Let L : K be an unramified abelian Galois extension. There is a map called

the Artin map, which is the group homomorphism

φL:K : IK → Gal(L : K)∏
i

peii 7→
∏
i

(
L : K

pi
)ei
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1.7 More on discriminants

We’ve already described the absolute discriminant of a number field along with some of its ba-

sic properties. However there are much deeper facts which makes the discriminant a powerful

computational tool. We also introduce the relative discriminant here.

Theorem 1.7.1 (Brill). Let K be number field with r2 pairs of complex conjugate places. Then the

sign of ∆(K) is (−1)r2

Proof. Without taking the square in the definition of discriminant,
√

∆(K) = b or bi for some

integer b. Applying complex conjugation on the matrix will swap r2 rows, and thus change the

sign of
√

∆(K) by (−1)r2 . If the sign is changed, which occurs when r2 is odd, then we must have

the case
√

∆(K) = bi since conjugation alters it. In this case sgn(∆(K)) = −1 = (−1)r2 . If r2

is even, conjugation does not change
√

∆(K) and so we have the case
√

∆(K) = b in which case

sgn(∆(K)) = 1 = (−1)r2 . This completes the proof.

The following theorem was completed with the help of hints at the end of [BA].

Theorem 1.7.2 (Stickelberger). Let ∆(K) be the absolute discriminant of a number field K. Then

∆(K) ≡ 0 or 1 (mod 4).

Proof. Write the determinant of the discriminant matrix as P + N where P is the sum of the

terms given by even permutations and N is the sum of the terms given by an odd permutations.

Let σ be an embedding of K. Applying σ to the discriminant matrix may swap the sign of the

determinant, as discussed in the previous theorem. In particular, since σ permutes the rows, every

even permutation becomes odd and vice versa. Hence σ(P ) = −N and σ(N) = −P .

As a result PN and P −N will be fixed by every embedding. Thus they are rational integers

by the same logic that ∆(K) is a rational integer. Then we have

∆(K) = (P +N)2 = (P −N)2 + 4PN =⇒ (P +N)2 ≡ (P −N)2 (mod 4)

so ∆(K) is congruent to a square integer (P −N)2 modulo 4. The only integer squares modulo 4

are 0 and 1 and so we are done.

We will now give an alternate description of the absolute discriminant. The remainder of this

subsection is based on [Oss] and related lectures.

Proposition 1.7.3. Let K be a number field and choose a Z-basis {a1 . . . an} for OK . Then

∆(K) = det


Tr(a1a1) Tr(a2a1) . . . T r(ana1)

Tr(a1a2) Tr(a2a2) . . . T r(ana2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T r(a1an) Tr(a2an) . . . T r(anan)
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Proof. Let M be the original matrix used in the computation of the discriminant. That is,

M =


σ1(a1) σ1(a2) . . . σ1(an)

σ2(a1) σ2(a2) . . . σ2(an)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(a1) σn(a2) . . . σn(an)


Let R = MTM . Then we have

∆(K) = det(M2) = det(MTM) = det(R)

The (i, j) entry in matrix R is

n∑
k=1

σk(ai)σk(aj) =

n∑
k=1

σk(aiaj) = Tr(aiaj)

This description is reminiscent of the trace trick we used to embed orders into Zn. Under this

description we can view the discriminant as some sort of measure of size of an order, since it does

actually correspond to the volume of the fundamental parallelepiped of the embedding of the order

into Zn. Now we will discuss the notion of relative discriminant.

Definition 1.7.4. Let L : K be a number field extension. Let n = [L : K] so that there are

embeddings σ1 . . . σn of L into C that fix K. Let {a1 . . . an} be a vector space basis for L over K

which is integral (inside OL). For this basis we can define the discriminant ∆(a1 . . . an) as

∆(a1 . . . an) = det


σ1(a1) σ1(a2) . . . σ1(an)

σ2(a1) σ2(a2) . . . σ2(an)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σn(a1) σn(a2) . . . σn(an)


2

We define the relative discriminant of the extension L : K as an ideal ∆(L : K) generated by the

elements ∆(a1 . . . an) as {a1 . . . an} runs through all integral vector space bases of L over K.

Note that for a number field extension L : K, OL is not always a free OK-module. As a result

the relative discriminant may not be a principal ideal. When K = Q, the relative discriminant

is principal and is generated by the absolute discriminant, so this definition extends that of the

absolute discriminant. To see this, the discriminant of each vector space basis for K over Q which

is integral is the same as the absolute discriminant of the corresponding order. We know that the

discriminant of the maximal order divides the discriminant of the other orders and so the absolute

discriminant generates the relative discriminant.

It is also easy to see that the ideal ∆(L : K) lies in OK . To see this, each individual element is

fixed by the embeddings σi and lies in OL, and OL∩K = OK . The definition of relative discriminant

can also be extended to arbitrary orders in L, still giving an ideal in OK .
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We can also define discriminants of extensions of quotient rings in number field extensions. Let

L : K be a number field extension and p a prime ideal in OK . Then OL/pOL is a vector space

over OK/p of degree equal to n = [L : K], so we can choose a basis {a1 . . . an} in OL/pOL. The

discriminant of this basis is defined as usual, and the discriminant of the quotient ring extension is

the ideal ∆(OL/pOL : OK/p) generated by the discriminants of all such bases. Since this ideal lies

in OK/p, it will either be (0) or OK/p.

Example 1.7.5. Let’s look at the simple absolute case Q(
√
−5) : Q where the ring of integers is

Z[
√
−5]. The discriminant of this extension is −20. Let’s look at the ideal (2). Its quotient ring in

Z[
√
−5] has representatives {0, 1,

√
−5, 1 +

√
−5}. The single Galois action does not alter this set

of representatives, since −
√
−5 ≡

√
−5 (mod 2).

Therefore no matter what basis we choose for this quotient ring over the field Z/(2), the two

rows in the matrix will be equal and so the discriminant of this quotient ring extension is clearly

0. This is related to the fact that (2) ramifies, since the minimal polynomial of
√
−5 factors as a

square modulo (2) and so the Galois action obviously fixes the quotient ring. It is also related to

the fact that −20 ≡ 0 (mod 2), as the next lemma tells us.

Lemma 1.7.6. Let L : K be a number field extension and p a prime ideal in OK . Then

∆(OL : OK) ≡ ∆(OL/pOL : OK/p) (mod p)

Proof. Let {a1 . . . an} be an integral basis for L over K. It is clear that this is also an integral basis

for OL/pOL over OK/p as long as ∆(a1 . . . an) does not lie in p, since {a1 . . . an} is an integral basis

for OL/pOL over OK/p if and only if it is linearly independent over OK/p.

Conversely, starting with an integral basis {a1 . . . an} for OL/pOL over OK/p, we can find

corresponding representatives b1 . . . bn in OL. These are linearly independent over OK/p, in the

sense that
∑n
i=1 kibi = 0 for ki ∈ OK implies that each ki ∈ p. Suppose this occurs and let

v = mini=1...n(vp(ki)). Choose some element l ∈ pv. Then
∑n
i=1

ki
l bi = 0 with ki

l 6≡ 0 (mod p) for

at least some i which is a contradiction unless all the ki were initially 0. Therefore {b1 . . . bn} are

linearly independent over OK , hence K and we have successfully lifted any basis for OL/pOL over

OK/p to an integral basis for L over K. The calculation of the individual discriminants themselves

obviously commute with reduction modulo p and so we are done.

Lemma 1.7.7. Let L : K be a number field extension. Let p be a prime ideal in OK . Then p

ramifies if and only if OL/pOL has nontrivial nilpotents.

Proof. Suppose p ramifies so we can factorize pOL =
∏m
i=1 P

ei
i with e1 > 1. Choose a nonzero

element a ∈ (Pe1−1
1

∏m
i=2 P

ei
i )\pOL. Then a2 ∈ pOL so a (mod pOL) is nilpotent.

Now suppose we have xk ≡ 0 (mod pOL) for some k > 1 and x 6≡ 0 (mod pOL). Letting x′

be a representative for x in OL, we have (pOL, x′)k ⊂ pOL yet (pOL, x′)k−1 6⊂ pOL. In terms of

division of ideals this says that pOL|(pOL, x′)k whilst pOL - (pOL, x′)k−1. It follows that in the

factorization of pOL, some prime above p must have ramification degree greater than 1.
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Theorem 1.7.8. Let L : K be a number field extension and p a prime ideal in OK . Then p ramifies

if and only if it divides the relative discriminant ∆(L : K).

Proof. p divides the relative discriminant if and only if ∆(L : K) ≡ (0) (mod p). By Lemma 1.7.6

this occurs if and only if ∆(OL/pOL : OK/p) = (0).

Let {b1 . . . bn} be a basis for OL/pOL : OK/p. Then let M be the corresponding discriminant

matrix so that ∆(b1 . . . bn) = det(M)2. If det(M)2 = 0 but det(M) 6= 0 then OL/pOL has nontrivial

nilpotents and therefore p ramifies by Lemma 1.7.7. Assume otherwise that det(M) = 0. By linear

algebra this occurs if and only if there are elements ai ∈ OK/p not all zero so that
∑n
i=1 σ(aibi) = 0

for each embedding σ of L : K. In particular, the characteristic polynomial of the linear map

corresponding to multiplication by
∑n
i=1 aibi is xn, So either

∑n
i=1 aibi = 0 or it is nilpotent. In

the first case, we get a contradiction because {b1 . . . bn} was chosen as a basis. in the second case, p

ramifies because of Lemma 1.7.7. This demonstrates the direction that ∆(OL/pOL : OK/p) = (0)

implies p ramifies.

The converse is much easier. If p ramifies, then OL/pOL has nontrivial nilpotents and so the

extension OL/pOL : OK/p is not separable. It follows that there exist a pair of embeddings σ1, σ2

which coincide in OL/pOL which creates two identical rows in any discriminant matrix. Therefore

∆(OL/pOL : OK/P) = (0) and we are done.

We prove some partial results about discriminants. These results are proven the author.

Lemma 1.7.9. Let M : L : K be a tower of number fields, with [M : L] = m and [L : K] = n.

Then by the tower law there are [M : L][L : K] = mn embeddings of M into C that fix K. Let

{σ1 . . . σm} be the set of embeddings of M fixing L and let {τ1 . . . τn} be the set of embeddings of L

fixing K. Then each embedding of M fixing K is given by σi ◦ τj for some i, j.

Proof. The σi ◦ τj gives us mn embeddings of M into C that fix K. To see this, let {a1 . . . an}
be an integral basis for L : K and let {c1 . . . cm} be an integral basis for M : L. It follows that

{a1c1 . . . ancm} is an integral basis for M : K. Then σi◦τj gives a well-defined embedding by sending

avcw to τj(av)σi(cw). Check that this is additive and multiplicative and hence an embedding.

It remains to show that these embeddings are distinct. Suppose σi ◦ τj = σv ◦ τw. Then

restricting to the extension L : K gives τj = τw. Since the embeddings form a groupoid, we also

get σi = σv

Proposition 1.7.10. Let M : L : K be number field extensions. Then ∆(M : K) divides ∆(L :

K)[M :L]∆(M : L)[L:K].

Proof. We use the same setup as in Lemma 1.7.9. Pick integral bases {a1 . . . an} and {c1 . . . cm}
for L : K and M : L respectively. We can arrange the discriminant matrix for the integral basis
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{a1c1 . . . ancm} so that it is a Kronecker product of the discriminant matrices of {a1 . . . an} and

{c1 . . . cm}. We arrange it as
σ1(a1)τ1(c1) . . . σ1(a1)τ1(cm) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ1(a1)τm(c1) . . . σ1(a1)τm(cm) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


2

so that it becomes the Kronecker product:

(

σ1(a1) . . . σ1(an)

. . . . . . . . . . . . . . . . . . . .

σn(a1) . . . σn(an)

⊗
 τ1(c1) . . . τ1(cm)

. . . . . . . . . . . . . . . . . . . . .

τm(c1) . . . τm(cm)

)2

whose determinant is ∆(a1 . . . an)m∆(c1 . . . cm)n. This shows that ∆(a1 . . . an)m∆(c1 . . . cm)n is

contained in the ideal ∆(M : K) and we are done.

Proposition 1.7.11. Let L : K and M : K be number field extensions with L ∩M = K. Let LM

denote their compositum. Then ∆(LM : K) divides ∆(L : K)[M :K]∆(M : K)[L:K].

Proof. By linear algebra, we get

[LM : K] =
[L : K][M : K]

[L ∩M : K]
= [L : K][M : K]

We consider the tower LM : M : K and apply Proposition 1.7.10 to get that ∆(LM : K) divides

∆(LM : M)[M :K]∆(M : K)[LM :M ]. It remains to show that ∆(LM : M) divides ∆(L : K), which

occurs if and only if ∆(L : K) ⊂ ∆(LM : M). Every basis for L : K in OL will also be an basis

for LM : M in OLM by dimensional considerations. Hence the inclusion ∆(L : K) ⊂ ∆(LM : M)

follows.

1.8 The different ideal

Recall that the trace embedding of a ring of integers into Zn is not always surjective. The different

ideal is defined to be the inverse of an ideal called Dedekind’s complementary module, which

measures all elements of the number field which can be trace-embedded into Zn. This definition

will easily extend to relative differents.

The different ideal has many useful applications. It gives us a method for computing the inverse

of ideals. It is also heavily related to the discriminant ideal, in almost a dual nature. In fact, we

shall see that the discriminant ideal is the relative ideal norm of the different ideal, which gives us

a different way to compute the discriminant. The different ideal is easier to work with in proofs,

and can be used to prove results about discriminants.
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Just as discriminants tell us which primes below an extension will ramify, the different ideal

will tell us which primes above an extension are ramified. Again, for monogenic extensions there

is a particularly nice description of the different ideal in terms of the minimal polynomial of the

primitive element. The different ideal will be (f ′(a)), which gives some idea as to why it is called

the different ideal. We will not be proving these results here. For proofs of these results, see [Conb].

We will follow this source to start with, and then move on to [Lan94].

Definition 1.8.1. Let L : K be a number field extension. Dedekind’s complementary module for

this extension is defined as

CL:K = {x ∈ L : TrL:K(xOL) ⊂ OK}

Definition 1.8.2. Let L : K be a number field extension. The relative different δL:K is defined as

the ideal inverse of Dedekind’s complementary module. Clearly OL ⊂ CL:K and so δL:K ⊂ OL.

The next proposition gives us an easy way to calculate the relative different ideal when the base

ring is a PID.

Proposition 1.8.3. Let L : K be a number field extension of degree n so that OK is a PID. Let

{a1 . . . an} be an OK-basis for OL, which is possible since the base ring is a PID. Suppose we have

found elements b1 . . . bn ∈ L so that for all i, j = 1 . . . n,

TrL:K(aibj) = δ(i, j)

where δ is the Kronecker delta. Then {b1 . . . bn} is an OK-basis for CL:K .

Proof. The fractional OL-ideal (b1 . . . bn) will surject onto OnK under the trace map. We already

know that the trace map is injective, and as a result (b1 . . . bn) must be the complimentary ideal.

In this situation {b1 . . . bn} is called the dual basis of {a1 . . . an}.

Example 1.8.4. We will compute the different ideal in quadratic fields and show that our hypotheses

work in this case.

In the case d 6≡ 1 (mod 4) the ring of integers of Q(
√
d) is Z(

√
d). We need to find elements

b1, b2 so that

Tr(b1) = 0, T r(b1
√
d) = 1

Tr(b2) = 1, T r(b2
√
d) = 0

This is a linear algebra problem, for which there must be a unique solution. A quick computation

shows that b1 =
√
d

2d and b2 = 1
2 . As a result CQ(

√
d) = 1

2 (1,
√
d
d ) = 1

2 (
√
d
d ) and so the different ideal

is (2
√
d). In this monogenic case we do get (2

√
d) = ((x2 − d)′(

√
d)). Also, N(2

√
d) = 4d is the

discriminant. Since we are in the Galois case, any ideal in the quadratic field dividing the different

(hence the discriminant) will be ramified.

36



From now on we follow [Lan94, Chapter 3].

Proposition 1.8.5. Let M : L : K be a tower of number fields. Then the relative differents satisfy

δM :K = δM :LδL:K

Proof. Upon inverting the ideals, this is equivalent to showing that

CM :K = CM :LCL:K

Suppose x ∈ CM :L and y ∈ CL:K . If we can show that xy ∈ CM :K , then it will follow that

CM :LCL:K ⊂ CM :K . Note that

TrM :K(xyOM ) = TrL:K(TrM :L(xyOM )) = TrL:K(yTrM :L(xOM )) ⊂ TrL:K(yOL)

so TrL:K(yOL) ⊂ OK and indeed xy ∈ CM :K . To get the other containment, let x ∈ CM :K and

note that

TrM :K(xOM ) = TrL:K(TrM :L(xOM )) = TrL:K(OLTrM :L(xOM )) ⊂ OK

where the second equality holds because OL ⊂ OM and TrM :L is L-linear. Then it follows that

TrM :L(xOM ) ⊂ CL:K by applying definitions. CL:K is just a fractional ideal of OL and so

C−1
L:KTrM :L(xOM ) = TrM :L(xC−1

L:KOM ) ⊂ OL =⇒ xC−1
L:K ⊂ CM :L =⇒ x ∈ CM :LCL:K

It follows that CM :K ⊂ CM :LCL:K and we are done.

We will need some basic results about localization.

Definition 1.8.6. A semilocal ring is a ring with a finite number of maximal ideals.

A local ring is a ring with a single maximal ideal.

Proposition 1.8.7. Every semilocal Dedekind domain R is a PID.

Proof. We apply the Chinese remainder theorem to the finite number of prime ideals p1 . . . pn, to

show that each one is principal. Since R is Dedekind, there is some nonzero element ai ∈ pi\p2
i for

each i = 1 . . . n. For a fixed i the ideals p1 . . . p
2
i . . . pn are coprime so we can apply the Chinese

remainder theorem to get an element bi ∈ R so that bi ≡ ai (mod p2
i ) and bi ≡ 1 (mod pj) for

all j 6= i. As a result the only prime ideal containing bi is pi, and p2
i does not contain it. Hence

pi = (bi) by UPF of ideals.

Proposition 1.8.8. Let i, j be ideals of a Dedekind domain R. If iRp = jRp for every prime ideal

p of R, then i = j.
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Proof. This will follow from unique factorization of ideals in Dedekind domains. The localization

of R at each prime p is a PID with unique maximal ideal p and so iRp = jRp = pn for some positive

integer n. This will tell us that the multiplicities of each prime dividing i and j are the same, so

the ideals themselves must be the same by UPF of ideals.

Definition 1.8.9. Let L : K be a number field extension of degree n and p a prime ideal of OK .

Denote by ∆(OL,p : OK,p) the ideal generated by the discriminants ∆(a1 . . . an) where {a1 . . . an}
is a basis for L over K lying in OL,p.

Denote by COL,p:OK,p the ideal

{x ∈ L : Tr(x)OL,p ⊂ OK,p}

and then define δOL,p:OK,p = C−1
OL,p:OK,p .

Lemma 1.8.10. Let L : K be an extension of number fields, and p a prime ideal of OK . Then

∆(OL,p : OK,p) = ∆(L : K)OK,p

δOL,p:OK,p = δL:KOL,p

Proof. Let {a1 . . . an} be basis for L : K lying in OL,p. Then there is some element b ∈ Z\p ∩ Z so

that {ba1 . . . ban} is a basis for L : K lying in OL, simply by canceling denominators. Note then

that b is invertible in OK,p and so ∆(a1 . . . an) ∈ ∆(L : K)OK,p, and one containment follows. The

reverse containment is obvious, as every basis for L : K lying in OL also lies in OL,p.

The second statement will follow from COL,p:OK,p = CL:KOL,p by inversion. The reverse con-

tainment is clear. Let x ∈ COL,p:OK,p . Then TrL:K(xOL,p) ⊂ OK,p. Again by canceling denom-

inators, there is some y ∈ OL,p so that TrL:K(xyOL) ⊂ OK . Then xy ∈ CL:K , in which case

x ∈ CL:KOL,p.This proves the forward containment.

Proposition 1.8.11. Let L : K be a number field extension. Then we have a relation between the

relative discriminant and relative different that takes the form

∆(L : K) = NL:K(δL:K)

Proof. We will prove the local version for each prime ideal p of OK , that

∆(OL,p : OK,p) = NL:K(δOL,p:OK,p)

We know that OK,p is local and OL,p is semilocal, hence both are PID’s. Therefore there must be

some basis {a1 . . . an} for L over K lying in OL,p so that

∆(OL,p : OK,p) = (∆(a1 . . . an))
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Now take the dual basis {b1 . . . bn} of {a1 . . . an} as described in Proposition 1.8.3. This will generate

the complementary module COL,p:OK,p , which is itself a principal fractional ideal generated by some

element c ∈ L. We have OL,p =
⊕n

i=1 aiOK,p as additive groups and so

COL,p:OK,p = (c) =

n⊕
i=1

caiOK,p

We know that ∆(ca1 . . . can) = NL:K(c)2∆(a1 . . . an) and also

(NL:K(c)) = NL:K(COL,p:OK,p) = NL:K(δ−1
OL,p:OK,p) = NL:K(δOL,p:OK,p)−1

The fact ∆(a1 . . . an)∆(b1 . . . bn) = 1 is easy to spot by using the trace definition of the discriminant.

Also (∆(ca1 . . . can)) = (∆(b1 . . . bn)) since both {b1 . . . bn} and {ca1 . . . can} are OK,p-bases for the

complementary module and so their discriminants differ by a unit. Putting it all together gives

NL:K(δOL,p:OK,p)−2(∆(a1 . . . an)) = (∆(ca1 . . . can)) = (∆(b1 . . . bn)) = (∆(a1 . . . an))−1

so that indeed (∆(a1 . . . an)) = ∆(OL,p : OK,p) = NL:K(δOL,p:OK,p). Now Lemma 1.8.10 gives

∆(L : K)OK,p = ∆(OL,p : OK,p) = NL:K(δOL,p:OK,p) = NL:K(δL:KOK,p) = NL:K(δL:K)OK,p

where the last equality follows since the relative ideal norm commutes with localization. Since ∆(L :

K) and NL:K(δL:K) agree locally for every prime p, they must be the same by Proposition 1.8.8.

Theorem 1.8.12. Let M : L : K be a tower of fields. Then

∆(M : K) = ∆(L : K)[M :L]NL:K(∆(M : L))

Proof. We start with the multiplicativity of the different; Proposition 1.8.5 gives δM :K = δM :LδL:K .

We then apply the relative ideal norm NM :K to both sides and use Proposition 1.8.11 to get

∆(M : K) = NM :K(δM :K) = NM :K(δM :LδL:K) = NL:K(NM :L(δM :L))NL:K(NM :L(δL:K))

Note that δL:K is an ideal in OL and the relative norm NM :L has the effect of raising every element

in OL to the power of [M : L]. Then applying Proposition 1.8.11 again gives

∆(M : K) = NL:K(∆(M : L))NL:K(δ
[M :L]
L:K ) = ∆(L : K)[M :L]NL:K(∆(M : L))

We have an obvious but crucial corollary.

Corollary 1.8.13. Let M : L : K be a tower of fields. Then ∆(L : K) divides ∆(M : K). In fact,

∆(L : K) divides ∆(M : K) with multiplicity at least [M : L].
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Theorem 1.8.14. Let L : K and M : K be two field extensions so that M ∩L = K and the relative

discriminants ∆(L : K) and ∆(M : K) are relatively prime. Let LM denote the compositum of L

and M . Then the relative discriminant of LM : K is ∆(L : K)[M :K]∆(M : K)[L:K] and the ring of

integers of LM is OLOM .

Proof. From the above corollary, we have ∆(L : K)[M :K]|∆(LM : K) and ∆(M : K)[L:K]|∆(LM :

K). By assumption ∆(L : K) and ∆(M : K) are relatively prime and so we get ∆(L : K)[M :K]∆(M :

K)[L:K]|∆(LM : K). Conversely, ∆(LM : K)|∆(L : K)[M :K]∆(M : K)[L:K] by Proposition 1.7.11.

Therefore as ideals we get ∆(LM : K) = ∆(L : K)[M :K]∆(M : K)[L:K].

Moreover, the relative discriminant ∆(L : K)[M :K]∆(M : K)[L:K] corresponds to the order

OLOM and so this must be the ring of integers of LM .
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2 Examples of prime decomposition in number fields

In this section we apply the theory of Section 1 to certain families of number fields. We will compute

a lot of their invariants, namely the absolute discriminant and the ring of integers. Ultimately we

are looking for a classification of the decomposition of integer primes in these extensions. Sections

2.1, 2.3 and 2.5 are based on material from the algebraic number theory course at the summer school

PROMYS Europe 2017. Sections 2.2 and 2.4 are original.

2.1 Prime decomposition in quadratic fields

A quadratic field will always be of the form Q(
√
d) for some square-free integer d. The first thing

we need to do is find the ring of integers. We start with the order Z(
√
d) which has an integral

basis {1,
√
d} and we compute its discriminant as

∆(Z(
√
d)) = det

[
1
√
d

1 −
√
d

]2

= (−2
√
d)2 = 4d

Since d is square-free, the only possible prime square factor of the discriminant is 4. Recall our

algorithm for finding the ring of integers from Section 1.5. We only have to check whether a·1+b·
√
d

2

is an algebraic integer for a, b ∈ {0, 1}. Now 1
2 and

√
d

2 are clearly not algebraic integers, and 0 is

already in Z[
√
d], so we only need to check 1+

√
d

2 .

( 1+
√
d

2 )2 = 1+d+2
√
d

4 and so ( 1+
√
d

2 )2 − 1+
√
d

2 = d−1
4 . As a result the minimal monic polynomial

of 1+
√
d

2 is x2 − x − d−1
4 , and it is clear that 1+

√
d

2 is an algebraic integer if and only if d ≡ 1

(mod 4). In these cases the ring of integers is Z[ 1+
√
d

2 ] since the discriminant now becomes d which

is square-free. In all other cases our original order is the ring of integers.

Theorem 2.1.1. Let K = Q(
√
d) be a quadratic number field with d a square-free nonzero integer.

Then we have the following classification of the ring of integers and discriminant of K:

• d ≡ 1 (mod 4) =⇒ OK = Z[ 1+
√
d

2 ], ∆(K) = d

• d 6≡ 1 (mod 4) =⇒ OK = Z[
√
d], ∆(K) = 4d

It is convenient that the rings of integers have a primitive element in both cases, and so we can

use the original Dedekind–Kummer theorem to decompose primes. Let p be an integer prime. We

are in a Galois extension so symbolically, the ways in which p can decompose are

1. (p) = p1p2, in which case we say p is split completely.

2. (p) = p2, in which case we say p is totally ramified.

3. (p) = (p), in which case we say p is inert.
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• First we look at the case d ≡ 1 (mod 4) where the minimal polynomial of the primitive

element θ = 1+
√
d

2 is f = x2 − x − d−1
4 . We are interested when f has a root modulo p. If

p 6= 2 then we can write the roots in terms of the quadratic formula as

x =
1±
√
d

2

These roots exist and are distinct when d is a quadratic residue modulo p. In that case p is

split by Dedekind–Kummer. If p|d, then the roots exist but are the same, and so p is ramified.

Otherwise, when d is a quadratic non-residue, there is no root and so p is inert. Now we need

to make sure 2 behaves nicely. We have

f ≡ x2 − x ≡ x(x− 1) (mod 2)

so 2 is split, which is nice because d is a quadratic residue modulo 2, and so it fits into the

pattern given by the other primes.

• Now we look at the case d 6≡ 1 (mod 4) where the minimal polynomial of the primitive element

θ =
√
d is f = x2 − d. Here it is obvious that f has 2 distinct roots modulo p if and only if d

is a quadratic residue modulo p. As long as p 6= 2, this occurs if and only if 4d is a quadratic

residue modulo p, in which case p is split. If p|d then f ≡ x2 (mod p), giving us a repeat

root and so p is ramified. In the case p 6= 2, there is no root if and only if 4d is a quadratic

non-residue modulo p, in which case p is inert. Now in the case p = 2 we get

d ≡ 0 (mod 2) =⇒ x2 − d ≡ x2 (mod 2)

d ≡ 1 (mod 2) =⇒ x2 − d ≡ (x− 1)2 (mod 2)

so 2 always ramifies. Therefore we can say in general that p ramifies if and only if p|4d.

Putting all this together gives us a nice classification of prime decomposition in quadratic ex-

tensions only in terms of their discriminant:

Theorem 2.1.2. Let ( ·· ) denote the Legendre symbol. Let p be an integer prime and K a quadratic

number field with discriminant ∆. Then

• p is inert if and only if (∆
p ) = −1

• p is ramified if and only if (∆
p ) = 0

• p is split if and only if (∆
p ) = 1
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2.2 Prime decomposition in pure cubic fields

Pure cubic fields are those of the form Q( 3
√
d) for a cube-free integer d. In particular we will take

d to be positive here since −1 is a cube. Pure cubic fields are never Galois over Q because the

minimal polynomial of 3
√
d is x3 − d which has 1 real root and 2 complex roots. Hence Q( 3

√
d) has

1 real embedding and 2 complex embeddings. In this subsection we will study pure cubic fields.

Let K = Q( 3
√
d). We will find the ring of integers of K. We start with the order Z[ 3

√
d] which

has an integral basis {1, 3
√
d,

3
√
d2}. We compute its discriminant as

∆(Z[
3
√
d]) = det

1 3
√
d

3
√
d2

1 ζ3
3
√
d ζ2

3
3
√
d2

1 ζ2
3

3
√
d ζ3

3
√
d2


2

=

= (1 · (ζ2
3d− ζ3d)− 3

√
d · (ζ3

3
√
d2 − ζ2

3
3
√
d2) +

3
√
d2 · (ζ2

3
3
√
d− ζ3

3
√
d))2 =

= 9d2(ζ2
3 − ζ3)2 = 9d2(

−1 +
√
−3

2
+

1 +
√
−3

2
)2 = −27d2

The integer primes whose square divide −27d2 are 3 and the prime divisors of d. We call these

primes suitable in this subsection. We need to check when a+b
3√
d+c

3√
d2

p is an algebraic integer for a

suitable prime p and integers 0 ≤ a, b, c < p. We can do so by computing the minimal polynomial

using remark 1.5.9. Fix {1, 3
√
d,

3
√
d2} as a Q-basis for the K. We find that the matrix corresponding

to multiplication by a+b
3√
d+c

3√
d2

p is

M =


a
p

cd
p

bd
p

b
p

a
p

cd
p

c
p

b
p

a
p


The characteristic polynomial of M is

f = x3 − 3a

p
x2 +

3bcd− 3a3

p2
x− a3 + b3d+ c3d2 − 3abcd

p3

Suppose p 6= 3. Then we must have a = 0 in order for 3a
p to be an integer. This gives

f = x3 +
3bcd

p2
x− b3d+ c3d2

p3

3bcd
p2 must be an integer and since p 6= 3 it must divide b, c or d. p divides b or c if and only if they

equal 0 by our restriction. However if either of them equals 0 then either c3d2

p3 or b3d
p3 must equal 0.

Since b3d+c3d2

p3 must be an integer then either c3d2

p3 or b3d
p3 is an integer. Either way, p must divide

d otherwise both b and c would be 0, in which case f = x3.

As a result b3+c3d
p must be an integer since d is cube-free. We must set b = 0 because p divides

c3d and so it divides b3. In this case c3d2

p3 must be an integer so we must have p2|d in order to avoid
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p dividing c. But in this case f becomes x3 − c3d2

p3 , whose root is
3√
d2

p . This is already in our order

because p3|d2 so the fraction cancels. Therefore we get no new algebraic integers in the case p 6= 3.

In the case p = 3 we get

f = x3 − ax2 +
bcd− a3

3
x− a3 + b3d+ c3d2 − 3abcd

27

In the case 3|d we must have a = 0 anyway since bcd−a3
3 is to be an integer, implying that 3 divides

a. This case is exactly the same as before and so it gives no new algebraic integers. This leaves us

with the case p = 3 and 3 - d, where the order is at most one algebraic integer away from becoming

the ring of integers, whose discriminant would have to be −3d2. This can be seen since the only

suitable prime left is 3 and 3 - d.

We focus on the remaining case p = 3 and 3 - d. In the case a = 0, bcd−a3
3 must be an integer

so either b = 0 or c = 0 since 3 divides bcd. In these cases f becomes either x3 − b3d
27 or x3 − c3d2

27 .

Since 3 - d we get that both b and c are 0 which makes f = x3.

In the case that either b = 0 or c = 0 we must have a = 0 since bcd−a3
3 is an integer. This is the

previous case which gives us f = x3. Therefore we can assume that none of the coefficients are 0.

We can also assume that a = 1. Now we have some casework to do.

• In the case b = c = 1, we get f = x3− x2 + d−1
3 x− 1−2d+d2

27 . d−1
3 must be an integer so d ≡ 1

(mod 3). Also 1−2d+d2−3d
27 = (d−1)2

27 must be an integer which occurs if and only if d ≡ 1

(mod 9) which automatically implies d ≡ 1 (mod 3). So in the case d ≡ 1 (mod 9) we get a

nontrivial algebraic integer 1+
3√
d+

3√
d2

3 .

• In the case b = c = 2, we get f = x3−x2+ 4d−1
3 x− 1−4d+8d2

27 . 4d−1
3 must be an integer so d ≡ 1

(mod 3). Also 8d2−4d+1
27 must be an integer but d ≡ 1 (mod 3) which means 8d2− 4d+ 1 ≡ 2

(mod 3) so the numerator is not divisible by 3. This case fails to give an algebraic integer.

• In the case b = 2, c = 1, we get f = x3 − x2 + 2d−1
3 x− 1+2d+d2

27 . 2d−1
3 must be an integer so

d ≡ 2 (mod 3). Also 1+2d+d2

27 = (d+1)2

27 must be an integer which occurs if and only if d ≡ 8

(mod 9) which automatically implies d ≡ 2 (mod 3). So in the case d ≡ 8 (mod 9) we have

the nontrivial algebraic integer 1+2
3√
d+

3√
d2

3 .

• In the case b = 1, c = 2, we get f = x3 − x2 + 2d−1
3 x − 1−5d+8d2

27 . 2d−1
3 must be an integer

so d ≡ 2 (mod 3). Also 8d2−5d+1
27 must be an integer but d ≡ 2 (mod 3) which means

8d2 − 5d + 1 ≡ 1 (mod 3) so the numerator is not divisible by 3. This case fails to give an

algebraic integer.

Now we show that in the special cases d ≡ ±1 (mod 9) the new algebraic integers are primitive

elements for the ring of integers. In the case d ≡ 1 (mod 9) the integral basis for the ring of integers

of Q( 3
√
d) is {1, 3

√
d, 1+

3√
d+

3√
d2

3 }. The minimal polynomial of 1+
3√
d+

3√
d2

3 is x3−x2 + d−1
3 x− (d−1)2

27 .

We have ( 1+
3√
d+

3√
d2

3 )2 = 2d+1+(d+2)
3√
d+3

3√
d2

9 and ( 1+
3√
d+

3√
d2

3 )2− 1+
3√
d+

3√
d2

3 = 2d−2+(d−1)
3√
d

9 where
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2d − 2 and d − 1 are integers divisible by 9. Therefore 3
√
d ∈ Z[ 1+

3√
d+

3√
d2

3 ] and so this is the ring

of integers.

In the case d ≡ −1 (mod 9) the integral basis for the ring of integers of Q( 3
√
d) is {1, 3

√
d, 1+2

3√
d+

3√
d2

3 }.
The minimal polynomial of 1+2

3√
d+

3√
d2

3 is x3 − x2 + 2d−1
3 x − (d+1)2

27 . We have (1+2
3√
d+

3√
d2

3 )2 =
4d+1+(d+4)

3√
d+6

3√
d2

9 and ( 1+2
3√
d+

3√
d2

3 )2 − 2 1+2
3√
d+

3√
d2

3 = 4d−5+(d−8)
3√
d

9 where 4d− 5 and d− 8 are

integers divisible by 9. Therefore 3
√
d ∈ Z[ 1+2

3√
d+

3√
d2

3 ] and so this is the ring of integers.

Theorem 2.2.1. We have the following classification for the discriminant and ring of integers of

a pure cubic number field Q( 3
√
d) for a positive, cube-free integer d:

• d ≡ 1 (mod 9) =⇒ OK = Z[ 1+
3√
d+

3√
d2

3 ],∆(K) = −3d2

• d ≡ −1 (mod 9) =⇒ OK = Z[ 1+2
3√
d+

3√
d2

3 ],∆(K) = −3d2

• d 6≡ ±1 (mod 9) =⇒ OK = Z[ 3
√
d],∆(K) = −27d2

We will now look at how integer primes decompose in each of these extensions. Again we are

lucky because in all cases there is a primitive element, so we can use the original Dedekind–Kummer

theorem. However the special cases are quite difficult so we will be using the generalized version.

• Let d 6≡ ±1 (mod 9), in which case the ring of integers is Z[ 3
√
d]. The primitive element has

minimal polynomial x3 − d. Let p be an integer prime not dividing the discriminant −27d2.

Then the roots of x3 ≡ d (mod p) will determine the decomposition of p.

If 3| (p − 1) = |(Z/(p))×| then Z/(p)× has a subgroup of order 3 by Cauchy’s theorem for

groups. Therefore the equation x3 ≡ 1 (mod p) has 3 roots, namely the elements of the

subgroup of order 3. As a result the equation x3 ≡ d (mod p) either has no roots or 3 roots,

because Z/(p) has the third roots of unity. These correspond to the prime p being inert or

split completely respectively. If x3 ≡ d (mod p) has a root we say d is a cubic residue modulo

p.

If 3 6 |(p − 1) then it turns out that every element of (Z/(p))× is a cubic residue with each

equation of the form x3 ≡ a (mod p) for a ∈ (Z/(p))× having exactly one root. Suppose

not, then one of these equations will have at least 2 roots by the pigeonhole principle, and by

factoring this polynomial we find that in fact it has 3 roots. Let x3− a be such a polynomial,

with roots a1, a2, a3 modulo p. Then the quotients a1
a2
, a2a3 ,

a3
a1

are roots of unity. These form

a subgroup of order 3 and so actually 3|(p− 1), a contradiction.

Therefore in the case 3 6 |(p − 1) when p does not divide the discriminant, the polynomial

x3−d splits into two factors modulo p. Hence the prime p will split incompletely into 2 prime

ideals.

Now let p be an integer prime dividing the discriminant. If it divides d then x3 − d ≡ x3

(mod 3) and so the prime p totally ramifies as

(p) = (p,
3
√
d)3
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If p = 3 and it does not divide d, then x3 − d ≡ (x − d)3 (mod 3) and so we get total

ramification of 3 as

(3) = (3,
3
√
d− d)3

• Let d ≡ 1 (mod 9), in which case the ring of integers is Z[ 1+
3√
d+

3√
d2

3 ]. The primitive element

has minimal polynomial x3−x2 + d−1
3 x− (d−1)2

27 . We have x3−x2 + d−1
3 x− (d−1)2

27 ≡ x3−x2 ≡
x2(x− 1) (mod 3) and so

(3) = (3,
3
√
d)2(3,

3
√
d− 1)

Note that the ideal (3) of Z[ 1+
3√
d+

3√
d2

3 ] is clearly contained in Z[ 3
√
d]. Since the conductor

ideal corresponding to the order Z[ 3
√
d] contains (3), all other integer primes, being coprime

to 3, will factor in the same way as in the first case.

• Let d ≡ −1 (mod 9), in which case the ring of integers is Z[ 1+2
3√
d+

3√
d2

3 ]. The primitive

element has minimal polynomial x3−x2 + 2d−1
3 x− (d+1)2

27 . We have x3−x2 + 2d−1
3 x− (d+1)2

27 ≡
x3 − x2 ≡ x2(x− 1) (mod 3) and so

(3) = (3,
3
√
d)2(3,

3
√
d− 1)

Note that the ideal (3) of Z[ 1+2
3√
d+

3√
d2

3 ] is clearly contained in Z[ 3
√
d]. Since the conductor

ideal corresponding to the order Z[ 3
√
d] contains (3), all other integer primes, being coprime

to 3, will factor in the same way as in the first case.

Theorem 2.2.2. We have the following classification for prime decomposition of an integer prime

p in a pure cubic number field Q( 3
√
d), for d a positive integer which is cube-free.

• In the case p = 3, if d ≡ ±1 (mod 9) then

(3) = (3,
3
√
d)2(3,

3
√
d− 1)

and otherwise if d 6≡ ±1 (mod 9) then

(3) = (3,
3
√
d− d)3

• If p|d then p totally ramifies as

(p) = (p,
3
√
d)3

• If p ≡ 1 (mod 3) and d is a cubic residue modulo p, then p splits completely.

• If p ≡ 1 (mod 3) and d is a cubic non-residue modulo p, then p is inert.

• If p ≡ 2 (mod 3) and p 6 |d, then p splits incompletely as the product of 2 prime ideals, one

with inertia degree 1 and the other with inertia degree 2.
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2.3 Prime decomposition in cyclotomic fields

A cyclotomic field in general is a field of the form Q(ζn) for some primitive nth root of unity ζn.

Firstly we will compute the discriminant and ring of integers of cyclotomic fields in general. Then

we will focus on prime decomposition in prime power cyclotomic fields, which are of the form Q(ζpm)

for some prime p ≥ 3 and a positive integer m.

We know that ζn is a root of xn − 1, but this polynomial is not irreducible of course. For every

number d that divides n, the polynomial xd − 1 divides xn − 1.

We denote by Φn the minimal polynomial of ζn. If n is prime we know that Φn = xn−1
x−1 by using

Eisenstein’s irreducibility criterion. We also know that

xp
m − 1

x− 1
=

m∏
d=1

xp
d − 1

xpd−1 − 1

where each term on the RHS is irreducible, again by Eisenstein. Therefore we must have

Φpm =
xp

m − 1

xpm−1 − 1

since the other factors are minimal polynomials for ζpk with k < m. Now look at the general case.

Factorize n into primes as
∏s
i=1 p

ei
i . Then Φpeii

|Φn for each i as we’ve discussed. Moreover, the

Φpeii
are pairwise coprime (since they do not share any roots) and so we must have

Φn =

s∏
i=1

Φpeii

Looking at degrees, we have deg(Φpeii
) = peii − p

ei−1
i = φ(peii ), which is Euler’s Totient function.

Hence deg(Φn) = φ(n) by the weak multiplicativity of φ. As a result [Q(ζn) : Q] = φ(n).

It is clear that cyclotomic fields are Galois extensions of Q. For the cyclotomic field Q(ζn),

we will start with the order Z[ζn], which is monogenic. Therefore its discriminant will equal the

discriminant of the minimal polynomial of ζn, which is Φn. We will first compute the discriminant

in the case n = pm. We start with

disc(Φpm) =
∏

j<k:(j,p)=(k,p)=1

(ζjpm − ζkpm)2 =

= (−1)
φ(pm)(φ(pm)−1)

2

∏
j 6=k:(j,p)=(k,p)=1

(ζjpm − ζkpm)

We have (−1)
φ(pm)(φ(pm)−1)

2 = (−1)
φ(pm)

2 since φ(pm)−1 is odd. Note that (xp
m−1−1)Φpm = xp

m−1

and differentiating gives us

pmxp
m−1 = (xp

m−1

− 1)Φ′pm + pm−1xp
m−1−1Φpm
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However, we have Φpm(ζjpm) = 0 for all j coprime to p and also

Φ′pm =
∑

j:(j,p)=1

∏
k 6=j:(k,p)=1

(x− ζkpm)

which means that for all j coprime to p we have

Φ′pm(ζjpm) =
∏

k 6=j:(k,p)=1

(ζjpm − ζkpm)

Putting it all together gives us

∏
k 6=j:(k,p)=1

(ζjpm − ζkpm) =
pmζ

j(pm−1)
pm

ζjp
m−1

pm − 1

so the formula for the discriminant becomes

disc(Φpm) = (−1)
φ(pm)

2

∏
j:(j,p)=1

pmζ
j(pm−1)
pm

ζjp
m−1

pm − 1
= (−1)

φ(pm)
2

pm·φ(pm)∏
j:(j,p)=1(ζjp

m−1

pm − 1)

where ζjp
m−1

pm is a primitive pth root of unity and so∏
j:(j,p)=1

(ζjp
m−1

pm − 1) = NQ(ζp)(ζp − 1)
φ(pm)
p−1 = Φp(1)

φ(pm)
p−1

Note that Φp(1) =
∑p−1
i=0 1i = p and so finally

disc(Φpm) = (−1)
φ(pm)

2
pmφ(pm)

p
φ(pm)
p−1

= (−1)
φ(pm)

2 pφ(pm)(m− 1
p−1 )

We keep the discriminant in this format so that we can generalize to all cyclotomic fields. There

is a formula for the discriminant of a product of polynomials in terms of their discriminants and

pairwise resultants. For n =
∏s
i=1 p

ei
i it tells us that

disc(Φn) = disc(

s∏
i=1

Φpeii
) = (

s∏
i=1

disc(Φpeii
))(
∏
i<j

res(Φpeii
,Φ

p
ej
j

))

Note that the resultant res(Φpeii
,Φ

p
ej
j

) is invariant under addition of a multiple of one term to the

other. Therefore we technically need to carry out the Euclidean algorithm on (Φpeii
,Φ

p
ej
j

). Firstly

we do it on (xp
ei
i − 1, xp

ej
j − 1) to get x(p

ei
i ,p

ej
j ) − 1 = x − 1, because this is actually the same as

doing the Euclidean algorithm on (peii , p
ej
j ) which are coprime. Hence there are integer polynomials

A,B so that

A
xp

ei
i − 1

x− 1
+B

xp
ej
j − 1

x− 1
= 1
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Since Φpeii
|x
p
ei
i −1
x−1 and Φ

p
ej
j
|x
p
ej
j −1
x−1 we get some corresponding integer polynomials A′, B′ satisfying

A′Φpeii
+B′Φ

p
ej
j

= 1

so the resultant res(Φpeii
,Φ

p
ej
j

) is either 1 or −1. Brill’s theorem will tell us the sign of the discrim-

inant so we do not need to worry. φ(n)
2 is the number of pairs of complex conjugate embeddings

and so the sign is (−1)
φ(n)

2 . Therefore we have

disc(Φn) = (−1)
φ(n)

2 |
s∏
i=1

disc(Φpeii
)| = (−1)

φ(n)
2

s∏
i=1

p
φ(p

ei
i )(ei− 1

pi−1 )

i

We will find the ring of integers of prime power cyclotomic fields first. The only prime whose square

might divide the discriminant of Φpe is p. Therefore the conductor of Z[ζpe ] contains the ideal (p)

by Corollary 1.5.22. We factorize (p) in Z[ζpe ] as

Φpe(1) = p =
∏

k:(k,p=1)

(ζkpe − 1) = (ζpe − 1)φ(pe)
∏

k:(k,p=1)

(ζkpe − 1)

(ζpe − 1)

where
(ζkpe−1)

(ζpe−1) =
∑k−1
j=0 ζ

j
pe is a unit in the order, since it has norm 1. Therefore we have

(p) = ((ζpe − 1)φ(pe)
∏

k:(k,p=1)

(ζkpe − 1)

(ζpe − 1)
) = (ζpe − 1)φ(pe)

This factorization will also occur in the ring of integers. In particular, the ideal (ζpe − 1) must be

prime in the ring of integers because φ(pe) = [Q(ζpe) : Q]. It follows that the conductor ideal is

some power of this ideal. Every prime ideal except (ζpe − 1) is therefore invertible because it is

coprime to the conductor ideal. However, (ζpe − 1) is also invertible since it is principal, and so

every prime ideal of Z[ζpe ] is invertible. It follows that Z[ζpe ] is the ring of integers.

Now in general Q(ζn) is the compositum of the fields Q(ζpeii
) and so the discriminant of Q(ζpeii

)

will divide the discriminant of Q(ζn) for each prime power divisor peii of n. Moreover we have

shown that the discriminant of Q(ζn) divides the product of the discriminants of Q(ζpeii
), which are

pairwise coprime. Therefore we must have that the discriminant of Q(ζn) is the discriminant of Φn

up to sign. But they have the same sign by checking with Brill’s theorem. Therefore the ring of

integers of Q(ζn) is indeed Z[ζn].

Theorem 2.3.1. Let Q(ζn) be a cyclotomic field. Factorize n into integer primes as
∏s
i=1 p

ei
i .

Then its discriminant is

∆(Q(ζn)) = (−1)
φ(n)

2

s∏
i=1

p
φ(p

ei
i )(ei− 1

pi−1 )

i

and its ring of integers is OQ(ζn) = Z[ζn].

49



Now we will classify the prime decomposition in prime power cyclotomic fields. The ring of

integers Z[ζpm ] is monogenic with minimal polynomial Φpm . We have already classified the ramified

primes; the only prime that ramifies is p and it ramifies completely as

(p) = (ζpm − 1)φ(pm)

Let q be an integer prime not equal to p. Then Φpm will factor into d irreducible polynomials

modulo q for some d that divides φ(pm), each with degree c = φ(pm)
d . This is due to fact that we

are in a Galois extension. Let’s say that the factorization is

Φpm ≡
d∏
i=1

fi (mod q)

Then the fi are pairwise coprime, since q does not ramify. There must be a Galois extension of

Z/(q) = Fq of degree c where f1 splits. This extension is the finite field Fqc with qc elements. Note

that two finite fields are isomorphic if and only if they have the same number of elements. Therefore

each of the fi splits in Fqc , along with Φpm .

If Φpm has a root in Fqc , it will split completely there and so we can infer that in Fq it will

factor into at least d irreducible factors. Since Φpm = xp
m
−1

xpm−1−1
we need a root of xp

m − 1 which is

not a root of xp
m−1 − 1. The roots of xp

m − 1 form a subgroup of F×qc for all c.

A root of xp
m −1 which is not a root of xp

m−1 −1 will generate all the other roots. Therefore in

order for xp
m − 1 to split in F×qc , we need pm distinct roots of xp

m − 1. This is equivalent to finding

a subgroup of F×qc of order pm, for which we require pm|qc − 1. Conversely, if pm|qc − 1, then there

is a subgroup of order pm by Sylow’s theorem, and all of its elements will be roots of xp
m − 1.

Therefore we get the following result. q splits into a product of d ideals if and only if pm|q
φ(pm)
d −1

and pm - q
φ(pm)
k − 1 for any k divisible by d. This will ensure that q splits into d ideals and no more

than d ideals. This condition can be rewritten as ordZ/(pm)(q) = φ(pm)
d .

Theorem 2.3.2. We get the following classification of prime decomposition in a prime power

cyclotomic field Q(ζpm):

• The prime p ramifies completely as

(p) = (ζpm − 1)φ(pm)

• Let q be an integer prime not equal to p. Write ordZ/(pm)(q) = φ(pm)
d for some positive integer

d. Then q factors into a product of d prime ideals, each with inertia degree φ(pm)
d .

2.4 Cubic fields in general

There are three types of cubic fields, sorted by the nature of their embeddings.
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• Cyclic cubic fields, which are Galois cubic fields, and must necessarily be totally real.

• Totally real cubic fields which are not Galois.

• Cubic fields with one real embedding and a pair of complex conjugate embeddings.

For non-Galois cubic fields, their normal closure is a degree 2 extension by Galois theory. In

these cases we will find the quadratic field that we must append to the cubic field in order to get

the normal closure.

Proposition 2.4.1. Let K be a number field with absolute discriminant ∆(K). Then the normal

closure of K contains the quadratic subfield Q(
√

∆(K)) when ∆(K) is not a perfect square.

Proof. The determinant
√

∆(K) of the discriminant matrix is written in terms of elements of the

different embeddings of K. The normal closure contains these elements and hence
√

∆(K).

Corollary 2.4.2. A number field K where [K : Q] is odd and whose absolute discriminant is not

a perfect square cannot be Galois over Q.

In particular, any cubic field is an extension of Q by a root of some irreducible polynomial

x3 + ax+ b whose discriminant is −4a3 − 27b2. If this discriminant is not a square, then the cubic

field is not Galois. The following theorem proves the converse.

Theorem 2.4.3. The number field Q(x)/(x3 + ax + b) is Galois over Q for some irreducible

x3 + ax+ b if and only if the discriminant −4a3 − 27b2 is a perfect square.

Proof. We’ve already proven the forward direction. Now assume that the above field is not Galois.

Let’s say we have a root θ of x3 +ax+b so that x3 +ax+b = (x−θ)(x2 +vx+w) for some algebraic

numbers v, w. Then we must have v = θ, w − θ2 = a and b = −θw by comparing coefficients. Let

θ1, θ2 be the other roots so that θ1 + θ2 = −θ and θ1θ2 = a+ θ2 by Vieta formulae. Then

−4a3 − 27b2 = (θ − θ1)2(θ − θ2)2(θ1 − θ2)2 = (3θ2 + a)2∆

by various substitutions, where ∆ is the discriminant of the quadratic x2 + vx + w. (3θ2 + a)2 is

a square in our cubic field and so ∆ is a square if and only if the discriminant of x3 + ax + b is

a square. But a root of (x2 + vx + w) exists in our cubic field if and only if ∆ is a square. We

assumed the cubic field is not Galois so the discriminant cannot be a square. We are done.

To tell whether the cubic field is totally real or has a pair of complex conjugate embeddings,

just look at the sign of the discriminant. Now we can tell what kind of cubic field we have just by

staring at the corresponding cubic polynomial’s discriminant.
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Example 2.4.4. Let K = Q(x)/(x3 + 5x + 10). This is a cubic extension, as x3 + 5x + 10 is

irreducible by Eisenstein’s criterion. Its discriminant is −600− 2700 = −3300, so we can say that

K is not Galois and has a pair of complex conjugate embeddings. Its Galois closure must be its

compositum with the quadratic field Q(
√
−33). We can work out its ring of integers abstractly.

We start with the order Z[θ] for a root θ of x3 + 5x + 10, whose discriminant is also −3300

by considering the Vandermonde matrix of x3 + 5x + 10. Note that −3300
4 = −825 is not a valid

discriminant by Stickelberger’s theorem since it is congruent to 3 modulo 4. Hence we only need

to check the prime 5 as a denominator. We need to check if a+bθ+cθ2

5 is an algebraic integer for

0 ≤ a, b, c < 5.

The linear map corresponding to multiplication by this element is the matrix

M =


a
5 −2c −2b
b
5

a−5c
5 −(b+ 2c)

c
5

b
5

a−5c
5


using the integral basis 1, θ, θ2 and the relation θ3 = −5θ − 10. We only need to look at the trace

and norm in order to show that it cannot be an algebraic integer. The trace is 3a−10c
5 , and so a

must be 0 in order for the trace to be an integer. The norm is the determinant which is

−2c(
−bc

5
+
bc+ 2c2

5
)− 2b(

b2

25
+
c2

5
) =

1

25
(20c3 − 2b3 + 10bc2)

In order for this to be an integer, 5 must divide b3 and so b must be 0. Then c must also be zero as

the determinant becomes 4c3

5 . As a result Z[θ] really is the ring of integers.

Note that we did not need to find the ring of integers to factor any integer primes other than

2, 3, 5, 11. For example we could have factored 7 by seeing that

x3 + 5x+ 10 ≡ (x− 2)(x2 + 2x+ 2) (mod 7)

Since x2 + 2x+ 2 has no roots modulo 7, we have

(7) = (7, θ − 2)(7, θ2 + 2θ + 2)

But now that we know the ring of integers, we can factor any integer prime, in particular those

which ramify. For example, 5 totally ramifies as (5) = (5, θ)3.

We will give a criterion in certain cases that describes the type of ramification that occurs in

cubic fields. We either get total ramification, or what we call partial ramification.

Proposition 2.4.5. Let Q(x)/(x3 + ax+ b) be a cubic field (with x3 + ax+ b irreducible) so that

its ring of integers is Z[θ] for a root θ of x3 + ax + b. Let p ≥ 5 be an integer prime dividing

−4a3 − 27b2. Then p totally ramifies if and only if p|(a, b), and ramifies partially otherwise.
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Proof. p totally ramifies if and only if x3 + ax + b ≡ (x + c)3 (mod p) for some c ∈ Z/(p) by the

original Dedekind–Kummer method. Differentiation respects reduction modulo p and so (x3 +ax+

b)′ ≡ 3x2 +a ≡ 3(x+ c)2 (mod p) in this case. Since 3 is invertible modulo p this occurs if and only

if (x3 + ax+ b)′|x3 + ax+ b (mod p). We now prove the converse, that (x3 + ax+ b)′|x3 + ax+ b

(mod p) implies total ramification. Assuming this, we get that the polynomial shares two roots

with the derivative. Let θ0, θ1, θ2 be the roots of x3 + ax+ b. Then by assumption we have

(x− θ0)(x− θ1) + (x− θ0)(x− θ2) + (x− θ1)(x− θ2)|(x− θ0)(x− θ1)(x− θ2) (mod p)

Let’s assume W.L.O.G that θ0, θ1 are the two roots of 3x2 + a mod p. Then we get

(θ0 − θ1)(θ0 − θ2) ≡ (θ1 − θ0)(θ1 − θ2) ≡ 0 (mod p)

Let’s assume θ0 ≡ θ1 (mod p) because all other cases imply total ramification. Then x3 + ax + b

becomes (x− θ1)2(x− θ2) and its derivative becomes (x− θ1)(x− θ1+2θ2
3 ) ≡ (x− θ1)2 (mod p). In

particular this means that θ1+2θ2
3 = θ1 and so θ1 = θ2. This also implies total ramification.

We have shown that total ramification occurs if and only if 3x2 +a divides x3 +ax+b modulo p,

which occurs if and only if we can write x3+ax+b ≡ (x2+ a
3 )(x+c) (mod p) for some integer c. But

comparing coefficients tells us that c ≡ 0 (mod p) and a ≡ b ≡ 0 (mod p) as long as 3 6≡ 1 (mod p).

This condition is met since p 6= 2. Conversely, a ≡ b ≡ 0 (mod p) implies that x3 + ax + b ≡ x3

(mod p) and so we get total ramification. This proves that total ramification of p ≥ 5 occurs if and

only if it divides a and b.

Using Proposition 2.4.5, we can get unramified extensions of degree 3 for certain quadratic fields.

This is important because by class field theory, it tells us that the class group of the quadratic field

has 3-torsion. We will state a criterion and give some examples.

Theorem 2.4.6. Let K = Q(x)/(x3 + ax+ b) be a cubic field and let ∆ = −4a3 − 27b2 so that

• (a, b) = 1

• ∆ is square-free

• ∆ is not divisible by 2 or 3

Let L = Q(
√

∆) be the associated quadratic field. Then LK : L is an unramified extension of

degree 3, and so Cl(L) has 3-torsion.

Proof. ∆ is square-free and so K is monogenic, and has ring of integers generated by a root θ of

the polynomial x3 + ax + b. We apply Proposition 2.4.5. The prime divisors of ∆ are not 2 or 3

nor do they divide (a, b) = 1. Hence all integer primes that ramify in K : Q will ramify partially,

and so they cannot totally ramify in LK : Q either.

Now suppose some prime ideal p of OL is ramified in LK : L. Then it must be totally ramified

since it is a Galois extension of prime degree. As a result the integer prime p below p has ramification
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degree divisible by 3 in LK : Q. However p can only ramify partially in K : Q with ramification

degree 2, so its ramification degree over LK : Q is either 0, 2 or 4. This gives a contradiction.

Therefore LK : L is unramified.

Example 2.4.7. Here are some examples. The two simplest examples are taking a = 1, b = 1

and a = −1, b = 1. These will give discriminants −31 and −23 respectively, and all conditions of

Theorem 2.4.6 are satisfied. As a result, 3 divides the class numbers of Q(
√
−31) and Q(

√
−23).

In fact, the class numbers of these quadratic fields is 3, so the unramified extensions given by

Theorem 2.4.6 are the Hilbert class fields of these quadratic fields.

Here is a table of further examples:

Cubic Polynomial Discriminant Associated quadratic field Class number of quadratic field

x3 + 2x+ 1 −59 Q(
√
−59) 3

x3 + 4x+ 1 −283 Q(
√
−283) 3

x3 − 4x+ 1 229 Q(
√

229) 3

x3 + 1x+ 3 −247 Q(
√
−247) 6

x3 − 1x+ 3 −239 Q(
√
−239) 15

x3 − 2x+ 3 −211 Q(
√
−211) 3

x3 − 5x+ 1 473 Q(
√

473) 3

x3 − 5x+ 3 257 Q(
√

257) 3

2.5 Quadratic reciprocity via prime decomposition

In this short subsection we prove quadratic reciprocity. Let L = Q(ζp) be a prime cyclotomic field.

It will have discriminant

∆(L) = (−1)
p−1
2 pp−2

p divides ∆(L) with odd multiplicity. Because the cyclotomic field is Galois over Q, it will have a

quadratic subfield K = Q(
√

∆(L)) = Q(

√
(−1)

p−1
2 p). The discriminant of K is always ∆(K) =

(−1)
p−1
2 p since (−1)

p−1
2 p ≡ 1 (mod 4) by Stickelberger’s theorem.

• Let q be an integral prime. Firstly, q ramifies in K if and only if q = p. Furthermore, q

ramifies in L if and only if q = p. As a result (pq ) = 0 ⇐⇒ ( qp ) = 0 from our classification of

prime decomposition in cyclotomic and quadratic fields. From now on assume q 6= p.
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• If p ≡ 1 (mod 4) and (pq ) = 1, then ∆(K) = p and so q will split in K. As a result q will

split into an even number of primes in L : Q and so ordp(q) = p−1
d for some d even. Then

q
p−1
2 ≡ 1 (mod p) and so ( qp ) = 1 by Euler’s criterion.

• If p ≡ 3 (mod 4) and (pq ) = 1, then ∆(K) = −p and so q will split in K if and only if q ≡ 1

(mod 4) since (−pq ) = (−1)
q−1
2 (pq ) = (−1)

q−1
2 . When q splits we have ( qp ) = 1 in a similar

fashion to the above case. If q does not split in K then it can only split into an odd number of

primes in L since [L : K] = p−1
2 is odd. Thus ordp(q) = p−1

d for some d odd and so ( qp ) = −1

by Euler’s criterion.

• If p ≡ 3 (mod 4) and (pq ) = −1, then ∆(K) = −p and so q will be inert in K if and only if

q ≡ 1 (mod 4) since (−pq ) = (−1)
q−1
2 (pq ) = (−1)

q+1
2 . If q remains inert in K then it can only

split into an odd number of primes in L since [L : K] = p−1
2 is odd. As a result ordp(q) = p−1

d

for some d odd and so (pq ) = −1 by Euler’s criterion. If q splits in K then (pq ) = 1 in a similar

fashion to the second case.

• If p ≡ 1 (mod 4) and (pq ) = −1, then ∆(K) = p and so q will be inert in K. This is the hardest

case and we will have to consider the Artin symbol of the prime q in the extension L : Q.

We claim that it is the automorphism σ sending ζp to ζqp . To see this, note that the order of

this automorphism is ordp(q) = p−1
d where d is the number of primes that q splits into in the

extension L : Q. Since we are in a Galois extension, p−1
d is the inertia degree of q in L : Q.

Let q be a prime above q in this extension. The fact that σ is the Artin symbol is a simple

consequence of the Freshman’s dream, since (
∑p−1
i=0 aiζ

i
p)
q ≡

∑p−1
i=0 a

q
i ζ
qi
p ≡ σ(

∑p−1
i=0 aiζ

i
p)

(mod q) for any integers ai.

The Artin symbol of q in L : Q will restrict to the Artin symbol of q in K : Q under the

quotient map Gal(L : Q) → Gal(K : Q). As we have seen, q splitting into an even number

of factors in L is equivalent to d being even, which occurs if and only if ( qp ) = 1 by Euler’s

criterion. From our classification of prime decomposition in quadratic fields, the fiber of the

trivial automorphism in the quotient Gal(L : Q) → Gal(K : Q) must correspond to the p−1
2

quadratic residues modulo p, when realizing Gal(L : Q) as (Z/(p))×. It follows that ( qp ) = 1

would imply that q splits in K in this case. Hence q being inert would imply that ( qp ) = −1.

Summarizing all of the above cases, we get quadratic reciprocity for odd positive primes p, q.

(
q

p
) = (−1)

(p−1)(q−1)
4 (

p

q
)
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3 Ring of adeles of a number field

The ring of adeles AK of a number field K is what we get by looking at the completion of K at each

of its places (absolute values) simultaneously. Each prime ideal of OK and every embedding of K

into C gives rise to an absolute value, and we will sometimes write the prime ideal or embedding

in place of their induced absolute value. A theorem of Ostrowski states that all absolute values are

equivalent to these. For a proof of Ostrowski’s theorem see [Gim], although we will not be using it

in this section.

Loosely speaking, AK is a restricted direct product of all completions of K, where we make a

restriction so that AK can be a locally compact topological ring. We will use the theory developed

to then prove Dirichlet’s unit theorem and the finiteness of the ideal class group. Throughout this

section we follow [Wes].

3.1 Definitions of adeles and ideles

Definition 3.1.1. Let K be a number field. Denote by Spec(OK) the set of prime ideals of OK .

Definition 3.1.2. Let K be a number field. For each real embedding σ we get the archimedean

absolute value

|| · ||σ := |σ(·)|

For each complex embedding σ we get the archimedean absolute value

|| · ||σ := |σ(·)| · |σ̄(·)|

Definition 3.1.3. Let p ∈ Spec(OK) be a nonzero prime ideal. This give rise to the valuation

vp(a) := max{n ∈ Z : pn|(a), pn+1 - (a)}

which in turn gives rise to the non-archimedean absolute value

|| · ||p := N(p)vp(·)

Definition 3.1.4. In this section, we define OK,p to be the p-adic integers in OK . This is the

projective limit of the diagram

· · · → OK/pn+1 → OK/pn → · · ·

Definition 3.1.5. The completion of K with respect to a place v is denoted by Kv. For archimedean

places this will either be R or C. For a non-archimedean place v = vp, we have

Kv = Frac(OK,p) = OK,p[p−1]
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The absolute values turn these completions into metric topological spaces, whose basic open

sets are open balls of the form

B(a, r) := {x ∈ Kv : ||a− x||v < r}

When v is archimedean, r can be any positive real number. When v = vp is non-archimedean,

r = N(p)m for some integer m.

Proposition 3.1.6. Let K be a number field and v be a place of K. Then Kv is a topological field.

Proof. 1. We show that addition is a continuous map. Define f : Kv ×Kv → Kv by f(x, y) =

x+ y. It suffices to show that the preimage of an open ball B(a, r) under this map is open in

the product topology Kv ×Kv.

Select some (x, y) ∈ Kv×Kv so that f(x, y) ∈ B(a, r). Thus ||a−f(x, y)||v = ||a−x−y||v < r.

We choose the open set B(x, ε) × B(y, ε) for small enough ε. We have to show that the

image of this open set under f is contained in B(a, r). ε can be made as small as needed in

both the archimedean and non-archimedean cases. Hence we can fix some ε so that for any

(x′, y′) ∈ B(x, ε)×B(y, ε), we have

||a− x′ − y′||v ≤ ||a− x− y||v + ||x− x′||v + ||y − y′||v < r

In particular, choose ε < r−||a−x−y||v
2 . The above shows that the image is contained in B(a, r)

and so addition is a continuous map.

2. We show that negation is a continuous map. Define f : Kv → Kv by f(x) = −x. We will

show that the preimage of the open ball B(a, r) under this map is open. Choose some element

x ∈ f−1(B(a, r)), so that ||a − f(x)||v = ||a + x||v < r. We find an intermediate open ball

B(x, ε) and show that its image is contained in B(a, r) for small enough ε. Let x′ ∈ B(x, ε).

Hence by choosing some ε < r − ||a+ x||v we get

||a+ x′||v ≤ ||a+ x||v + ||x′ − x||v < r

This shows that the image is indeed contained in B(a, r) and so negation is a continuous map.

3. We show that multiplication is a continuous map. Define f : Kv ×Kv → Kv by f(x, y) = xy.

We will show that the preimage of the open ball B(a, r) under this map is open. Choose

an element (x, y) ∈ f−1(B(a, r)) so that ||a − f(x, y)||v = ||a − xy||v < r. Again we choose

the intermediate open set to be B(x, ε) × B(y, ε) for some small enough ε. Let (x′, y′) ∈
B(x, ε) × B(y, ε), in which case ||(x − x′)||v < ε and ||(y − y′)||v < ε. This means we have

ε||x′||v − ε||x||v ≤ ε||x− x′||v < ε2 and so

ε2 + ε||x||v > ε||x′||v > ||yx′ − y′x′||v ∧ ε||y||v > ||yx− yx′||v
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Combining the two inequalities gives

ε2 + ε(||x||v + ||y||v) > ||yx′ − y′x′||v + ||yx− yx′||v ≥ ||yx− y′x′||v

Now we need to choose ε so that ε2 + ε(||x||v + ||y||v) < r − ||a − xy||v. This is possible by

making ε small enough. Assuming this, it follows then that

||a− x′y′||v ≤ ||a− xy||v + ||yx− y′x′||v < ||a− xy||v + ε2 + ε(||x||v + ||y||v) < r

so the image is contained in B(a, r) and hence multiplication is a continuous map.

4. We show that inversion is a continuous map. Define f : K×v → K×v by f(x) = x−1. We will

show that the preimage of the open ball B(a, r) under this map is open. Choose an element

x ∈ f−1(B(a, r)) so that ||a − f(x)||v = ||a − x−1||v < r. The intermediate set is chosen to

be B(x, ε) for ε small enough. Let x′ ∈ B(x, ε), in which case ||x− x′||v < ε. Then

||x′−1 − x−1||v = || x
xx′
− x′

xx′
||v <

ε

||xx′||v

||x2||v − ||x′x||v ≤ ||x2 − x′x||v < ||x||vε

The second inequality implies that ||x′x||v > ||x2||v − ||x||vε. We have ||x||v > ε and so both

||x′x||v and ||x2||v − ||x||vε are positive real numbers. It follows that 1
||x′x||v <

1
||x2||v−||x||vε .

Applying this to the first inequality yields

||x′−1 − x−1||v <
ε

||x2||v − ||x||vε
= ||x||−1

v

ε

||x||v − ε

The right hand side can be made as small as needed by choosing a small enough ε. For some

such ε we get

||a− x′−1||v ≤ ||a− x−1||v + ||x′−1 − x−1||v < r

so the image is contained in B(a, r) and thus the preimage is open. As a result inversion is a

continuous map on the subspace topology K×v and we have completed the proof that Kv is a

topological field.

Lemma 3.1.7. For non-archimedean local fields, the open balls B(a,N(p)m) are compact sets.

Proof. We claim that B(a,N(p)m) is the coset a + p1−mOK,p. This can be seen since x − a ∈
p1−mOK,p if and only if ||x− a||p < N(p)m. Since Kp is a topological field, it suffices to prove that

p1−mOK,p is compact. We construct a homeomorphism
∏∞
i=2−mOK/pOK ' p1−mOK,p as

(a1, a2, a3 . . . ) 7→ a1π
2−m + a2π

3−m + a3π
4−m + . . .
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where π is a fixed uniformizer for p. Here OK/pOK is given the discrete topology and thus it is

compact as it is finite. By Tychonoff’s theorem, a product of compact sets such as
∏∞
i=2−mOK/pOK

is compact, so it remains to demonstrate that the map above is a homeomorphism.

The open balls of the form B(a,N(p)j) are basic in Kp. Therefore they are also basic in the

induced subspace topology of p1−mOK,p. Hence we only need to show that the preimages of these

open balls under the above map is open.

Consider the preimage of an open ball B(a,N(p)j) under the above map. If a =
∑∞
i=1 aiπ

1−m+i,

then the preimage of the open ball is

1−j∏
i=2−m

{ai} ×
∞∏

i=2−j
OK/pOK

The basic open sets in
∏∞
i=2−mOK/pOK are of the form U =

∏∞
i=2−m Ui for Ui open in OK/pOK

such that Ui 6= OK/pOK for finitely many i. Thus the preimage of the open ball above is open.

Proposition 3.1.8. Let K be a number field and v a place of K. Then Kv is a locally compact,

Hausdorff topological field.

Proof. We have shown in Proposition 3.1.6 that Kv is a topological field for any place v of K.

For non-archimedean v, every element x of Kv is contained in some open ball B(x, r) which

is compact by Lemma 3.1.7. Therefore Kv is locally compact. To show that Kv is Hausdorff,

fix a uniformizer π and take two distinct elements a, b ∈ Kv. Write them out as a =
∑∞
i=n aiπ

i

and b =
∑∞
i=m biπ

i for some integers m,n and ai, bi ∈ OK/pOK . Since they are distinct we must

have aj 6= bj for some integer j. Then two open sets that separate a and b are B(a,N(p)−j) and

B(b,N(p)−j). Therefore Kv is Hausdorff.

For archimedean v, Kv is homeomorphic to R or C with the standard metric. We know that R
and C with the standard metric are locally compact and Hausdorff. It follows that all archimedean

local fields are locally compact and Hausdorff.

Definition 3.1.9. Let K be a number field. The ring of adeles AK is defined as the restricted

product

AK :=

′∏
v

Kv

over all places v of K. The restriction is that any element of AK must be a v-adic integer in all but

finitely many non-archimedean places v. This makes AK into a ring with pointwise addition and

multiplication. We define a topology on AK by letting the basic open sets take the form

U =
∏
v∈S

Uv ×
∏
v/∈S

OK,v

for Uv open sets in Kv with the standard topology and S a finite set of places containing all the

archimedean places. For any adele a ∈ AK and any place v of K, we denote by av the restriction

of a to Kv.
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Proposition 3.1.10. Let K be a number field. Then AK is a locally compact, Hausdorff topological

ring with the above topology.

Proof. Let a ∈ AK be an adele, and let S be the finite set of places containing all the archimedean

places of K, so that av is a v-adic integer for any place v 6∈ S. For each v 6∈ S, the set of v-adic

integers OK,v is just the open compact ball B(0, N(p)). For each v ∈ S, Kv is locally compact by

Proposition 3.1.8 and so we can still embed av into an open compact ball B(av, rv) for some rv. As

a result a is contained in the open set∏
v∈S

B(av, rv)
∏
v 6∈S

B(0, N(p))

which is a product of compact sets. This is compact by Tychonoff’s theorem and so the ring of

adeles is locally compact, since we can embed any adele a into a compact open set like above.

It is an easy result that the product of Hausdorff spaces is Hausdorff. Loosely speaking, we can

separate any two adeles by separating them in a place where they differ. Therefore the the ring of

adeles is also Hausdorff.

Addition, multiplication and negation is continuous in each component of the above restricted

product by Proposition 3.1.6. Therefore these operations are continuous on the ring of adeles. It

follows that AK is a topological ring.

Note that inversion is not a continuous map on the adeles, because the inverse of an adele may

not necessarily be an adele. This is because the inverse of a v-adic integer may not be a v-adic

integer for non-archimedean v, and so the inverse of an adele may not be a v-adic integer in all but

finitely many places. We will now look at the units adeles; those adeles whose inverse is an adele

as well. These from a group under multiplication called the group of ideles.

Definition 3.1.11. Let K be a number field. The group of ideles JK is defined as the units of AK .

An idele is necessarily an adele which is a v-adic unit for all but finitely many non-archimedean

places v. We don’t want the ideles to inherit the topology of the adeles, as inversion would not be

continuous. Instead we give them a new topology, this time the basic open sets take the form

U =
∏
v∈S

Uv ×
∏
v/∈S

O×K,v

for Uv open sets in K×v with the standard subspace topology and S is a finite set of places containing

all the archimedean places.

Proposition 3.1.12. Let K be a number field. Then JK a locally compact, Hausdorff topological

group with the above topology.

Proof. Let i ∈ JK be an idele, and let S be the finite set of places containing all the archimedean

places of K, so that iv is a v-adic unit for any place v 6∈ S.
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Let p = v 6∈ S be a non-archimedean place. The set of v-adic units O×K,v is simply the closed

subset B(0, N(p)) − B(0, 1) of the compact set B(0, N(p)). As a result O×K,v is also compact.

Moreover, B(0, N(p))−B(0, 1) is open because it has an open cover {p+ pOK,p : p ∈ (OK/p)×}.
Let v ∈ S. Then Kv is locally compact, so i can be embedded into an open compact ball

B(iv, rv) for some rv. Then i is contained in the open set∏
v∈S

B(iv, rv)
∏
v 6∈S

O×K,v

This is a product of compact open sets, which is compact by Tychonoff’s theorem. Therefore the

group of ideles is locally compact, as every idele is contained in an open compact set like above.

The product of Hausdorff spaces is Hausdorff, and so the group of ideles is Hausdorff.

It remains to show that multiplication and inversion is continuous. We have shown that mul-

tiplication and inversion are continuous on K×v for every place v. It is therefore sufficient to show

that JK is closed under multiplication and inversion, but this is immediate from the definition.

Therefore JK is a topological group.

We introduce the notion of S-ideles and S-units for any finite set of places S containing all the

archimedean places. This will be some subgroup of the group of ideles.

Definition 3.1.13. Let K be a number field. Let S be a finite set of places of K containing all the

archimedean places. We denote by JS the S-ideles. This is the subgroup

JS :=
∏
v∈S

K×v ×
∏
v/∈S

O×K,v

of JK . The topology of JS is the induced subspace topology, making JS into a locally compact,

Hausdorff topological group.

Definition 3.1.14. Let K be a number field. Let S be a finite set of places of K containing all the

archimedean places. We define the S-units of K as

KS := K× ∩ JS

where K× is embedded diagonally into AK .

From now on denote by V (K) the set of places of K and by V∞(K) the set of archimedean

places of a K. A special case of the above definition is the global units

KV∞(K) = K× ∩ JV∞(K) = O×K

We define two important maps on the group of ideles. This will allow us to define a ton of other

groups, which will be of use later.
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Definition 3.1.15. Let K be a number field. The idele norm map is the map

||.|| : JK → R+

||a|| =
∏

v∈V (K)

||av||v

In particular, the idele norm map is bounded. To see this, let a be an idele. Then ||av||v = 1

for all but finitely many non-archimedean places v. This is because a must be a v-adic unit in all

but finitely many non-archimedean places v.

Proposition 3.1.16. Let K be a number field. Then the idele norm map is continuous.

Proof. Take an open interval (a, b) ⊂ R+ and select an element x ∈ JK in the preimage, so that

||x|| ∈ (a, b). We must find an intermediate open set U . We select the open set

U =
∏
v∈S

B(x, ε)×
∏
v/∈S

O×K,v

where S is the set of all non-archimedean places v where x is not a v-adic unit, plus all the

archimedean places. Select an element y ∈ U . Then there exist some polynomial functions f, g

whose constant coefficient is 0 so that ||y|| is bounded as

||x|| − f(ε) =
∏
v∈S

(||xv||v − ε) < ||y|| =
∏
v∈S
||yv||v <

∏
v∈S

(ε+ ||xv||v) = ||x||+ g(ε)

where f(ε), g(ε)→ 0 as ε→ 0. Therefore for small enough ε we have ||y|| ∈ (a, b). This implies that

the image of U lies in (a, b) for small enough ε and so || · || must be continuous.

Definition 3.1.17. We denote the second map by (·). This realizes every idele as a fractional ideal

and is defined by

(·) : JK → IK

(a) =
∏

p∈V (K)\V∞(K)

pvp(a)

Definition 3.1.18. Let K be a number field, and let S be a finite set of places containing all

archimedean places. We define the groups

J0
K := ker(|| · ||) = {a ∈ JK : ||a|| = 1}

J0
S := J0

K ∩ JS

Keep in mind that K× ∈ J0
K and KS ∈ J0

S due to the product formula. We finally arrive at the

definitions of the idele class groups.
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Definition 3.1.19. Let K be a number field, and let S be a finite set of places containing all

archimedean places. We define the idele class group as

CK := JK/K×

We define the reduced idele class group as

C0
K := J0

K/K
×

We define the S-idele class group as

CS := JS/KS

We define the reduced S-idele class group as

C0
S := J0

S/KS

Proposition 3.1.20. Let K be a number field. We have the isomorphisms

CK/CV∞(K)
∼= Cl(Ok)

C0
K/C

0
V∞(K)

∼= Cl(Ok)

Proof. There is a map CK → Cl(Ok) induced by (·). This is well-defined as (·) sends K× to

principal fractional ideals. To show that it is surjective, take a fractional ideal i of K. This can be

factored into prime ideals as

i =

n∏
i=1

peii

for integers ei. Let πi be a uniformizer for OK,pi for each i = 1 . . . n. Then the idele

∏
v 6∈{pi:i=1...n}

{1}v
n∏
i=1

{πeii }pi

will map to the class of i in Cl(Ok) under (·). Now we have to find the kernel of this map. It

is induced by those ideles whose image under (·) is a principal fractional ideal. Let i be such an

idele. Then there is some element k ∈ K× so that (i) = (k). This idele is equivalent to k−1i in CK

because CK = JK/K×. Now k−1i is a v-adic unit for all non-archimedean v and so k−1i ∈ JV∞(K).

It follows that the class of i in CK lies in CV∞(K) and so the kernel lies in CV∞(K). Conversely,

CV∞(K) lies in the kernel as its image consists of principal fractional ideals. Therefore CV∞(K) is

the kernel and we can conclude that

CK/CV∞(K)
∼= Cl(Ok)

There is also an induced map C0
K → Cl(Ok), also induced by (·). To show that is is surjective,

note that the archimedean places do not affect the output of this map. Therefore we can start with
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some class c ∈ CK where ||c|| = l. Now there exists some j ∈ JV∞(K) so that ||j|| = l−1. j does not

affect the image as it is a unit in all non-archimedean places. Therefore jc ≡ c in Ck, but ||jc|| = 1.

Hence jc ∈ C0
K , which is sent to the same class as c. We’ve already shown that the induced map

on CK is surjective, and so the induced map on C0
K is surjective too.

Now we find the kernel, which is induced by those ideles whose image under (·) is a principal

fractional ideal. The same strategy as above works here, and so the kernel is equivalent to J0
V∞(K)

modulo K×. This means that the kernel is contained in C0
V∞(K). However C0

V∞(K) is also contained

in the kernel, and so

C0
K/C

0
V∞(K)

∼= Cl(Ok)

3.2 Compactness of the reduced idele class group

The singleton {1} is closed in R and therefore its preimage J0
K under the idele norm map is closed

in JK . This is a topological group if we give it the subspace topology. Now K× is a subgroup

of J0
K and so we can define a quotient topology on the topological group J0

K/K
× = C0

K . In this

subsection we prove that C0
K is a compact topological group with this topology.

The more classical proof that the ideal class group of a number field is finite involves Minkowski’s

bound. See [Jan96] for this approach. Our progression through this subsection mimics the classical

picture involving Minkowski’s bound. Proposition 3.2.4 is essentially the idelic counterpart to

Minkowski’s bound. Given an idele a, we wish to find all elements of K which are less than or equal

to a in all places.

Definition 3.2.1. Let K be a number field and let a ∈ JK be an idele. We define

L(a) := {x ∈ K : ||x||v ≤ ||a||v ∀v ∈ V (K)}

Then we define λ(a) := |L(a)|.

Proposition 3.2.4 gives a lower bound on λ(a) based on the idele norm ||a||. This is much worse

than what one would get from Minkowski’s bound, but it will suffice in our case. We will use the

following two results from [Wes].

Theorem 3.2.2 (Product formula). Let K be a number field and let a ∈ K×. Let V (K) be the set

of places of K. Then ∏
v∈V (K)

||a||v = 1

Proof. See [Wes, Theorem 4.3].
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Theorem 3.2.3 (Weak approximation theorem). Let K be a number field and {v1 . . . vn} a finite

set of places of K. Let {a1 . . . an} be a set of elements of K. Then for any real ε > 0, there exists

some a ∈ K so that

||a− ai||vi < ε

for all i = 1 . . . n.

Proof. See [Wes, Theorem 4.8].

Proposition 3.2.4. Let K : Q be a field extension of degree n. There is a real positive constant c

such that λ(a) ≥ c||a|| for any idele a ∈ JK .

Proof. Choose a basis {ω1 . . . ωn} for K over Q lying in OK . Let

c0 := n · sup{||ωi||v : v ∈ V∞(K), i = 1 . . . n}

We will see later on that we wish to minimize c0 to get the best lower bound, and so we desire an

integral basis that is as small as possible with respect to all the archimedean places.

Now let a be an idele. We wish to find some b ∈ K× so that

c0 ≤ ||bav||v ≤ 2c0

for all archimedean places v. We will do so using the weak approximation theorem. Applying it to
3
4a gives that for any real ε > 0 there is some element z ∈ K× so that

||3
4
av − z||v < ε

for any place v. We denote b = dc0e
z . In this case we get that

c0 · ||
1

b
||v −

3

4
||av||v ≤ dc0e · ||

1

b
||v −

3

4
||av||v = || dc0e

b
||v − ||

3

4
av||v ≤ ||

3

4
av − z||v < ε

for all archimedean v since dc0e is a positive integer unaffected by Galois actions. Now we can

choose ε to be any positive real and we will get some corresponding value of b satisfying the above.

By choosing ε = 1
4 ||av||v we get

c0 · ||
1

b
||v ≤ ||av||v

Now by comparing the initial inequality in a different way, we get

3

4
||av||v − dc0e · ||

1

b
||v = ||3

4
av||v − ||

dc0e
b
||v ≤ ||

3

4
av − z||v < ε

3

4
||av||v − ε =

1

2
||av||v ≤ dc0e · ||

1

b
||v

Together this gives us
1

2
||av||v ≤ c0 · ||

1

b
||v ≤ ||av||v
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Since all these terms are positive and nonzero, we can invert to get:

2
1

||av||v
≥ 1

c0
||b||v ≥

1

||av||v

Multiplying throughout by c0||av||v then gives our desired result. Now there exists a positive

integer m so that ||mbav||v ≤ 1 for any non-archimedean v, since ba is an idele and we can ”cancel

denominators”. For the archimedean places v we get

mc0 ≤ ||mbav||v ≤ 2mc0

Since mb ∈ K×, the product formula yields ||mba|| = ||a||, and mba ≡ a in the idele class group.

Moreover, (mba) is an ideal of OK . Let’s denote it as i = (mba). Additionally, λ(mba) = λ(a)

since there is a bijection between L(mba) and L(a) given by multiplication by mb ∈ K×. Hence it

suffices to solve the problem for the idele mba, which has been well calibrated.

We start with the set

Λ := {
n∑
i=1

fiωi : 0 ≤ fi ≤ m, fi ∈ Z}

We clearly have |Λ| = (m+ 1)n due to the linear independence of the integral basis over Z. Define

N := N(i) = |OK/i|, then by the pigeonhole principle, there is a subset S ⊂ Λ of at least mn

N

elements in Λ that are in the same class in the quotient ring OK/i. Any two different elements of S

gives rise to an element of L(mba). To see this, let x, y ∈ Λ so that x 6= y but x ≡ y (mod i). Then

||x− y||v ≤ ||mbav||v

for all non-archimedean v since x− y ∈ i. Also

||x− y||v = ||
n∑
i=1

(fx,i − fy,i)ωi||v ≤
n∑
i=1

m · ||ωi||v ≤ mc0 ≤ ||mbav||v

for all archimedean v. This tells us that for each element in S, we can get a corresponding element

of L(mba), by taking away some fixed s0 ∈ S. Thus we get the lower bound

λ(mba) ≥ mn

N

Note that the product of the non-archimedean norms of mba gives the inverse of the norm of

the ideal i. Hence ||mba|| = N−1 ·
∏
v∈V∞(K) ||mbav||v. But for all archimedean places we have

2mc0 ≥ ||mbav||v and so ∏
v∈V∞(K)

||mbav||v ≤ (2mc0)|V∞(K)| ≤ (2mc0)n

||mba|| ≤ N−1(2mc0)n =⇒ mn ≥ N ||mba||
(2c0)n
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By using this inequality on our lower bound, we get that

λ(mba) ≥ mn

N
≥ (2co)

−n||mba||

so our constant is c = (2c0)−n. This completes the lemma.

Lemma 3.2.5. Let K be a number field and let c be a positive real number so that λ(a) ≥ c||a|| for

every a ∈ JK . Let a be an idele of K with ||a|| ≥ 2/c. Then there is some b ∈ K× so that

1 ≤ ||bav||v ≤ ||a||

for all places v of K.

Proof. By Proposition 3.2.4, together with our assumption, we get

λ(a) ≥ c||a|| ≥ 2

There must be a non-zero element k ∈ L(a) such that ||k||v ≤ ||av||v for all places v. We let b = k−1

in which case 1 ≤ ||bav||v for all places v. Now ||b|| = 1 by the product formula and so ||ba|| = ||a||.
Therefore for any particular place v′ we get∏

v 6=v′
||bav||v ≥ 1 =⇒ ||bav′ ||v′ =

||ba||∏
v 6=v′ ||bav||v

≤ ||ba||
1

= ||a||

so altogether 1 ≤ ||bav||v ≤ ||a|| for any place v. Then b satisfies the conditions of this lemma and

so we are done.

Theorem 3.2.6. Let K be a number field. The group C0
K is compact.

Proof. Because of the product formula, there is a well-defined map JK/K× → R+ induced by ||.||.
The kernel of this map is by definition J0

K ∩ (JK/K×) = J0
K/K

× = C0
K . We know that this map

is surjective and so we can find for each real positive number p ∈ R+ an idele a so that ||a|| = p.

We know that the fiber of p is the coset aC0
K . Since JK/K× is a topological group, aC0

K ' C0
K

topologically. Therefore to prove that C0
K is compact it is sufficient to show that the fiber of some

positive real number p under the idele norm is compact.

By Proposition 3.2.4 there is some positive real number c such that λ(a) ≥ c||a|| for every idele

a. We pick some real number p > 2/c and select an idele a in the fiber of p under the idele norm.

By the Lemma 3.2.5 there is some b ∈ K× so that

1 ≤ ||bav||v ≤ p = ||a||

for all places v of K. The number of prime ideals in OK with absolute norm less than or equal to

p is finite. Define the finite set of places S as

S := {vp ∈ V (K)\V∞(K) : N(p) ≤ p} ∪ V∞(K)

67



Define now the subset T ⊂ JK as

T :=
∏
v∈S

(B(0, p)−B(0, 1))×
∏
v/∈S

O×K,v

We know that the sets O×K,v are compact. (B(0, p) − B(0, 1)) is a closed subset of a compact set

and therefore also compact. Therefore T is compact by Tychonoff’s theorem.

It is easy to see that the idele ba lies in T . Note that the set T is independent of the idele a,

and relies only on the value of p. Therefore any idele in aC0
K can be multiplied by some element of

K× in order to get it in T . As a result T maps onto aC0
K under the quotient map JK → CK .

aC0
K is the preimage of a closed set (the singleton p) and is therefore closed. The image of T in

CK is also compact and contains aC0
K . As a result aC0

K is a closed subset of a compact set, hence

compact. This shows that C0
K is compact.

3.3 Applications to finiteness of ideal class group and Dirichlet’s unit

theorem

Theorem 3.3.1. Let K be a number field. Then Cl(Ok) is finite.

Proof. Recall that

C0
K/C

0
V∞(K)

∼= IK/PK ∼= Cl(Ok)

A quotient of a compact set is compact, and since C0
K is compact, we have that C0

K/C
0
V∞(K) is

compact. Now C0
V∞(K) is an open subgroup of C0

K and so the quotient C0
K/C

0
V∞(K) must also be

discrete. A compact discrete set must be finite, and so the class group Cl(Ok) is finite.

As for Dirichlet’s unit theorem, we will prove a more general theorem called the S-unit theorem,

of which Dirichlet’s unit theorem is a special case. It states that for a finite set of places S containing

all the archimedean places, the Z-rank of the S-units is |S| − 1. We will do so by constructing a

homomorphism from the group of norm 1 S-ideles to a hyperplane of codimension 1 in R|S|. The

fact that the subgroup of S-units spans this hyperplane will follow from the compactness of the

reduced idele class group. First we need a lemma on discrete subgroups of real vector spaces.

Lemma 3.3.2. Let Λ be a discrete subgroup of Rn. Then Λ is free abelian with Z-rank dimR(RΛ).

Proof. We prove this by induction. For n = 1, let Λ be a discrete subgroup of R. The case Λ = 0

is easy so assume that Λ has some nonzero element. Let λ0 ∈ Λ ∩ R+ be the positive element of

least absolute value, which exists since Λ is discrete. We claim Λ = λ0Z. Let ω ∈ Λ. Then by the

division algorithm there are integers n, r so that ω = nλ0 + r with 0 ≤ r < λ0 and r ∈ Λ since Λ

is an additive group. In the case that r is non-zero we get r < λ0 which contradicts the fact that

λ0 is the least positive element of Λ. We must therefore have r = 0 and so actually ω ∈ λ0Z. We

conclude that Λ has Z-rank 1.
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Let Λ ⊂ Rn be a discrete subgroup. Let dimR(RΛ) = m and choose a basis {λ1 . . . λm} for RΛ

contained in Λ. This is possible since Λ spans RΛ so some basis is contained in Λ. By the inductive

hypothesis we have that Λ0 =
⊕m−1

i=1 λi is free abelian of rank m− 1. Define

B := Λ ∩ {
m∑
i=1

aiλi : 0 ≤ am ≤ 1 ∧ 0 ≤ ai < 1 ∀i = 1 . . .m− 1}

where the ai are real numbers. This is a bounded subset of a discrete set, and thus it is finite. We

select an element b =
∑m
i=1 biλi ∈ B with the minimal nonzero coefficient bm of λm. This can be

done as B is non-empty, containing λm itself. We carry out a procedure similar to the base case.

Let λ =
∑m
i=1 aiλi ∈ Λ. By the division algorithm there exists some integer t and element

r =
∑m
i=1 riλi ∈ Λ so that λ = tb + r with 0 ≤ rm < bm. Furthermore by the division algorithm

there is an element λ0 =
∑m−1
i=1 ciλi ∈ Λ0 so that 0 ≤ ri − ci < 1 for each i = 1 . . .m − 1. This

implies that r−λ0 ∈ B. Since b has the minimal λm coefficient in B, we must have rm = 0 in order

to avoid a contradiction. As a result r ∈ Λ0. It follows that bZ + Λ0 = Λ. Linear independence of

{λ1 . . . λm−1, b} over R then implies that bZ ⊕ Λ0 = Λ and so Λ has Z-rank m. The lemma then

follows by induction.

Theorem 3.3.3. Let S = {v1 . . . vs} be a finite set of places of K containing all the archimedean

places, ordered so that vs is archimedean. Let KS be the S-units of K, then KS has Z-rank s− 1.

Proof. We define the injective map

Log : JS → Rs

a 7→ (log ||av1 ||v1 . . . log ||avs ||vs)

This is a continuous map, as each component is the composition of two continuous functions. Recall

that J0
S is the set of unit norm S-ideles, and therefore

∑
v∈S

log ||av||v = log(
∏
v∈S
||av||v) = log(

∏
v∈V (K) ||av||v)∏
v/∈S ||av||v)

= log(1) = 0

for every a ∈ J0
S . Hence the Log-image of J0

S lies in the hyperplane

H := {(x1 . . . xs) ∈ Rs : x1 + · · ·+ xs = 0}

In particular, so do the S-units KS ⊂ J0
S . We claim that the image of KS is discrete. By

Lemma 3.3.2 it will follow that Log(KS) is a free abelian subgroup ofH with Z-rank dimR(RLog(KS)).

Since H has dimension s− 1, it will only remain to show that Log(KS) spans H.

Let k ∈ Log(KS), and choose a bounded open U of Rs so that k ∈ U ⊂ Rs. We need to show

that U ∩ Log(KS) is finite, from which discreteness of Log(KS) will follow. We first prove it in

the case S = V∞(K). Here KS = O×K are the global units, each with a minimal monic polynomial

with integer coefficients. These coefficients are determined by the value of the global unit in all
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the embeddings of K, by Vieta formulae. The global units in the preimage of U ∩ Log(KS) are

bounded in all archimedean places. Therefore the coefficients of their minimal polynomials are also

bounded. Since the space of monic polynomials with integer coefficients with some bounded degree

is discrete, there must be a finite number of polynomials whose roots could be in the preimage of

U ∩ Log(KS). Therefore U ∩ Log(KS) is indeed finite and we are done in this case.

In the general case, we can assume that S has a non-archimedean place. Take a non-archimedean

place in S with corresponding prime p and look at the image of Log restricted to its component.

For any integer m, we have log(N(p)m) = m · log(N(p)) so all possible values that the image can

take in this component are integer multiples of log(N(p)). The restriction of the image to this

component and all other non-archimedean components is therefore discrete. The image of the open

U is bounded in the restriction to any non-archimedean component and therefore finite. There are

a finite number of non-archimedean places in S and so overall there is a finite number of possible

values for the restriction of U ∩Log(KS) to the non-archimedean components of Rs. For each such

possible value, find a fixed representative a in KS which takes that value under the Log map. Let

a denote the preimage of the elements of U ∩ Log(KS) which have the same value as a in all non-

archimedean places. Inverse multiplication by a yields the set a−1a, which consists of global units

because they have absolute value 1 in every non-archimedean place. Log(a−1a) = Log(a)−Log(a)

is bounded because Log(a) is a subset of the bounded set U . Therefore a−1a is finite from the case

S = V∞(K) above. Hence a is finite since multiplication by a−1 is bijective. There are a finite

number of a to consider and so U ∩Log(KS) is finite. This finally proves that Log(KS) is discrete.

Let W = R log(KS), then H/W is a real vector space. There is a continuous surjective map

C0
S → H/W induced by Log. Now C0

S is compact, because it is a closed subset of the compact set

C0
K . As a result H/W is also compact. But as a real vector space, this only occurs when H/W = 0

and so H = W . This means that KS spans H and so indeed the Z-rank of KS is s− 1.

Dirichlet’s unit theorem is a corollary of the above by setting S = V∞(K), in which case the

S-units become the global units.

Corollary 3.3.4 (Dirichlet). Let K be a number field. Let r1 be the number of real embeddings

and r2 the pairs of complex conjugate embeddings of K. Then O×K has Z-rank equal to r1 + r2 − 1.

70



4 L-series and zeta functions

In this section we develop some of the theory of Dirichlet L-series and Dedekind zeta functions. We

will define Dirichlet characters, which are homomorphisms from abelian groups to the multiplicative

group of roots of unity. They can be thought of as realizations of the abelian group over C. To

each Dirichlet character we can attach a Dirichlet L-series, which is a meromorphic function on C.

This function captures some essential data about the original abelian group.

We will also introduce Dedekind zeta functions, which play the same role as the Riemann zeta

function, but for arbitrary number fields. We will see that Galois extensions over Q which have

abelian Galois group are special. We will study the Dirichlet characters over their Galois groups

and the associated Dirichlet L-series. One interesting result is that the Dedekind zeta function

for an abelian number field can be factorized as the product of the Dirichlet L-series associated to

their Galois group. Along the way we will also prove Dirichlet’s theorem on primes in arithmetic

progression, as an application of the theory of Dirichlet characters and L-series.

The most important fact we need, however, is the analytic class number formula. This is

an explicit formula for the residue of the Dedekind zeta function at 1. It consists of important

arithmetical invariants of the associated number field, including the class number. This will be

used throughout future sections.

4.1 Definitions and first properties

In Sections 4.1 and 4.2 we follow [IR90, Chapter 16].

Definition 4.1.1. Let K be a number field. Then its associated Dedekind zeta function is

ζK(s) =
∏

p∈Spec(OK)\(0)

1

1−N(p)−s

A Maclaurin expansion of the Dedekind zeta function of a number field K gives

ζK(s) =
∏

p∈Spec(OK)\(0)

∞∑
e=0

(
1

N(p)s
)e

By unique prime factorization of ideals, and multiplicativity of absolute ideal norm, we get

ζK(s) =
∑

i⊂OK

1

N(i)s

Note that the Riemann zeta function is a special case of the Dedekind zeta function, where the

number field K is the field of rational numbers Q.

Definition 4.1.2. Let k be a positive integer. A Dirichlet character χ modulo k is a multiplicative

group homomorphism

χ : (Z/(k))× → C×

which also takes the value 0 for any element in Z/(k) not in (Z/(k))×.
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Let χ be a Dirichlet character modulo k and let n be a positive integer so that k|n. Then χ

induces a Dirichlet character ψ modulo n, by defining

ψ(a) = χ(ā)

for all a coprime to n, where ·̄ denotes reduction modulo k.

Definition 4.1.3. A Dirichlet character χ is called primitive if it is not induced by any Dirichlet

character other than itself. Note that every Dirichlet character is induced by a unique primitive

Dirichlet character. The conductor fχ of a Dirichlet character χ is the modulus of the unique

primitive character that induces it.

Every Dirichlet character χ modulo k induces a multiplicative map Z→ C in the same way as

above. You could view this map as a Dirichlet character modulo 0. Then every Dirichlet character

gives rise to an associated Dirichlet L-series as follows.

Definition 4.1.4. Let χ be a Dirichlet character. Then the associated Dirichlet L-series is

L(s, χ) :=

∞∑
n=1

χ(n)

ns

Example 4.1.5. The trivial Dirichlet character χ0 modulo k takes the value 1 for all integers

coprime to k and 0 otherwise. Its conductor is defined to be 1. The primitive trivial Dirichlet

character induces a map χ0 : Z → C× that takes the value 1 everywhere. The associated Dirichlet

L-series is the Riemann zeta function.

Proposition 4.1.6. Let χ0 be the trivial Dirichlet character modulo k. Then

L(s, χ0) =
∏
p|k

(1− p−s)ζQ(s)

Proof. We start with the definition of trivial character modulo k. This gives

L(s, χ0) =

∞∑
n=1

χ0(n)

n−s
=

∑
n∈Z+:(n,k)=1

1

n−s

Then we notice that due to the multiplicativity of the Euler factors, we simply need to remove

those factors corresponding to primes dividing k. As a result

L(s, χ0) =
∏
p-k

(1− p−s)−1 =
∏
p|k

(1− p−s)ζQ(s)

Since Dirichlet characters are multiplicative, there is also an Euler product form for Dirichlet

L-series. For a Dirichlet character χ we get:

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)p−s
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Proposition 4.1.7. Denote by ̂(Z/(k))× the set of Dirichlet characters modulo k. Then they form

a group, where multiplication is defined by (χ · ψ)(a) = χ(a)ψ(a)

Proof. It is easy to see that if χ, ψ are characters modulo k, then (χ ·ψ) is also a character modulo

k, since (χ ·ψ)(ab) = χ(ab)ψ(ab) = χ(a)χ(b)ψ(a)ψ(b) = (χ ·ψ)(a)(χ ·ψ)(b). The identity element is

then the trivial character χ0 modulo k. Let χ be a character modulo k. We define χ−1 by setting

χ−1(a) = χ(a)−1. Then it is clear that (χ · χ−1) = χ0. This completes the proof.

The image of a Dirichlet character is always a subgroup of the group of roots of unity. The mul-

tiplicative inverse of a root of unity is just its complex conjugate. Therefore, we will interchangeably

write the complex conjugate of a character for its inverse.

Proposition 4.1.8. For any positive integer k we have ̂(Z/(k))× ∼= (Z/(k))×.

Proof. By the fundamental theorem of finitely generated abelian groups, we may write (Z/(k))× as

a direct sum of cyclic multiplicative groups as

(Z/(k))× ∼=
⊕
m

(Z/(m))

Taking character groups respects direct sum. In other words

̂(Z/(k))× ∼=
⊕
m

Ẑ/(m)

Now for cyclic groups, every character is determined uniquely by its value on the generator. It

follows that Ẑ/(m) ∼= Z/(m) for every m. Putting it all together gives

̂(Z/(k))× ∼=
⊕
m

Ẑ/(m) ∼=
⊕
m

(Z/(m)) ∼= (Z/(k))×

Proposition 4.1.9. We have the following orthogonality relations for Dirichlet characters, where

δ is the Kronecker delta.

1.
∑
a∈(Z/(k))× χ(a)ψ(a) = φ(k)δ(χ, ψ) for any χ, ψ ∈ Ẑ/(k)

2.
∑
χ∈Ẑ/(k)

χ(a)χ(b) = φ(k)δ(a, b) for any a, b ∈ (Z/(k))×

Proof. In the first case, χ = ψ implies that∑
a∈(Z/(k))×

χ(a)ψ(a) =
∑

a∈(Z/(k))×

χ(a)χ(a) =
∑

a∈(Z/(k))×

1 = φ(k)

Now assume χ 6= ψ. Multiplying the entirety of (Z/(k))× by any of its elements b will simply

permute the group. Hence∑
a∈(Z/(k))×

χ(a)ψ(a) =
∑

a∈(Z/(k))×

χ(ab)ψ(ab) = (χ · ψ)(b)
∑

a∈(Z/(k))×

χ(a)ψ(a)
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In particular we must have

(1− (χ · ψ)(b))
∑

a∈(Z/(k))×

χ(a)ψ(a) = 0

so either (1− (χ · ψ)(b)) = 0 or
∑
a∈(Z/(k))× χ(a)ψ(a) = 0. (1− (χ · ψ)(b)) = 0 cannot occur for all

b, unless we have χ = ψ, which is contradictory to our assumption. Therefore∑
a∈(Z/(k))×

χ(a)ψ(a) = 0

The second case follows from the first by Pontryagin duality.

4.2 Dirichlet’s theorem on arithmetic progressions

A standard analytic result is that ζQ(s) converges for {s ∈ C : Re(s) > 1}. The next proposition

tells us something about the value close to s = 1. It says that ζQ(s) has a simple pole with residue

1 at s = 1.

Proposition 4.2.1. lims→1+((s− 1)ζQ(s)) = 1

Proof. We apply a standard trick often used in integral tests. We have for positive integers n that

(n+ 1)−s <

∫ n+1

n

t−sdt < n−s

because t−s as a function of t is monotonically decreasing for fixed s > 0. We sum this inequality

from n = 1 to infinity, giving us

ζQ(s)− 1 <

∫ ∞
1

t−sdt < ζQ(s)

This integral is evaluated as
∫∞

1
t−sdt = t1−s

1−s

∣∣∣∣∞
1

= 1
s−1 for any real s > 1. By inequality manipu-

lation we get that

1 < (s− 1)ζQ(s) < s

for any s > 1, so the one sided limit lims→1+((s− 1)ζQ(s)) is 1.

We are going to give a proof that there are infinitely many primes using the Riemann zeta

function. The method is important because we will generalize it in order to prove Dirichlet’s

theorem on primes in arithmetic progressions.

Lemma 4.2.2. log(ζQ(s)) <
∑
p p
−s + 2ζQ(2) for real s > 1.

74



Proof. We apply the natural logarithm to the Euler product form of the zeta function to get

log(ζQ(s)) = log(
∏
p

1

1− p−s
) =

∑
p

− log(1− p−s)

We will now apply the Taylor expansion

− log(1− x) =

∞∑
n=1

xn

n

to each x = p−s. This will yield

log(ζQ(s)) =
∑
p

∞∑
n=1

p−sn

n
=
∑
p

p−s +
∑
p

∞∑
n=2

p−sn

n

Finally we bound the second sum on the RHS to get

∑
p

∞∑
n=2

p−sn

n
<
∑
p

∞∑
n=2

p−sn =
∑
p

p−2s(1− p−s)−1 < (1− 2−s)−1
∑
p

p−2s < 2ζQ(2)

Altogether this gives us the desired result.

Corollary 4.2.3. From Proposition 4.2.1 we have lims→1+(log(s − 1) + log(ζQ(s))) = 0 since the

logarithm is continuous on {x ∈ R : x > 0}. Then we get lims→1+(log(ζQ(s))) = lims→1+(log( 1
s−1 )).

Finally we get

lim
s→1+

(
log(ζQ(s))

log( 1
s−1 )

) = 1

From Lemma 4.2.2 we get log(ζQ(s)) =
∑
p p
−s + 2ζQ(2)− a for some finite a and so

lim
s→1+

(
log(ζQ(s))

log( 1
s−1 )

) = lim
s→1+

(

∑
p p
−s

log((s− 1)−1)
+

2ζQ(2)− a
log((s− 1)−1)

) = lim
s→1+

(

∑
p p
−s

log((s− 1)−1)
) = 1

The 2ζQ(2)−a
log((s−1)−1) term disappears since the numerator is finite, but the denominator diverges as

s → 1. It follows that the sum
∑
p p
−s must diverge as s → 1 because the limit is nonzero, and so

there are infinitely many primes.

Of course we could prove there are infinitely many primes more directly. However, using this

train of thought motivates the following definition, which will be used to prove Dirichlet’s theorem.

Definition 4.2.4. Let S be a set of positive integer primes. If the limit

d(S) := lim
s→1+

(

∑
p∈S p

−s

log((s− 1)−1)
)

exists, then S is said to have Dirichlet density d(S).
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We’ve shown that the set of all primes has Dirichlet density 1. When S is finite, the numerator∑
p∈S p

−s converges and so d(S) = 0 as we’ve discussed before. As a result, if the Dirichlet density

of S is greater than 0, then S must contain infinitely many prime numbers. This is the gadget we

will be using to prove the main result, but we will be applying it to Dirichlet L-series in general.

Proposition 4.2.5. We have the expansion

log(L(s, χ)) =
∑
p

∞∑
k=1

χ(pk)

kpks

for the natural logarithm of L(s, χ).

Proof. Recall the Taylor expansion for log((1 − z)−1). We apply the exponential to both sides to

get

1

1− z
= exp(

∞∑
k=1

zk

k
)

Now substitute z = χ(p)p−s and take a product over all integral primes p to get

∏
p

1

1− χ(p)p−s
=
∏
p

exp(

∞∑
k=1

χ(pk)p−ks

k
) = exp(

∑
p

∞∑
k=1

χ(pk)p−ks

k
)

Taking the natural logarithm of both sides gives the desired result.

Keep in mind that this result is analogous to Lemma 4.2.2, for Dirichlet L-series in general. Now

we proceed as in the base case, by showing that log(L(s, χ)) is
∑
p χ(p)p−s up to a finite difference.

Lemma 4.2.6. Let χ be a Dirichlet character. The natural logarithm of the corresponding Dirichlet

L-function for real s > 1 can be approximated as

| log(L(s, χ))−
∑
p

χ(p)p−s| < 2ζQ(2)

Proof. We begin with the result of Proposition 4.2.5 that says

log(L(s, χ)) =
∑
p

∞∑
k=1

χ(pk)

kpks
=
∑
p

χ(p)p−s +
∑
p

∞∑
k=2

χ(pk)

kpks

Then we apply Lemma 4.2.2 to bound the second sum on the RHS as

|
∑
p

∞∑
k=2

χ(pk)

kpks
| ≤

∑
p

∞∑
k=2

|χ(pk)|
kpks

≤
∑
p

∞∑
k=2

1

kpks
< 2ζQ(2)

where the lemma was applied to get the last inequality. The result then follows.
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Here is where the magic happens. We need to filter through the primes congruent to a modulo k

for some coprime integers a, k. We will make use of the orthogonality relations in Proposition 4.1.9.

We start with the natural logarithm expansion of L(s, χ) which is

log(L(s, χ)) =
∑
p

∞∑
k=1

χ(pk)

kpks
=
∑
p

p−sχ(p) +R(s)

where R(s) is some finite value for s > 1 by Lemma 4.2.6. We multiply both sides by χ(a) and sum

over all characters χ modulo k, which gives∑
χ

χ(a)ln(L(s, χ)) =
∑
p

p−s
∑
χ

χ(a)χ(p) +
∑
χ

χ(a)R(s)

Since there are a finite number of characters modulo k, the sum R′(s) :=
∑
χ χ(a)R(s) is still finite.

The orthogonality relations will do the filtering for us, giving∑
χ

χ(a)ln(L(s, χ)) =
∑
p

p−sφ(k)δ(χ(a), χ(p)) +R′(s) = φ(k)
∑

p≡a (mod k)

p−s +R′(s)

Now we divide both sides by log((1 − s)−1) and take the limit as s → 1+. The finite term R′(s)

will disappear. Let Sa,k be the set of primes congruent to a modulo k. Then

lim
s→1+

∑
χ χ(a) log(L(s, χ))

log((1− s)−1)
= lim
s→1+

φ(k)
∑
p≡a (mod k) p

−s

log((1− s)−1)
= φ(k)d(Sa,k)

The Dirichlet density of Sa,k exists because Sa,k is a subset of the set of all primes, which has

Dirichlet density 1. We are now ready to prove Dirichlet’s theorem on primes in arithmetic pro-

gressions.

Theorem 4.2.7 (Dirichlet). For any coprime integers a, k, there are infinitely many primes con-

gruent to a modulo k. In fact, the Dirichlet density of the set Sa,k is 1
φ(k) .

Proof. This will follow from the fact that

lim
s→1+

∑
χ χ(a) log(L(s, χ))

log((1− s)−1)
= 1

Let χ0 be the trivial character modulo k. Then from Proposition 4.1.6 we have

χ0(a) log(L(s, χ0)) = log(
∏
p|k

(1− p−s)ζQ(s)) = log(
∏
p|k

(1− p−s)) + log(ζQ(s))

log(
∏
p|k(1− p−s)) is clearly finite and will disappear in this limit. Therefore we have

lim
s→1+

χ0(a) log(L(s, χ0))

log((1− s)−1)
= lim
s→1+

log(ζQ(s))

log((1− s)−1)
= 1
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from our base case result. Now let χ be a nontrivial character modulo k and assume L(1, χ) 6= 0,

which follows from Corollary 4.4.2. Therefore log(L(1, χ)) will converge to a finite value. This

occurs for all nontrivial characters for some fixed branch of the logarithm. As a result we get that

lim
s→1+

χ(a) log(L(s, χ))

log((1− s)−1)
= 0

so when summing over all characters modulo k, only the trivial character contributes, and so

lim
s→1+

∑
χ χ(a) log(L(s, χ))

log((1− s)−1)
= 1

Then we can finally compare with previous results to get

lim
s→1+

∑
χ χ(a) log(L(s, χ))

log((1− s)−1)
= φ(k)d(Sa,k) = 1 =⇒ d(Sa,k) =

1

φ(k)

4.3 The analytic class number formula

We have shown previously that the Riemann zeta function converges for input with real value

greater than 1. The same is true for Dedekind zeta functions, since the number of prime ideals of a

given norm n is bounded above by the dimension of the number field over Q. We have shown that

the Riemann zeta function has a simple pole at s = 1 whose residue is 1, and that this can be used

to deduce unique prime factorization in Z. What can we deduce from the residue of the Dedekind

zeta function at s = 1 in general? This question is answered by the analytic class number formula.

In this subsection we follow [UiO].

Theorem 4.3.1. ζK(s) has a simple pole at s = 1 whose residue is

res(ζK , 1) =
2r1(2π)r2hKRK
ωK
√
|∆(K)|

where

• r1 is the number of real embeddings of K

• r2 is the number of pairs of complex conjugate embeddings of K

• hK is the class number of K

• RK is the regulator of K

• ωK is the number of roots of unity in K

• ∆(K) is the discriminant of K
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We will speak about the meromorphic continuation of ζK later. For now, we shall prove the

result above for lims→1+((s− 1)ζK) = res(ζK , 1). There are several steps to the proof. Let’s start

with the Dedekind zeta function

ζK(s) =
∑

i⊂OK

1

N(i)s

We want to relate the ideals in the above expression to actual elements of OK . There are two

obstructions for us, given by the exact sequence

1→ O×K → OK → IK → Cl(K)→ 1

Firstly, the units O×K give multiple elements that could generate a principal ideal. Secondly, there

are multiple ideal classes, each of which could be related to a principal ideal via multiplication by

a fixed ideal in the inverse class.

• We will start by resolving the second issue. We can split the Dedekind zeta function by the

ideal classes of OK as

ζK(s) =
∑

i⊂OK

1

N(i)s
=

∑
c∈Cl(K)

∑
i=c

1

N(i)s

Now for each class c we fix an ideal ac−1 lying in the inverse class c−1. For every ideal i in

the class c we have that iac−1 is principal. In fact, the set of ideals of the form iac−1 is the

same as the set of principal ideals contained in ac−1 . Hence we can write

ζK(s) =
∑

c∈Cl(K)

N(ac−1)s
∑
i=c

1

N(iac−1)s
=

∑
c∈Cl(K)

N(ac−1)s
∑

(m)⊂ac−1

1

N((m))s

We cannot pass from the principal ideals (m) to the elements m yet, because (m) = (um) for

any unit u. In the next part we will sort out the issue of units.

• Recall that K can be embedded diagonally in the product of the archimedean completions

V = Rr1 ⊕ Cr2 , by sending

x→ (σ1(x) . . . σr1(x), σr1+1(x) . . . σr1+r2(x))

From now on when we mention elements of K, we will actually refer to their embedding into

V . In this embedding, addition and multiplication are respected, and so the group of units

O×K acts multiplicatively on the entirety of V . Suppose we have a fundamental domain D for

this action in V . This means that D contains precisely one representative for each orbit.

OK embeds as a lattice into V , and so every ideal i ⊂ OK also embeds as a lattice into V .

Suppose i = (m) is principal, and consider the points in OK ∩ D. since D is fundamental,

there is only one element in OK ∩D which generates (m). To see this, the orbit of the element
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m embedded into V is precisely the set of generators of (m), of which only one can lie in D.

Therefore we can finally write ζK(s) using elements as

ζK(s) =
∑

c∈Cl(K)

N(ac−1)s
∑

m∈ac−1∩D

1

|N(m)|s

We will now actually find a fundamental domain D for O×K y V . There is a map

Log : V0 := (R×)r1 ⊕ (C×)r2 → Rr1+r2

(x1 . . . xr1+r2) 7→ (log |x1| . . . log |xr1 |, 2 log |xr1+1| . . . 2 log |xr1+r2 |)

where the absolute value here measures standard distance, and so the coefficient 2 for the image

of the complex places is justified. We have a norm map on V by taking the product of the absolute

values of each component. It is defined as

N : V → R

(x1 . . . xr1+r2) 7→
r1∏
i=1

|xi|
r1+r2∏
i=r1+1

|xi|2

Note that for K this will just be the standard norm, so this is notationally sound. We also have a

trace map

Tr : Rr1+r2 → R

(x1 . . . xr1+r2) 7→
r1+r2∑
i=1

xi

There is a relation log(N(x)) = Tr(Log(x)) which is easily checked.

Recall also Dirichlet’s unit theorem, which tells us that there are fundamental units {η1 . . . ηr1+r2−1}
which generate O×K . The torsion subgroup of O×K has size ωK . Let εj = Log(ηj) for each

j = 1 . . . r1 + r2 − 1. We know that the εj generate a hyperplane of codimension 1 in Rr1+r2 ,

defined as

H := {x ∈ Rr1+r2 : Tr(x) = 0}

Let ε0 = (1, 1 . . . 1, 2 . . . 2), whose components are 1 in the image of all real places and 2 in the image

of all complex places. Then Tr(ε0) = r1 + 2r2 so ε0 does not lie on H. Therefore {ε0 . . . εr1+r2−1}
is a basis for Rr1+r2 . We denote d = [K : Q] = r1 + 2r2. With this setup we are ready to define

the fundamental domain.

Proposition 4.3.2. A fundamental domain D for the action of O×K on V defined above can be

defined as the subset D ⊂ V of elements x satisfying

• Log(x) =
∑r1+r2−1
i=0 biεi with 0 ≤ bi < 1 for all 1 ≤ i ≤ r1 + r2 − 1

• x1 > 0 if K has a real place, and 0 ≤ arg(x1) < 2π
ωK

if K is totally complex.
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Proof. Let y ∈ V and write Log(y) =
∑r1+r2−1
i=0 aiεi. Let t = bωKarg(y1)

2π c and define the unit

u = e
i 2πtωK

r1+r2−1∏
i=1

η
ba1c
i

Then we claim u−1y lies in D. We check the second condition first.

arg(u−1y1) = arg(y1)− arg(e
i 2πtωK ) =

2π

ωK

ωKarg(y1)

2π
− 2π

ωK
bωKarg(y1)

2π
c =

2π

ωK
{ωKarg(y1)

2π
}

where {·} denotes the fractional part. It follows that 0 ≤ arg(u−1y1) < 2π
ωK

. If K has a real place,

this translates to u−1y1 being positive. Now we check the second condition.

Log(u−1y) = Log(y)− Log(u) = a0ε0 +

r1+r2−1∑
i=1

(ai − baic)εi = a0ε0 +

r1+r2−1∑
i=1

{ai}εi

It remains to show that there is only one representative of each orbit in D. Suppose x, ux ∈ D

where u is a unit of OK . Then Log(u) = Log(ux)−Log(x). The coefficients of εi for i 6= 0 for both

Log(ux) and Log(x) are bounded by [0, 1). As a result the coefficients of εi for i 6= 0 for Log(u)

are bounded by (−1, 1), and so they must be 0 because Log(u) is contained in the Z-span of the εi

for i 6= 0. As a result u must be a root of unity. However the arguments of both ux and x in their

first component are bounded by [0, 2π
ωK

), and so the first component of u must be 1. As a result

u = 1.

The next proposition relates the residue of ζK at s = 1 to a ratio of certain volumes. Upon

computing these volumes, we will get the analytic class number formula.

Definition 4.3.3. Let S ⊂ Rn. Then S is called a cone if for any r ∈ R+ and s ∈ S, we have

rs ∈ S.

An important thing to note is that the set D is a cone. This means that for any positive real

number x, and element y ∈ D, we have xy ∈ D. To see this, note that multiplication by x does

not alter the argument of the first component, and so xy satisfies the second condition. Also,

Log(xy) = Log(y) + xε0 so x does not alter the hyperplane components in the image under Log.

As a result the first condition is also satisfied, and D is indeed a cone.

Proposition 4.3.4. Let T be the subset of D of elements with norm having absolute value at most

1. Let λ be the volume of T and let Γ be the covolume of the lattice ac−1 embedded into V . Then

we have

lim
s→1+

((s− 1)
∑

m∈ac−1∩D

1

|N(m)|s
) =

λ

Γ

Proof. We wish to approximate the volume of T using the lattice L = ac−1 . We can do this by

letting µ be the number of L-points in T , and then writing λ ∼ µΓ. This is a terrible bound in
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general, but the finer the lattice is, the better the bound. Note that V ol( 1
rL) = 1

rd
Γ for any positive

real r by scaling, and we get a finer lattice this way. Let µ(r) be the number of 1
rL-points in T .

Then we can conclude, by letting the lattice become infinitely fine, that

lim
r→∞

(µ(r)
1

rd
Γ) = λ =⇒ λ

Γ
= lim
r→∞

(µ(r)
1

rd
)

However, scaling down L by a factor of r is the same as scaling up T by a factor of r, when

considering the two objects relative to each other. In other words

µ(r) = #(
1

r
L ∩ T ) = #(L ∩ rT )

We claim that rT is the set {x ∈ D : |N(x)| < rd}. Since D is a cone, and r is a positive real, the

set rT is contained in D. We have T = {x ∈ D : |N(x)| < 1} and so

rT = {rx ∈ D : |N(x)| < 1} = {x ∈ D : |N(
x

r
)| < 1} =

= {x ∈ D :
|N(x)|
rd

< 1} = {x ∈ D : |N(x)| < rd}

because the norm map N(·) on V is homogeneous of degree d. Every finite dimensional lattice is

countable. In particular, the set L∩D is countable. Let us order this set according to the function

|N(·)| : V → R+. Write L ∩ D = {x1, x2 . . . } so that |N(xi)| ≤ |N(xj)| whenever i ≤ j. The

number k now approximates the number of elements of L with absolute norm less than |N(xk)|. In

other words, the elements of L ∩ d
√
|N(xk)|T . In particular, we can write µ( d

√
|N(xk)| − ε) < k ≤

µ( d
√
|N(xk)|) for any ε > 0. As a result we have

µ( d
√
|N(xk)| − ε)
|N(xk)|

Γ <
k

|N(xk)|
Γ ≤

µ( d
√
|N(xk)|)
|N(xk)|

Γ

Then taking the limit as k goes to infinity, ε becomes negligible and so

lim
k→∞

(
k

|N(xk)|
Γ) = lim

k→∞
(
µ( d
√
|N(xk)|)
|N(xk)|

Γ) = lim
r→∞

(µ(r)
1

rd
Γ) = λ

Therefore for any ε > 0, and s > 1, there is a large enough k0 so that for all k ≥ k0 we have

(
λ

Γ
− ε)s < ks

|N(xk)|s
< (

λ

Γ
+ ε)s

Consequently, by dividing everything by ks and summing over all k ≥ k0, we get

(
λ

Γ
− ε)s(

∞∑
k=k0

1

ks
) <

∞∑
k=k0

1

|N(xk)|s
< (

λ

Γ
+ ε)s(

∞∑
k=k0

1

ks
)
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Let A(s) =
∑k0−1
k=1

1
ks and B(s) =

∑k0−1
k=1

1
|N(xk)|s . By multiplying the above by s − 1 and taking

the limit as s→ 1+, we get

lim
s→1+

((s− 1)(
λ

Γ
− ε)s(ζQ(s)−A(s)) < lim

s→1+
((s− 1)(

∞∑
k=1

1

|N(xk)|s
−B(s))) <

< lim
s→1+

((s− 1)(
λ

Γ
+ ε)s(ζQ(s)−A(s)))

A(s) and B(s) are finite quantities for s close to 1, and so lims→1+((s−1)A(s)) = lims→1+((s−
1)B(s)) = 0. Additionally, we know that lims→1+((s− 1)ζQ(s)) = 1, and the sum

∑∞
k=1

1
|N(xk)|s is

simply
∑
m∈ac−1∩D

1
|N(m)|s . The inequality boils down to

λ

Γ
− ε < lim

s→1+
((s− 1)

∑
m∈ac−1∩D

1

|N(m)|s
) <

λ

Γ
+ ε

Since ε can be chosen to be arbitrarily small, the proposition follows.

What follows now is the computation of the two volumes Γ and λ. It will then be straightforward

to put everything together. The formula will simplify heavily once we know Γ.

Lemma 4.3.5. The covolume of the ideal a when embedded as a lattice into V is
N(a)
√
|∆(K)|

2r2 .

Proof. We prove first that

√
|∆(K)|
2r2 is the covolume of OK . The covolume of OK is the determinant

of a Z-basis for OK when considering V as a real vector space Rd. This is closely related to the

discriminant, but realizing each complex place as a real plane will cost us a factor of 2.

Let {a1 . . . ad} be a Z-basis basis for OK . For a real place given by an embedding σ, the row in

the discriminant matrix corresponding to that embedding is σ(a1) . . . σ(ad). These are coincidently

also the σ-components of the vectors a1 . . . ad when considering Rr1⊕Cr2 as a real vector space Rd.
For complex embeddings σ it is more complicated. In the discriminant matrix, we get two rows

σ(a1) . . . σ(ad) and σ(a1) . . . σ(ad). However, the complex plane C corresponding to σ is realized

as a real plane with real and imaginary coordinates, forming the two rows Re(σ(a1)) . . . Re(σ(an))

and Im(σ(a1)) . . . Im(σ(an)). The determinant calculation for this specific complex place is

det

. . . . . . . . . . . . . . . . . . . . . . . . . . . .Re(σ(a1)) . . . Re(σ(an))

Im(σ(a1)) . . . Im(σ(an))

 = det

. . . . . . . . . . . . . . . . . . . . . . . . . . . .σ(a1) . . . σ(an)

Im(σ(a1)) . . . Im(σ(an))

 =

=
1

2
det

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .σ(a1) . . . σ(an)

2Im(σ(a1)) . . . 2Im(σ(an))

 = −1

2
det

. . . . . . . . . . . . . . . . . .σ(a1) . . . σ(an)

σ(a1) . . . σ(an)


but the sign will not contribute anything and so indeed every complex place loses us a factor of 2.

There are r2 complex places and so

√
|∆(K)|
2r2 is the covolume of OK .
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Now a is a sublattice of OK and we need [OK : a] = |OK/a| = N(a) translates of a to cover

OK . It follows that the covolume of a is N(a)

√
|∆(K)|
2r2 and we are done.

Before computing λ, which will require more work, we simplify our current formula for the

residue as:

lim
s→1+

((s− 1)ζK(s)) =
∑

c∈Cl(K)

N(ac−1) lim
s→1+

((s− 1)
∑

m∈ac−1∩D

1

|N(m)|s
) =

=
∑

c∈Cl(K)

N(ac−1)
λ

Γac−1

=
∑

c∈Cl(K)

N(ac−1)
2r2λ

N(ac−1)
√
|∆(K)|

=
2r2λhK√
|∆(K)|

We now compute the volume λ = V ol(T ). Recall that T is the subset of V of elements x satisfying

• |N(x)| ≤ 1

• Log(x) =
∑r1+r2−1
i=0 biεi with 0 ≤ bi < 1 for all 1 ≤ i ≤ r1 + r2 − 1

• x1 > 0 if K has a real place, and 0 ≤ arg(x1) < 2π
ωK

if K is totally complex.

Lemma 4.3.6.

λ = Vol(T ) =
πr22r1RK

ωK

Proof. The volume of T can be computed using the coordinates of V realized as the real vector

space Rd. We will first compute the volume of T0, the subset of T whose real places are positive

and the third constraint above is removed.

The first variable change is to use polar coordinates for all the complex coordinates. Let g1 . . . gr1
be the real variables and gr1+1 . . . gr1+r2 the radii of the complex variables. Let θ1 . . . θr2 be the

corresponding arguments of the complex variables. The Jacobian of this transformation is known

to be the product of the radii J1 =
∏r2
i=1 gr1+i.

The second variable change is to relate the radii to our basis {ε0 . . . εr1+r2−1} of the Log-image

of V . There is a reason we chose ε0 as we did and that reason will be shown now. Let x ∈ V0 so

that it has positive real components. Write Log(x) =
∑r1+r2−1
i=0 biεi and x = d

√
|N(x)|y where y

has norm 1. Then Log(x) = Log(y) + 1
d log(N(x))ε0 but y is a unit so its ε0 component is 0. As a

result 1
d log(N(x)) = b0. From now on we will denote c0 = N(x) and ci = bi for all other i, so that

all the variables cj have the constraint of lying in the interval [0, 1).

Now we can give some relations between the radii gj and the coefficients cj as

log(gi) =
1

d
log(c0) +

r1+r2−1∑
j=1

cj log(|σi(ηj)|)

This will constitute a variable change, whose Jacobian is

J2 = det


∂g1
∂c0

. . . ∂g1
∂cr1+r2−1

. . . . . . . . . . . . . . . . . . . . . . .
∂gr1+r2

∂c0
. . .

∂gr1+r2

∂cr1+r2−1

 ==

∏r1+r2
i=1 gi
dc0

det

1 . . . log(|σ1(ηr1+r2−1)|)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 . . . log(|σr1+r2(ηr1+r2−1)|)
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Remember that c0 = N(x) =
∏r1
i=1 gi

∏r2
i=1 g

2
r1+i. Also, the rightmost determinant is the regulator

minus the factors of 2 for the complex places, but having an extra factor of d for the column of 1’s.

Therefore it is equal to dRK
2r2 . We get that J2 = RK

2r2
∏r2
i=1 gr1+i

. The product of the two Jacobians is

J1J2 = RK
2r2 and the integral is now simple due to our constraints on the ci. It becomes

Vol(T0) = J0J1

∫ 1

c=0

∫ 2/pi

θ=0

dc0 · · · dcr1+r2−1dθ1 · · · dθr2 = J0J1(2π)r2

which is evaluated as (π)r2RK . To get Vol(T ) we need to multiply by 2 for each real place and

divide by ωK to satisfy the third constraint. This gives λ = Vol(T ) = 2r1 (π)r2RK
ωK

as required.

We are done. By plugging λ into our most recent formula we get

lims→1+((s− 1)ζK(s)) =
2r2λhK√
|∆(K)|

=
2r1(2π)r2RKhK
ωK
√
|∆(K)|

This completes the proof of the analytic class number formula.

4.4 Applications and examples of the analytic class number formula

We will show in some cases that by understanding the decomposition of primes in field extensions

K : Q, we can factorize the Dedekind zeta function of K into a product of Dirichlet L-series. In

the next subsection we will investigate this connection further. In general, it will work for any

abelian extension K of Q, which is a subfield of some cyclotomic field Q(ζ) by Kronecker-Weber.

As a result K will be induced by a group of Dirichlet characters with modulus equal to the order

of ζ, and the Dedekind zeta function of K will factor into a product of the corresponding Dirichlet

L-series. We begin by proving this result for cyclotomic fields themselves.

Proposition 4.4.1. Let K = Q(ζm) be a cyclotomic field, for an integer m > 2. Then

ζK(s) =
∏

χ∈Ẑ/(m)

L(s, χ) = ζQ(s)
∏

χ∈Ẑ/(m)\χ0

L(s, χ)

where χ0 is the trivial character modulo m.

Proof. We start with the Euler product form for Dirichlet L-series, which is∏
χ∈Ẑ/(m)

L(s, χ) =
∏
p

∏
χ∈Ẑ/(m)

1

1− χ(p)p−s

Note that the images of the characters in Ẑ/(m) will be mth roots of unity. Let σ ∈ Gal(K : Q) =

(Z/(m))× be the Artin symbol for some prime p not dividing m. The order of σ is the inertia

degree of p and it also equals ordm(p) = fp. Hence the characters evaluated at p are f th
p roots of

85



unity. For each f th
p root of unity there are φ(m)

fp
= gp characters that send p to it, where gp is the

number of primes above p. As a result we can write

∏
p

∏
χ∈Ẑ/(m)

1

1− χ(p)p−s
=
∏
p

fp−1∏
k=0

(
1

1− ζkfpp
−s )gp

We know that
∏fp−1
k=0 (1− ζkfpp

−s) = 1− p−fs and pfp is the norm of the primes above p, of which

there are gp. From this we finally get

∏
p

fp−1∏
k=0

(
1

1− ζkfpp
−s )gp =

∏
p

1

1−N(p)−s
= ζK(s)

Corollary 4.4.2. Let χ be a nontrivial character modulo m. Then L(s, χ) does not vanish at s = 1.

Proof. Let K = Q(ζm) be a cyclotomic field. ζK(s) has a simple pole at s = 1 which is contributed

to by ζQ(s) in its factorization in Proposition 4.4.1. As a result
∏
χ∈Ẑ/(m)\χ0

L(s, χ) has no pole

or zero at s = 1 and the L-series attached to the nontrivial character χ in question divides this

product. If it had a zero at s = 1, then some other L-series attached to some nontrivial character

modulo m would have to diverge (have a pole) at s = 1, but we know that this is not possible.

Hence every L-series attached to a nontrivial character must not vanish at s = 1.

We produce a result for quadratic fields, which follows from quadratic reciprocity. This will

allow us to analytically determine the class numbers of quadratic fields.

Proposition 4.4.3. Let K = Q(
√
a) be a quadratic field with discriminant d. Then

ζK(s) = ζQ(s)L(s, χ)

where χ is the Kronecker symbol ( ·d ).

Proof. Let K = Q(
√
a) be a quadratic field with discriminant d. Then

ζK(s) =
∏

p:( dp )=0

1

1− p−s
∏

p:( dp )=−1

1

1− p−2s

∏
p:( dp )=1

(
1

1− p−s
)2

by our understanding of prime decomposition in K. We can already take out a factor of the Riemann

zeta function to give

ζK(s) = ζQ(s)
∏

p:( dp )=−1

1

1 + p−s

∏
p:( dp )=1

1

1− p−s
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We can see that for special cases we can use quadratic reciprocity to write the sign in front of p−s

as a Dirichlet character. By general quadratic reciprocity we get

ζK(s) = ζQ(s)
∏
p

1

1− (pd )p−s
= ζQ(s)L(s, (

·
d

))

We give easy examples of the above result for illustrative purposes.

Example 4.4.4. Let K = Q(
√
−3). We need to compute L(1, ( ·3 )) which equals∑
n≡1 (mod 3)

1

n
−

∑
n≡2 (mod 3)

1

n

We will use generating functions to compute this sum. We have

L(1, (
·
3

)) =

 ∑
n≡1 (mod 3)

xn

n
−

∑
n≡2 (mod 3)

xn

n

1

0

which comes from the integral

L(1, (
·
3

)) =

∫ 1

0

(
∑

n≡0 (mod 3)

xn −
∑

n≡1 (mod 3)

xn)dx =

∫ 1

0

1− x
1− x3

dx

This particular integral is easily evaluated by hand as∫ 1

0

1− x
1− x3

dx =

∫ 1

0

1

1 + x+ x2
dx =

∫ 1
2

0

1
3
4 + x2

dx =
1√
3

arctan(
√

3) =
π

3
√

3

Now using the analytic class number formula gives

lim
s→1+

((s− 1)ζK(s)) = lim
s→1+

((s− 1)ζQ(s)L(s, (
·
3

))) = L(1, (
·
3

)) =
π

3
√

3
=

2r1(2π)r2RKhK
ωK
√
|∆(K)|

We have r1 = 0, r2 = 1 and ωK = 6. The regulator is trivial because imaginary quadratic fields

have no non-torsion units. Finally, the discriminant is −3 and so we get

π

3
√

3
=

2πhK

6
√

3

It follows that hK = 1.

Here is the simplest example for real quadratic fields, where the regulator is nontrivial.
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Example 4.4.5. Let K = Q(
√

5). We need to compute L(1, ( ·5 )) which equals∑
n≡1,4 (mod 5)

1

n
−

∑
n≡2,3 (mod 5)

1

n

We will use generating functions to compute this sum. We have

L(1, (
·
5

)) =

 ∑
n≡1,4 (mod 5)

xn

n
−

∑
n≡2,3 (mod 5)

xn

n

1

0

which comes from the integral

L(1, (
·
5

)) =

∫ 1

0

(
∑

n≡0,3 (mod 5)

xn −
∑

n≡1,2 (mod 5)

xn)dx =

∫ 1

0

1− x− x2 + x3

1− x5
dx

This integral can be evaluated by computer to give

L(1, χ) =

∫ 1

0

1− x− x2 + x3

1− x5
dx =

2r1(2π)r2RKhK
ωK
√
|∆(K)|

≈ 0.43041

For Q(
√

5) we have ωK = 2, r1 = 2 and r2 = 0. The discriminant is 5, and it remains to compute

the regulator. We have to solve Pell’s equation which is

x2 − 5y2 = ±1

in this case. The smallest solution is x = 1
2 , y = 1

2 which gives the fundamental unit 1+
√

5
2 . The

regulator is therefore log( 1+
√

5
2 ) ≈ 0.4812. We finally get

0.43041 ≈ 4hK

2
√

5
· 0.4812 ≈ 0.43041hK

so hK = 1 since it must be a positive integer.

For quadratic fields, this method gives a more general formula for L(1, ( ·DK )), which is

L(1, (
·

DK
)) =

∫ 1

0

∑DK−1
m=1 ( m

DK
)xm−1

1− xDK
dx

We will find a different way to compute L(1, χ) for general Dirichlet characters χ in Section 5, using

generalized Bernoulli numbers.

4.5 Dirichlet characters and associated number fields

We begin by describing how one could associate abelian number fields to groups of Dirichlet char-

acters for the Galois group Gal(Q(ζm) : Q) ∼= (Z/(m))× and vice versa. We do not give proofs, but

instead refer the reader to [Was97, Chapter 3].
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Definition 4.5.1. Let X be a group of Dirichlet characters modulo m, for m minimal (set m to be

the LCM of the conductors of the characters in X). Let G = Gal(Q(ζm) : Q). This is canonically

isomorphic to (Z/(m))×, where the element k (mod m) corresponds to the automorphism that sends

ζm → ζkm. We can then associate X to a number field KX in the following way. We define the

normal subgroup ker(X) / G as

ker(X) := {h ∈ G : χ(h) = 1 ∀χ ∈ X}

then we set KX = Q(ζm)ker(X). This will be an abelian number field since G is abelian.

If a group of Dirichlet characters has a modulus ab which is not minimal as above, then it will

be induced by a group of Dirichlet characters for a smaller modulus, say b. By Galois theory, the

associated number field will be the same.

Theorem 4.5.2. There is a one-to-one inclusion preserving bijection between groups of Dirichlet

characters and abelian Galois extensions of Q.

The above definition gives the forward association. We illustrate the other direction. Let M

be an abelian number field. By the Kronecker-Weber theorem, we have M = Q(ζm)H for some

minimal integer m and subgroup H of Gal(Q(ζm)) = (Z/(m))×. Let cok(H) be the defined as

cok(H) := {χ ∈ ̂(Z/(m))× : χ(h) = 1 ∀h ∈ H}

Then we say cok(H) is the group of Dirichlet characters associated to M .

Theorem 4.5.3. Let X be a group of Dirichlet characters and let KX be its associated field. Then

the integral prime p ramifies in KX if and only if χ(p) = 0 for every χ ∈ X.

Proof. See [Was97, Corollary 3.6].

Proposition 4.5.4. Let X be a group of Dirichlet characters and let KX be their associated field.

Then we have

ζKX (s) =
∏
χ∈X

L(s, χ)

Proof. We begin as in the proof for the factorization of the cyclotomic zeta function starting with

ζKX (s) =
∏
p

∏
p|p

1

1−N(p)−s
= (
∏
p

1

1− p−fps
)np

where fp is the residue field degree of the primes above p and ns is the number of primes that p

factors into, including ramified primes. Remember that KX is an abelian Galois extension of Q.

As a result, for unramified primes p the Artin symbol σp can be defined on p and it will have order
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fp. X becomes the group of characters for the group G = Gal(KX : Q) ∼= Gal(Q(ζm) : Q)/ker(X).

As a result X will send σp to the f th
p roots of unity. We can therefore factor, for unramified p,

(
1

1− p−fps
)np =

∏
j:(j,fp)=1

(
1

1− ζjfpp
s
)np =

∏
χ∈X

1

1− χ(p)ps

By Theorem 4.5.3, χ(p) = 0 for any ramified primes p so we can safely write

ζKX (s) =
∏
p

∏
χ∈X

1

1− χ(p)ps
=
∏
χ∈X

L(s, χ)
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5 Arithmetic of cyclotomic fields and Fermat’s last theorem

We will use the tools of analytic and algebraic number theory to prove Fermat’s last theorem (FLT)

for regular primes p. A prime p is called regular if it does not divide the class number of Z(ζp).

Conjecturally the regular primes make up about 61% of all primes so this is a significant result.

In the process we will develop a wider picture of the arithmetic of cyclotomic fields. Fermat’s last

theorem for integers x, y, z and an integer p > 2 states that

xp + yp = zp =⇒ xyz = 0

It is easy to see that if FLT holds for some positive integer a, then it also holds for any positive

integer b divisible by a. Therefore to prove FLT it is sufficient to prove it for all odd primes p and

for 4.

Additionally, the correct number field to work with this problem is the cyclotomic field Q(ζp).

In this field we can factorize the left hand side as

p−1∏
k=0

(x+ ζkp y) = zp

This is the setup we will continuously refer back to. There are two additional elementary assump-

tions that could be made on the x, y, z. Firstly, we can assume that they are pairwise coprime.

Otherwise, all of them would be divisible by some integer n but we could get a simpler solution by

using x
n ,

y
n ,

z
n instead.

Secondly, we can assume that x 6≡ y (mod p). Otherwise we can simply use the equation

xp + (−z)p = (−y)p instead, since −z ≡ (−z)p ≡ (−x)p + (−y)p ≡ −(x+ y) ≡ −2x and if z ≡ x as

well then −2x ≡ x (mod p). This would imply that either p = 3 or p divides (x, y, z). The latter

case is not possible because we assumed that x, y, z are pairwise coprime. In the case p = 3 we

know that cubes must be congruent to 0, 1, 8 modulo 9 and the only viable counter-examples to our

assumption are {x, y, z} ≡ {1, 1,−1} (mod 3) and {x, y, z} ≡ {2, 2,−2} (mod 3). However their

cubes would correspond modulo 9 to {x3, y3, z3} ≡ {1, 1, 8} (mod 9) and {x3, y3, z3} ≡ {8, 8, 1}
(mod p) respectively which are not valid.

These assumptions can be assumed simultaneously and will be assumed from now on. We split

up the proof into two cases. The first case is when p ≥ 5 does not divide xyz, and the second case

is when p ≥ 5 divides xyz. We will prove the cases p = 4 and p = 3 separately.

5.1 Arithmetic of cyclotomic fields

To start off with we will prove some more general facts about CM fields. These are defined below.

Definition 5.1.1. Let K be a number field. The maximally real subfield K+ of K is the subfield

generated by all real elements of K. K is called a CM field if it is totally complex and [K : K+] = 2.
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Lemma 5.1.2. Let K be a Galois CM field with maximally real subfield K+. Let H < G = Gal(K :

Q) be the subgroup generated by complex conjugation. Then K+ is the fixed field of H and H is

central in G.

Proof. K+ is clearly fixed by complex conjugation, and it has codimension 2 in K because K is a

CM field. We have the tower K : KH : K+ and since K 6= KH we must have KH = K+.

Now we will show that K+ is normal, so that H / G. Let a ∈ K+ and let f be its minimal

polynomial. Suppose that f does not split in K+, then it must have as a factor a degree 2 polynomial

g which is irreducible in K+ but splits in K. Any other irreducible factor of f will split in K so it

must have degree 2 or be linear. It will suffice to prove that g actually splits in K+.

The roots of g must be real, since K+ is totally real. Let L be the splitting field of g so that we

have a tower K : L : K+. Then L is totally real still so we cannot have L = K which implies that

K = K+. As a result g splits in K+ so every irreducible polynomial with a root in K+ will split in

K+, and so K+ is normal.

A normal subgroup of degree 2 must be central. To see this, let τ denote complex conjugation

and let a ∈ G. Then aτa−1 = 1 or τ . The first case would imply aτ = a which could not occur as

τ 6= 1. As a result we must have aτa−1 = τ for all a and so 〈τ〉 is central.

Lemma 5.1.3. Let K be a number field and let a ∈ OK . If ||a||σ = 1 for all archimedean places

σ, then a must be a root of unity.

Proof. The key fact is that if ||a||σ = 1 for all archimedean places σ, then ||ak||σ = 1 for all σ

and integers k as well by multiplicativity of absolute values. We will show that the subset of OK
satisfying this property is finite. Since every finite cancellative monoid is a group, this subset must

be the torsion subgroup of the group of units, which is the group of roots of unity.

Recall the method used to prove that the Log-embedding of K is discrete in Theorem 3.3.3.

A similar method is used here. The subset of OK satisfying the property above have minimal

monic polynomials with bounded coefficients due to Vieta formulae. Hence only a finite number of

polynomials could be a minimal polynomial to such an element and so this subset must be finite.

Proposition 5.1.4. Let K be a Galois CM field with maximally real subfield K+. Let r ∈ OK and

suppose that u = r
r ∈ OK . Then u is a root of unity.

Proof. Since every place is complex and the subgroup generated by complex conjugation is central

in Gal(K : Q) we get

||u||σ = σ(u)σ(u) =
σ(r)

σ(r)

σ(r)

σ(r)
=
σ(r)

σ(r)

σ(r)

σ(r)
= 1

and so u is an integral element which is 1 in all archimedean places. As a result it must be a root

of unity by Lemma 5.1.3.

Proposition 5.1.5. Let K = Q(ζm) be a cyclotomic field. Then K is a CM field with totally real

subfield Q(ζm + ζ−1
m ).
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Proof. Firstly note that ζm + ζ−1
m = ζm + τ(ζm) is real, where τ is complex conjugation. We have

as a result the inclusion Q(ζm + ζ−1
m ) ⊂ KH where H = 〈τ〉. To turn this into an equality, which

would complete the proof, we must show that K : Q(ζm + ζ−1
m ) is a degree 2 field extension.

ζm is the root of the quadratic x2 − (ζm + ζ−1
m )x + 1 with coefficients in Q(ζm + ζ−1

m ), so it

follows that K : Q(ζm + ζ−1
m ) is a degree 2 field extension.

The next proof is from [WE, Proposition 13].

Proposition 5.1.6. Let K = Q(ζp) for an odd prime p. Then O×K = 〈ζp〉O×K+ .

Proof. Let ε ∈ O×K and let u = ε
τ(ε) ∈ O

×
K . Then u = ε

τ(ε) = (−ζp)k for some integer k by

Proposition 5.1.4. We will show that u is in fact a pth root of unity.

Write u =
∑p−2
i=0 aiζ

i
p for integers ai and note that

up ≡ (

p−2∑
i=0

aiζ
i
p)
p ≡

p−2∑
i=0

(aiζ
i
p)
p ≡

p−2∑
i=0

api ≡ ±1 (mod p)

due to the freshman’s dream. In fact, any element of OK raised to the pth power will be congruent

to a rational integer modulo p. Now write

εp ≡ ±τ(εp)

but note that εp is also a rational integer modulo p, not congruent to 0 and fixed by τ , so that ±
becomes +. It follows that u is a pth root of unity.

Write ε
τ(ε) = ζkp assuming that ε is not real in which case ζkp is not 1. Then we can set r ≡ −k2

(mod p) since p is an odd prime. Now set δ = ζrpε. We find that τ(δ) = τ(ζrpε) = ζ−rp τ(ε) =

ζ−rp εζ−kp = ζ−rp εζ2r
p = ζrpε = δ. This tells us that δ is a real unit and so the unit ε = δζ−rp can be

written as the product of a real unit and a root of unity. It follows that O×K = 〈ζp〉O×K+ .

Lemma 5.1.7. Let K = Q(ζp) for an odd prime p. Then
1−ζjp
1−ζkp

is a unit for any j, k 6≡ 0 (mod p).

Proof. As ideals we have (1− ζjp) = (1− ζkp ) for any j, k 6≡ 0 (mod p), because they both lie above

p which totally ramifies. As a result their quotient will be a unit.

Proposition 5.1.8. Let K = Q(ζp) for an odd prime p. Then OK+ = Z[ζp + ζ−1
p ]

Proof. The discriminant of K+ divides that of K and so we only need to consider p as a potential

denominator in our algorithm for finding the ring of integers. Assume we can add an algebraic

integer x = 1
p

∑ p−1
2

j=0 aj(ζp + ζ−1
p )j for 0 ≤ aj < p. Then p would have to divide each of the

coefficients of the ζip else we would also get a new algebraic integer for K. Now the coefficients to

ζ
p−1
2

p and ζ
− p−1

2
p is contributed to in the above sum only by the summand

a p−1
2

p
(ζp + ζ−1

p )
p−1
2
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These coefficients are both
a p−1

2

p which leads to a p−1
2

= 0. This was the base case. The sum now

becomes x = 1
p

∑ p−3
2

j=0 aj(ζp + ζ−1
p )j . Proceed by induction, eliminating each aj so that no new

algebraic integers can be found.

For the next two results we follow [Was97, Theorem 5.36].

Lemma 5.1.9. Let K = Q(ζp) for an odd prime p. Let u be a unit in K congruent to a rational

integer a modulo p. Then u is a real unit.

Proof. Write u = ζbpε for some real unit ε. Then we have

ζbp ≡ (1− (1− ζp))b ≡ 1− b(1− ζp) (mod (1− ζp)2)

As ideals we have (1−ζp)2 = (1−ζp)(1−ζ−1
p ) = (2−(ζp+ζ−1

p )). The ring of integers of Q(ζp+ζ−1
p )

is Z[ζp+ζ−1
p ] by Proposition 5.1.8. As a result every element of Z[ζp+ζ−1

p ], including ε, is congruent

to some rational integer modulo (1− ζp)2 because ζp + ζ−1
p ≡ 2 (mod (1− ζp)2).

Putting it all together gives us a rational integer c satisfying

u ≡ ζbpε ≡ (1− b(1− ζp))c ≡ a (mod (1− ζp)2)

Now a must be a unit modulo (1 − ζp)2 because u is a global unit. As a result c is also a unit

modulo (1− ζp)2 and we have c− a ≡ b(1− ζp) (mod (1− ζp)2). Thus (1− ζp) divides c− a, but

this is a rational integer and so in fact p divides c− a. Now (1− ζp) must divide b which is also a

rational integer and so p divides b. As a result we finally get u = ζpp ε = ε is real.

Lemma 5.1.10 (Kummer’s lemma). Let u be a unit of Q(ζp) for a regular prime p such that u ≡ a
(mod p) for some rational integer a. Then u is the pth power of some unit v = p

√
u.

Proof. Since p is regular, the class group of Z[ζp] has no p-torsion. By class field theory, this

means that there is no unramified abelian extension of Q(ζp) of degree p. Consider now the abelian

extension Q(ζp, p
√
u) : Q(ζp) which is the splitting field of the polynomial xp − u. Then the degree

of this extension divides p so it is either p or 1. We will show that this extension is unramified, and

as a result the degree cannot be p, so it must be 1. It will follow that p
√
u ∈ Q(ζp).

We will first show that every prime except (1−ζp) is unramified in this extension by considering

the discriminant. A computation gives us

∆(xp − u) =
∏
i<j

(ζip
p
√
u− ζjp p

√
u)2 = up−1

∏
i<j

(ζip − ζjp)2 = up−1(−1)
p−1
2 pp−2

Moreover the relative discriminant of the extension will divide this and so the only prime that may

be ramified is the prime (1− ζp) above p in Q(ζp). We will use local methods to show that this is

also unramified.
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Note that u is a pth power if and only if e = up−1 is a pth power because p and p−1 are coprime.

Also e ≡ ap−1 ≡ 1 (mod p) because a is a rational integer, and so we may write e = pb + 1 for

some b ∈ Z[ζp]. Recall that all elements of Z[ζp] are congruent to some rational integer modulo

λ = 1 − ζp. Hence we may write b = c + yλ for some c ∈ Z and some y ∈ Z[ζp]. Then we get

e = 1+pc+pyλ. The norm of e is 1 because we have e ≡ 1 (mod p). Modulo pλ we get the relation

1 ≡ N(e) ≡ (1 + pc)p−1 ≡ 1 + (p− 1)pc ≡ 1− pc (mod pλ)

since λ|p. As a result pc ≡ 0 (mod pλ) so λ divides c. It follows that e ≡ 1+pc+pyλ ≡ 1 (mod pλ).

We may assume that e is a real unit by Lemma 5.1.9. From this assumption e − 1 is also real

and we have e − 1 ≡ 0 (mod λ2) by our calculations thus far. Now (λ)2 is the prime above p

in Q(ζp + ζ−1
p ) and so vp(e − 1) is a multiple of 2

p−1 . As a result we can strengthen our result

vp(e− 1) ≥ p
p−1 to vp(e− 1) ≥ p+1

p−1 because p is odd.

Consider the monic polynomial F (x) = (λx−1)p+e
λp . The constant term is e−1

λp which lies in Z[ζp].

All other middle terms of (λx− 1)p are multiples of pλ and so all coefficients of F lie in Z[ζp].

We will now invoke Hensel’s lemma. We have F (0) = e−1
λp ≡ 0 (mod λ), and F ′(0) = pλ

λp =
p

λp−1 6≡ 0 (mod λ) because it must be a unit. It follows that there is a root of F in Z[ζp]λ = Zp[ζp].
However this is a Galois extension of Zp and so F splits in Zp[ζp] because it is the minimal polynomial

of 1− p
√
e

λ . This means p
√
e ∈ Z[ζp]λ and so Zp[ζp, p

√
e] = Zp[ζp]. Local Galois groups correspond to

global decomposition groups and so it follows that (λ) must split completely in the global extension

Q(ζp, p
√
e) : Q(ζp) and so it is an unramified extension.

5.2 Case 1 of Fermat’s last theorem

In the next two subsections we follow [Conc].

Theorem 5.2.1. If xp+yp = zp for integers x, y, z and a regular prime p ≥ 5 so that p 6 |xyz, then

xyz = 0.

Proof. This is the base case. Recall the factorization of ideals

p−1∏
k=0

(x+ ζkp y) = (z)p

Given the assumptions, we will prove that the ideals on the LHS are pairwise coprime. Let (x +

ζjpy, x+ ζkp y) = Ijk as ideals for some 0 ≤ k < j < p. Then we have as elements

(x+ ζkp y)− (x+ ζjpy) = y(ζkp − ζjp) = yζkp (1− ζj−kp ) ∈ Ijk

(x+ ζjpy)− ζj−kp (x+ ζkp y) = x(1− ζj−kp ) ∈ Ijk

In particular, since ζkp is a unit, we get y(1 − ζj−kp ) ∈ Ijk. From the assumption that (x, y) = (1),

it follows that (1 − ζj−kp ) ∈ Ijk. since j 6= k, we know that (1 − ζj−kp ) = (1 − ζp) is a prime ideal
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and so either Ijk = (1− ζp) or Ijk = (1). The first case implies that (1− ζp) divides (x+ ζjpy) for

every j and in particular (1 − ζp)p−1 = (p) divides (z)p. This contradicts the assumptions of this

case. We must have Ijk = (1) for every j 6= k and so the ideals on the LHS are pairwise coprime.

The ideals on the LHS must be pth powers of ideals, since the RHS is a pth power of an ideal.

We focus on a particular ideal (x+ ζpy). Since p is regular the class group has no p-torsion and so

the pth root of the ideal (x+ ζpy) would have to be principal. Therefore we get

(x+ ζpy) = (a)p =⇒ x+ ζpy = uap

for some element a ∈ OK and unit u ∈ O×K . Write u = ζkp ε for some real unit ε, which can be done

by Proposition 5.1.6. Additionally let ap ≡ α (mod p) for some rational integer α. Then

x+ ζpy ≡ ζkp εα (mod p)

x+ ζ−1
p y ≡ ζ−kp εα (mod p)

where we applied complex conjugation in the second case. Combining these two gives us

x+ ζpy − ζ2k
p (x+ ζ−1

p y) ≡ x+ ζpy − ζ2k
p x− ζ2k−1

p y ≡ 0 (mod p)

This gives us an algebraic integer
x+ζpy−ζ2kp x−ζ2k−1

p y

p . We must show that this cannot be an algebraic

integer to get a contradiction. If all the roots of unity involved are distinct, then p would have to

divide each of the coefficients, namely x and y. This would contradict our assumptions. Now we

focus on the various cases where the roots of unity are not distinct. We start with the case ζ2k−1
p = 1

which gives

(x− y)− ζp(x− y) ≡ 0 (mod p)

which requires x ≡ y (mod p), but this contradicts our assumptions. The case ζ2k
p = 1 gives

ζpy − ζ−1
p y ≡ 0 (mod p)

which requires p to divide y, contradicting the assumption p 6 |xyz. The last case ζ2k−1
p = ζp gives

x− ζ2
px ≡ 0 (mod p)

which requires p to divide x, contradicting the assumption p 6 |xyz. We have exhausted all the cases,

each one leading to a contradiction and so we are done.

5.3 Case 2 of Fermat’s last theorem

Suppose now that p|xyz, in which case p can only divide one of x, y, z without breaching our

assumptions. Then we can suppose p|z without loss of generality, otherwise we can just rearrange

the equation since p is odd. In particular we can still assume x 6≡ y (mod p) but this assumption
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will not be required in this case. For convenience we denote λ = 1− ζp. We will prove this case by

descent. Fix a solution in integers to

xp + yp = zp

Let m be the highest power of λ dividing z. Then we can write

xp + yp + λpmzp0 = 0

where λpmzp0 = (−z)p and as a result z0 contains no factor of λ. In fact, none of x, y, z0 contain a

factor of λ. The proof of this case will therefore follow from the following theorem.

Theorem 5.3.1. Let p be an odd regular prime. Suppose we have a solution to xp+yp+uλpmzp0 = 0

for elements x, y, z0 ∈ Z[ζp], a unit u ∈ Z[ζp]
× and an integer m ≥ 1, so that x, y, z0 are not divisible

by 1− ζp. Then xyz0 = 0.

Proof. Fix such a solution where m is minimal. Note that modulo λ we get

ζp ≡ 1 (mod λ) =⇒ x+ ζkp y ≡ x+ y (mod λ)

for all k. Now λ must divide x + ζkp y for some k so it will divide x + ζkp y for all k. By similar

computations as in case 1, we get the containment of ideals

(x, y)(λ) ⊂ (x+ ζkp y, x+ ζjpy) ⊂ (λ)

for j 6= k. But by assumption we have (x, y) = (1) 6⊂ (λ) and so λ divides all but one ideal of the

form (x + ζkp y) exactly once. We can assume that the exceptional ideal is (x + y), since if it was

(x+ ζkp y) instead, then we could just set y = yζkp in the above theorem. Now we pass to elements

and write

x+ y

λpm−(p−1)

p−1∏
k=1

x+ ζkp y

λ
+ zp0 = 0

As ideals,
(x+ζkpy)

(λ) are pairwise coprime and also coprime to (x+y)
(λ)pm−(p−1) . As a result they are all pth

powers of principal ideals when p is regular. Write as ideals then pass to elements to get

(x+ y)

(λ)pm−(p−1)
= (a0)p =⇒ x+ y

λpm−(p−1)
= u0a

p
0

(x+ ζkp y)

(λ)
= (ak)p =⇒

x+ ζkp y

λ
= uka

p
k

for elements a0 . . . ap−1 ∈ Z[ζp] and units u0 . . . up−1 ∈ Z[ζp]
×. We have the simple relation

(x+ ζpy)(1 + ζp)− (x+ ζ2
py) = ζp(x+ y), into which we substitute the above forms to get

u1a
p
1λ(1 + ζp)− u2a

p
2λ = ζpu0λ

pm−(p−1)ap0
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Then we rearrange a little to get

ap1 −
u2

u1(1 + ζp)
ap2 =

ζpu0

u1(1 + ζp)
ap0λ

p(m−1)

we need to show that m ≥ 2. Suppose that m = 1. Then λ would divide each of the (x + ζkp y)

exactly once. However, [Z[ζp]/(λ)2 : Z[ζp]/(λ)] = p− 1 and so by pigeonhole principle

x+ ζkp y ≡ x+ ζjpy (mod λ2)

for at least one set of distinct pairs j, k. From this we get

y(ζkp − ζjp) ≡ 0 (mod λ2)

Now λ will divide (ζkp − ζjp) once and so it must also divide y, which contradicts our assumptions.

Therefore m ≥ 2 and so p will divide the RHS of ap1 − u2

u1(1+ζp)a
p
2 =

ζpu0

u1(1+ζp)a
p
0λ
p(m−1) because

p(m − 1) ≥ p − 1. Both a1 and a2 are units modulo p which satisfy ap1 − u2

u1(1+ζp)a
p
2 ≡ 0 (mod p).

We rearrange to get
u2

u1(1 + ζp)
≡ (

a1

a2
)p (mod p)

which is in turn congruent to some rational integer by previous results. Now we invoke Kummer’s

lemma to write u2

u1(1+ζp) = ηp for some unit η. We get

ap1 + (−ηa2)p + (− ζpu0u
1−m

u1(1 + ζp)
)ap0λ

p(m−1) = 0

contradicting the minimality of our previous solution, since (− ζpu0u
1−m

u1(1+ζp) ) is a unit and a1, a0, (−ηa2)

have no factor of λ.

This completes Fermat’s last theorem for regular primes p ≥ 5.

5.4 Cases p = 3 and p = 4

In this short subsection we present proofs of Fermat’s last theorem for the cases p = 3 and p = 4.

Theorem 5.4.1. Suppose there are integers x, y, z so that x3 + y3 = z3. Then xyz = 0.

Proof. Suppose there is a non-trivial solution in integers x, y, z to x3 +y3 = z3. Then 3 must divide

one of x, y, z by looking modulo 9, since the only cubes are {0, 1, 8}. By rearranging the terms, this

constitutes a solution to x3 + y3 + (−z)3 = 0 where 3 divides z. In particular, by setting z = 3mz0

where 3 - z0, we get a solution to x3 + y3 + (1 − ζ3)6m(−z0)3 = 0 with m ≥ 1. However this

contradicts Theorem 5.3.1 because 3 is a regular prime. In fact h(Z[ζ3]) = 1.

The case p = 4 follows immediately from the following more general theorem.

98



Theorem 5.4.2. Suppose there are integers x, y, z so that x4 + y4 = z2. Then xyz = 0.

Proof. This proof is drastically different from the other cases that we dealt with. We can prove this

case by making use of the ring Z[i], but this would be far too complicated given that 4 is even. We

can assume as usual that x, y, z are pairwise coprime and form a solution to the above equation.

Note that (x2, y2, z) is a Pythagorean triple. We can assume W.L.O.G. that x is odd so that we

can use the parametrization

x2 = a2 − b2

y2 = 2ab

z = a2 + b2

for integers a, b. Then (b, x, a) is a Pythagorean triple, and can be parametrized W.L.O.G. as

b = 2mn

x = m2 − n2

a = m2 + n2

for integers m,n, since x is odd. This gives

y2 = 4mn(m2 + n2)

a and b must be coprime in order to ensure (z, x) = 1. m and n must also be coprime to ensure

(a, b) = 1. As a result m,n and m2 + n2 have no common factors, and must all be perfect squares.

This converts the equation m2 + n2 = a into one of the form f4 + g4 = h2 where m = f2, n = g2

and a = h2. This makes (f, g, h) a nontrivial solution to the original equation where h < a < z. By

infinite descent the solution must have been trivial to begin with.

5.5 The relative class number formula for prime cyclotomic fields

In this subsection we derive the relative class number formula for prime cyclotomic fields. This is

an explicit formula for the quotient
h(Q(ζp))
h(Q(ζp)+) which turns out to be an integer. This quantity is

known as the relative class number and is denoted by h−(Q(ζp)).

The first thing we need to do is to prove the analytic continuation of Dirichlet L-series to the

entire complex plane. For this we follow [IR90, Chapter 16.6]. In doing so, we will automatically get

the value of Dirichlet L-series at non-positive integers. The proof is similar to Riemann’s first proof

of the analytic continuation of the Riemann zeta function, and makes use of the gamma function,

which is defined as

Γ(s) =

∫ ∞
0

e−tts−1dt
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Integration by parts yields the functional equation:

Γ(s+ 1) = sΓ(s)

which can be used to analytically continue Γ to a meromorphic function on C, with simple poles at

the non-positive integers.

We substitute nt into t in the above integral to get

Γ(s) =

∫ ∞
0

e−nt(nt)s−1ndt = ns
∫ ∞

0

e−ntts−1dt

The factor ns is moved to the other side and used in a sum to create the L-series

∞∑
n=1

χ(n)n−sΓ(s) = L(s, χ)Γ(s) =

∫ ∞
0

ts−1
∞∑
n=1

χ(n)e−ntdt

The characters in the sum
∑∞
n=1 χ(n)e−nt are periodic with period fχ and so we can rewrite this

sum as a sum of fχ generating functions as:

∞∑
n=1

χ(n)e−nt =

fχ∑
n=1

χ(n)e−nt

1− e−fχt

Our aim is to ultimately integrate the RHS by parts, so that we may extend L(s, χ). However this

is currently not possible because
∑fχ
n=1

χ(n)e−nt

1−e−fχt cannot be evaluated at t = 0. A simple trick is

required. Substitute 2t into t to get

L(s, χ)Γ(s) =

∫ ∞
0

(2t)s−1

fχ∑
n=1

χ(n)e−2nt

1− e−2fχt
2dt = 2s−1

∫ ∞
0

ts−1

fχ∑
n=1

2χ(n)e−2nt

1− e−2fχt
dt

Now take away this equation from the original integral, after moving the 2s−1 to the other side, to

get

(1− 21−s)L(s, χ)Γ(s) =

∫ ∞
0

ts−1

fχ∑
n=1

(
χ(n)e−nt

1− e−fχt
− 2χ(n)e−2nt

1− e−2fχt
)dt =

=

∫ ∞
0

ts−1

fχ∑
n=1

(1 + e−fχt)χ(n)e−nt − 2χ(n)e−2nt

1− e−2fχt
dt =

=

∫ ∞
0

ts−1

fχ∑
n=1

χ(n)e−nt(1 + e−fχt − 2χ(n)e−nt)

1− e−2fχt
dt =

∫ ∞
0

ts−1

fχ∑
n=1

χ(n)P0(e−t)∑2fχ−1
k=0 e−kt

dt

for some integer polynomial P0. Now the expression
∑fχ
n=1

χ(n)e−ntP (e−t)∑2fχ−1

k=0 e−kt
clearly vanishes at t = 0

and t→∞. Integrating by parts is now possible and it gives us

(1− 21−s)L(s, χ)Γ(s) = −1

s

∫ ∞
0

ts
fχ∑
n=1

χ(n)P1(e−t)

(
∑2fχ−1
k=0 e−kt)2

dt
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for another integral polynomial P1. For notational purposes define

Rk =

fχ∑
n=1

χ(n)Pk(e−t)

(
∑2fχ−1
k=0 e−kt)k+1

for some integer polynomials Pk so that we may write

(1− 21−s)L(s, χ)Γ(s) = (−1)k
1∏k−1

j=0 (s+ j)

∫ ∞
0

ts+k−1Rkdt

after integrating by parts k times. Applying the gamma functional equation gives

(1− 21−s)L(s, χ)Γ(s+ k) = (−1)k
∫ ∞

0

ts+k−1Rkdt

This will extend L(s, χ) to {s ∈ C : Re(s) > −k} since the integral converges for s > −k. By

choosing k to be large enough we can analytically continue any Dirichlet L-series to the entire

complex plane. As a result any Dedekind zeta function associated to abelian Galois extensions of

Q can also be extended to the entire complex plane.

We are more interested in the values of L-series at non-positive integers. By setting s = 1 − k
in the integral involving Rk, we get

(1− 2k)L(1− k, χ)Γ(1) = (−1)k
∫ ∞

0

Rkdt

We will now relate R0 to the generalized Bernoulli numbers of χ.

Definition 5.5.1. Generalized Bernoulli numbers are defined as coefficients of the Taylor expansion

F (t) =

fχ∑
n=1

χ(n)
tent

efχt − 1
=

∞∑
k=0

Bk,χ
k!

tk

Note that

F (−t) =

∞∑
k=0

Bk,χ
k!

(−t)k =

fχ∑
n=1

χ(n)
te−nt

1− e−fχt

so we can write:

R0 =

fχ∑
n=1

χ(n)
e−2nt

1− e−2fχt
−

fχ∑
n=1

χ(n)
2e−nt

1− e−fχt
=

1

t
(F (−t)− F (−2t))

Finally we can relate R0 to generalized Bernoulli numbers as

R0 =
1

t
(

∞∑
k=0

Bk,χ
k!

((−t)k − (−2t)k)) =

∞∑
k=0

(−1)k
Bk,χ
k!

tk−1(1− 2k)
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It is clear that Rk(t) = dkR0(t)
dtk

so by basic analysis we have

Rk+1(0) = (−1)k
Bk,χ
k

(1− 2k)

Then, because Rk(t) vanishes as t→∞, we get

(1− 2k)L(1− k, χ) = (−1)k
∫ ∞

0

Rkdt = (−1)k+1Rk−1(0) = (1− 2k)(−1)2k+1Bk,χ
k

The following theorem is proved as a result.

Theorem 5.5.2. Let χ be a Dirichlet character and let k be a nonnegative integer. Then

L(1− k, χ) = −Bk,χ
k

We need the following extra results which will not be proven here.

Theorem 5.5.3 (Legendre duplication formula). Let s be a complex number not equal to a negative

integer. We have

Γ(
s

2
)Γ(

s+ 1

2
) = Γ(s)21−s√π

Proof. See [Chi, Theorem 3.24].

Theorem 5.5.4. (Functional equation for Dedekind zeta functions) Let K be a number field and

s a complex number. Then

(2−r2π−
[K:Q]

2

√
|Dk|)sΓ(

s

2
)r1Γ(s)r2ζK(s) = (2−r2π−

[K:Q]
2

√
|Dk|)1−sΓ(

1− s
2

)r1Γ(1− s)r2ζK(1− s)

Theorem 5.5.5. (Functional equation for Dirichlet L-series) Let χ be a Dirichlet character and

set a = 1 when χ is odd and a = 0 when χ is even. Let s be a complex number. Then

(
π

fχ
)−

(1−s)+a
2 Γ(

(1− s) + a

2
)L(1− s, χ̄) =

ia
√
fχ

τ(χ)
(
π

fχ
)−

s+a
2 Γ(

s+ a

2
)L(s, χ)

where τ(χ) is the standard Gauss sum associated to χ. See Section 6.2 for a definition of this.

For proofs of these functional equations, see Tate’s thesis [Tat67].

We will make use of Proposition 4.5.4 to link these two functional equations together for an

abelian number field K, following [Was97, Chapter 4]. Let X be the associated group of Dirichlet

characters. Then K is either totally real or totally complex so we will separate the calculation over

these two cases.

• Let K be totally real. Then r2 = 0 and r1 = [K : Q]. Furthermore all associated characters

are even and so a = 0. We take the product over all functional equations for the corresponding

Dirichlet L-series to get

ζK(1− s)
∏
χ∈X

(
π

fχ
)−

(1−s)
2 Γ(

(1− s)
2

) = ζK(s)
∏
χ∈X

√
fχ

τ(χ)
(
π

fχ
)−

s
2 Γ(

s

2
)
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We compare with the functional equation for the Dedekind zeta which reads

(π−
r1
2

√
|Dk|)sΓ(

s

2
)r1ζK(s) = (π−

r1
2

√
|Dk|)1−sΓ(

1− s
2

)r1ζK(1− s)

We substitute the formula for ζK(s) from this functional equation into the previous one to

get

ζK(1−s)
∏
χ∈X

(
π

fχ
)−

(1−s)
2 Γ(

(1− s)
2

) =
(π−

r1
2

√
|Dk|)1−sΓ( 1−s

2 )r1ζK(1− s)
(π−

r1
2

√
|Dk|)sΓ( s2 )r1

∏
χ∈X

√
fχ

τ(χ)
(
π

fχ
)−

s
2 Γ(

s

2
)

We first set s = 1
2 to get

ζK(
1

2
)
∏
χ∈X

(
π

fχ
)−

1
4 Γ(

1

4
) =

(π−
r1
2

√
|Dk|)

1
2 Γ( 1

4 )r1ζK( 1
2 )

(π−
r1
2

√
|Dk|)

1
2 Γ( 1

4 )r1

∏
χ∈X

√
fχ

τ(χ)
(
π

fχ
)−

1
4 Γ(

1

4
)

Major cancellation occurs giving us

1 =
∏
χ∈X

√
fχ

τ(χ)

Now we set s = − 1
2 to get

ζK(
3

2
)
∏
χ∈X

(
π

fχ
)−

3
4 Γ(

3

4
) =

(π−
r1
2

√
|Dk|)

3
2 Γ( 3

4 )r1ζK( 3
2 )

(π−
r1
2

√
|Dk|)−

1
2 Γ(−1

4 )r1

∏
χ∈X

√
fχ

τ(χ)
(
π

fχ
)

1
4 Γ(
−1

4
)

Recall that |X| = r1. Major cancellation occurs giving us

∏
χ∈X

(
π

fχ
)−1 =

(π−
r1
2

√
|Dk|)

3
2

(π−
r1
2

√
|Dk|)−

1
2

∏
χ∈X

√
fχ

τ(χ)

Using the result from the s = 1
2 substitution and rearranging a bit gives us∏

χ∈X
fχ = πr1(π−

r1
2

√
|Dk|)2 = |Dk|

• Now let K be totally complex. Then r1 = 0 and 2r2 = [K : Q]. Half the characters are even

and half the characters are odd. Let X0 be the set of even characters and X1 the set of odd

characters. Taking the product over all functional equations for the corresponding Dirichlet

L-series gives

ζK(1− s)
∏
χ∈X0

(
π

fχ
)−

(1−s)
2 Γ(

(1− s)
2

)
∏
χ∈X1

(
π

fχ
)−

(2−s)
2 Γ(

(2− s)
2

) =

= ζK(s)
∏
χ∈X0

√
fχ

τ(χ)
(
π

fχ
)−

s
2 Γ(

s

2
)
∏
χ∈X1

i
√
fχ

τ(χ)
(
π

fχ
)−

1+s
2 Γ(

1 + s

2
)
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The functional equation for the Dedekind zeta function in this case reads

(2−r2π−r2
√
|Dk|)sΓ(s)r2ζK(s) = (2−r2π−r2

√
|Dk|)1−sΓ(1− s)r2ζK(1− s)

We substitute the formula for ζK(s) from this equation into the previous one to get

ζK(1− s)
∏
χ∈X0

(
π

fχ
)−

(1−s)
2 Γ(

(1− s)
2

)
∏
χ∈X1

(
π

fχ
)−

(2−s)
2 Γ(

(2− s)
2

) =

=
(2−r2π−r2

√
|Dk|)1−sΓ(1− s)r2ζK(1− s)

(2−r2π−r2
√
|Dk|)sΓ(s)r2

∏
χ∈X0

√
fχ

τ(χ)
(
π

fχ
)−

s
2 Γ(

s

2
)
∏
χ∈X1

i
√
fχ

τ(χ)
(
π

fχ
)−

1+s
2 Γ(

1 + s

2
)

Setting s = 1
2 first will give us

ζK(
1

2
)
∏
χ∈X0

(
π

fχ
)−

1
4 Γ(

1

4
)
∏
χ∈X1

(
π

fχ
)−

3
4 Γ(

3

4
) =

=
(2−r2π−r2

√
|Dk|)

1
2 Γ( 1

2 )r2ζK( 1
2 )

(2−r2π−r2
√
|Dk|)

1
2 Γ( 1

2 )r2

∏
χ∈X0

√
fχ

τ(χ)
(
π

fχ
)−

1
4 Γ(

1

4
)
∏
χ∈X1

i
√
fχ

τ(χ)
(
π

fχ
)−

3
4 Γ(

3

4
)

Major cancellation occurs giving us

1 =
∏
χ∈X0

√
fχ

τ(χ)

∏
χ∈X1

i
√
fχ

τ(χ)

Now we can set s = − 1
2 to give us

ζK(
3

2
)
∏
χ∈X0

(
π

fχ
)−

3
4 Γ(

3

4
)
∏
χ∈X1

(
π

fχ
)−

5
4 Γ(

5

4
) =

=
(2−r2π−r2

√
|Dk|)

3
2 Γ( 3

2 )r2ζK( 3
2 )

(2−r2π−r2
√
|Dk|)−

1
2 Γ(− 1

2 )r2

∏
χ∈X0

√
fχ

τ(χ)
(
π

fχ
)

1
4 Γ(−1

4
)
∏
χ∈X1

i
√
fχ

τ(χ)
(
π

fχ
)−

1
4 Γ(

1

4
)

We apply the result from the s = 1
2 substitution. Some cancellation occurs giving us∏

χ∈X0

(
π

fχ
)−

3
4 Γ(

3

4
)
∏
χ∈X1

(
π

fχ
)−

5
4 Γ(

5

4
) =

=
(2−r2π−r2

√
|Dk|)

3
2 Γ( 3

2 )r2

(2−r2π−r2
√
|Dk|)−

1
2 Γ(− 1

2 )r2

∏
χ∈X0

(
π

fχ
)

1
4 Γ(−1

4
)
∏
χ∈X1

(
π

fχ
)−

1
4 Γ(

1

4
)

We rearrange, keeping in mind that |X0| = |X1| = r2, to get

∏
χ∈X0

fχ
π

∏
χ∈X1

fχ
π

= (2−r2π−r2
√
|Dk|)2 Γ( 3

2 )r2Γ( 1
4 )r2Γ(− 1

4 )r2

Γ(− 1
2 )r2Γ( 3

4 )r2Γ( 5
4 )r2
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Here we will make use of the Legendre duplication formula to cancel out the gamma factors.

We make the substitutions Γ( 3
2 ) =

Γ( 3
4 )Γ( 5

4 )

2−
1
2
√
π

and Γ(− 1
2 ) =

Γ(− 1
4 )Γ( 1

4 )

2
3
2
√
π

into the above formula

to get ∏
χ∈X

fχ = π2r2(2−r2π−r2
√
|Dk|)222r2 = |DK |

The above calculation proves the following crucial theorem.

Theorem 5.5.6 (Conductor-Discriminant formula). Let X be a group of Dirichlet characters and

K its associated field. Then ∏
χ∈X

fχ = |DK |

We also got the following along the way.

Proposition 5.5.7. Let X be a group of Dirichlet characters. Let X0 be the subset of even char-

acters and let X1 be the subset of odd characters. Then

∏
χ∈X0

√
fχ

τ(χ)

∏
χ∈X1

i
√
fχ

τ(χ)
= 1

Now we can begin working towards the relative class number formula.

Proposition 5.5.8. Let K = Q(ζp) be a cyclotomic field with p an odd prime. Then the ratio of

its regulator with the regulator of the maximally real subfield is

RK
RK+

= 2
p−3
2

Proof. We have previously shown in Proposition 5.1.6 that O×K = 〈ζp〉O×K+ , but the torsion sub-

group 〈ζp〉 is killed in the Log-embedding. As a result we can use the same set of fundamental units

for both fields. However, in the regulator matrix for K, a coefficient of 2 is added to the logarithm

attached to each complex embedding, of which there are p−3
2 . The result follows.

We look at the analytic class number formula for K = Q(ζp), whose associated group of Dirichlet

characters minus the trivial character is X0. It says that

lim
s→1

((s− 1)ζK(s)) =
∏
χ∈X0

L(1, χ) =
(2π)

p−1
2 RKhK

2p
√
|DK |

We compare it with the analytic class number formula for the maximally real subfield K+, whose

associated group of Dirichlet characters minus the trivial character is X+
0 . It says that

lim
s→1

((s− 1)ζK+(s)) =
∏
χ∈X+

0

L(1, χ) =
2
p−1
2 RK+hK+

2
√
|DK+ |
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We note that X+
0 just consists of the even characters of X0 minus the trivial character. We can

therefore take the quotient of the analytic class number formulae and write

∏
χodd

L(1, χ) =
(2π)

p−1
2 RKhK2

√
|DK+ |

2
p−1
2 RK+hK+2p

√
|DK |

=
π
p−1
2 2

p−3
2 hK

√
|DK+ |

hK+p
√
|DK |

where we applied Proposition 5.5.8 in the last step. From Theorem 5.5.6 we get that

|DK+ | =
∏
χeven

fχ = p
p−3
2

due to the fact that the group of even characters has size p−1
2 and each is of conductor p, except

the trivial character which has conductor 1. We also know that |DK | = pp−2. After rearranging,

the formula for the relative class number becomes

h−K :=
hK
hK+

=

√
p
p+3
2

∏
χodd L(1, χ)

π
p−1
2 2

p−3
2

Applying the functional equation for odd Dirichlet characters at s = 1 gives us

(
π

fχ
)−

1
2 Γ(

1

2
)L(0, χ̄) =

i
√
fχ

τ(χ)
(
π

fχ
)−1Γ(1)L(1, χ)

We know that Γ( 1
2 ) =

√
π, Γ(1) = 1 and fχ = p. Then taking the product across all odd characters

gives ∏
χodd

L(1, χ) =
∏
χodd

L(0, χ̄)
π

p

τ(χ)

i
=
∏
χodd

L(0, χ̄)
π
√
p

= (
π
√
p

)
p−1
2

∏
χodd

L(0, χ)

The conjugate of an odd character is an odd character, which explains the last equality. The

penultimate equality follows from Lemma 5.5.7.

The relative class number formula in terms of L-series valued at 0 becomes

h−K =
p
∏
χodd L(0, χ)

2
p−3
2

The value of L-series at 0 can be computed using the generalized Bernoulli numbers from Theo-

rem 5.5.2. This updates our formula to the relative class number formula

h−K = 2p
∏
χodd

−1

2
B1,χ

Why do we actually care about the relative class number formula? We will show later that p

is regular if and only if it does not divide h−Q(ζp). Therefore the existence of p-torsion is solely

determined by the relative class number. For now, let’s show that hK+ divides hK , so that h−K is

a positive integer. This follows immediately from the following result in [Was97, Proposition 4.11].
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Proposition 5.5.9. Let L : K be an extension of number fields containing no intermediate abelian

unramified extensions of K. Then hK |hL.

Proof. Let HK be the Hilbert class field of K. Let HK∩L = M . Then M : K is unramified because

M is contained in the Hilbert class field. By the assumptions of the problem, we must have M = K.

HK : K is unramified and so its relative discriminant is 1. As a result we can apply Theorem 1.8.14

on the compositum HKL, because HK ∩L = K and the relative discriminants of HK : K and L : K

are coprime. This tells us that the relative discriminant of HKL : L is also 1 so it is an unramified

extension. It is also abelian because its Galois group is isomorphic to Gal(HK : K).

HKL : L is unramified abelian so it is contained in the Hilbert class field of L. This means

[HKL : L] divides [HL : L]. As a result we have hK |hL.
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6 More arithmetic of cyclotomic fields

In this section we give two presentations for a refined criterion on whether p divides the relative class

number of Q(ζp). One is analytic, making use of p-adic L-functions, and one is algebraic, making use

of Stickelberger’s relation and Herbrand’s theorem. We start with the analytic presentation. The

algebraic presentation will take us further and we will prove Kummer’s criterion as well. Altogether

this gives a relatively easy method to determine when a prime is regular.

The main sources for this section are [Was97] and [IR90]. We will clarify which sources are used

at the beginning of each subsection.

6.1 Construction of p-adic L-functions

We begin by giving an alternate derivation for the values of ordinary Dirichlet L-functions at non-

positive integers, which will help us motivate the definition of p-adic L-functions.

Definition 6.1.1. The Hurwitz zeta function is defined as

ζ(s, b) =

∞∑
n=0

1

(n+ b)s

for some rational b in the range 0 ≤ b < 1.

We can patch up Hurwitz zeta functions to form Dirichlet L-series via

∞∑
n=0

1

(xn+ y)s
= x−s

∞∑
n=0

1

(n+ y
x )s

= x−sζ(s,
y

x
)

L(s, χ) =

fχ∑
a=1

∞∑
n=0

χ(a)

(fχn+ a)s
=

fχ∑
a=1

χ(a)f−sχ ζ(s,
a

fχ
)

Definition 6.1.2. The Bernoulli polynomials Bk(x) are defined from the Taylor expansion

text

et − 1
=
∞∑
k=0

Bk(x)

k!
tk

From the above definition we can rewrite generalized Bernoulli numbers using

fχ∑
a=1

χ(a)
teat

efχt − 1
=

fχ∑
a=1

χ(a)f−1
χ

∞∑
k=0

Bk( afχ )

k!
(fχt)

k

Bk,χ =

fχ∑
a=1

χ(a)fk−1
χ Bk(

a

fχ
)
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So another way to derive the values of L-functions at non-positive integers is to derive the values

of the Hurwitz zeta function at non-positive integers. We should get

ζ(1− k, y
x

) = −
Bk( yx )

k

for x, y positive integers so that 0 ≤ y < x. We will prove this now using the same idea we used in

the proof for L-series. We first need the simple result Bk(1−m) = (−1)kBk(m). This is due to

∞∑
k=0

Bk(x)

k!
(−t)k =

−te−xt

e−t − 1
=
te(1−x)t

et − 1
=

∞∑
k=0

Bk(x)

k!
tk =

∞∑
k=0

Bk(1− x)

k!
tk

Proposition 6.1.3. The Hurwitz zeta function ζ(s, yx ) for x, y positive integers with 0 ≤ y < x can

be analytically extended to C so that its value at s = 1− k for positive integers k reads

ζ(1− k, y
x

) = −
Bk( yx )

k

Proof. We start with the gamma function defined as the integral

Γ(s) =

∫ ∞
0

e−tts−1dt

We substitute (n+ y
x )t into t to get

Γ(s) = (n+
y

x
)s
∫ ∞

0

e−(n+ y
x )tts−1dt

We move the (n+ y
x )s to the other side and sum over nonnegative integers n to get

ζ(s,
y

x
)Γ(s) =

∫ ∞
0

∞∑
n=0

e−(n+ y
x )tts−1dt =

∫ ∞
0

e−
y
x t

1− e−t
ts−1dt

We substitute xt into t to make all exponents integers, giving us

ζ(s,
y

x
)Γ(s) = xs

∫ ∞
0

e−yt

1− e−xt
ts−1dt

Now we can do the same trick as before to get

(1− 21−s)x−sζ(s,
y

x
)Γ(s) =

∫ ∞
0

(
e−yt

1− e−xt
− 2e−2yt

1− e−2xt
)ts−1dt =

=

∫ ∞
0

e−ytP0(e−t)

1 + e−xt
ts−1dt =

∫ ∞
0

R0t
s−1dt

for some integer polynomial P0. Now integrating by parts will extend the Hurwitz zeta function to

give

(1− 21−s)x−sζ(s,
y

x
)Γ(s+ k) = (−1)k

∫ ∞
0

Rkt
s+k−1dt
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Setting s = 1− k above just as before gives us

(1− 2k)xk−1ζ(1− k, y
x

) = (−1)k
∫ ∞

0

Rkdt = (−1)k+1Rk−1(0)

We need to know what R0 is in order to compute the above. We have

R0 =
e−yt

1− e−xt
− 2e−2yt

1− e−2xt
=

1

xt
(
xte(x−y)t

ext − 1
− 2xte2(x−y)t

e2xt − 1
) =

=
1

xt
(

∞∑
k=0

(1− 2k)
Bk(1− y

x )

k!
(xt)k)

giving us the desired result

Rk−1(0) = (1− 2k)
Bk(1− y

x )

k
xk = (1− 2k)(−1)k

Bk( yx )

k
xk−1

Altogether this gives us

ζ(1− k, y
x

) = −
Bk( yx )

k

The main idea for creating p-adic L-series is similar. We will define some function analogous

to the Hurwitz zeta function and patch them up to define p-adic L-series. We do so in a way so

that the special values (at non-positive integers) are related to the special values of the ordinary

L-series. This can be seen as an interpolation of the special values. This definition of p-adic L-series

is called the Kubota–Leopoldt p-adic L-series. We need some preliminaries before we get started.

Lemma 6.1.4. For some prime number p, we have

p∑
a=1

an ≡ 0 (mod p)

in the case that p− 1 does not divide n. Otherwise we have

p∑
a=1

an ≡ −1 (mod p)

Proof. The second case is easy. If p− 1 divides n then

p∑
a=1

an ≡
p∑
a=1

1 ≡ p− 1 (mod p)

Otherwise, an 6≡ 1 for at least one value of a. Let an = b for that value. The nth powers modulo p

form a multiplicative subgroup which is not trivial as a result. Multiplication by b will permute its

elements so we get

b

p∑
a=1

an ≡
p∑
a=1

an =⇒ (b− 1)

p∑
a=1

an ≡ 0 (mod p)

Since b 6≡ 1 (mod p), we must get
∑p
a=1 a

n ≡ 0 (mod p).
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For the remainder of this subsection we follow [Was97, Chapter 5].

Theorem 6.1.5 (von Staudt-Clausen). Let n be an even positive integer. Then

Bn +
∑
p−1|n

1

p
∈ Z

Proof. First notice that the standard even Bernoulli numbers agree with the generalized even

Bernoulli numbers for the trivial character χ = 1, since

t

et − 1
+ t =

tet

et − 1

and so Bn = Bn,1 for positive even integers n. Recall the formula for generalized Bernoulli numbers

in terms of Bernoulli polynomials and apply it to χ = 1 to get

Bn,1 = Bn(1)

We may write

∞∑
n=0

Bn,1
n!

tn =
tet

ept − 1

ept − 1

et − 1
=

p∑
a=1

teat

ept − 1
=

1

p

∞∑
n=0

p∑
a=1

Bn(ap )

n!
(pt)n

by using definitions of generalized Bernoulli numbers and Bernoulli polynomials. Then reading off

the coefficients for even positive integers n gives

Bn = Bn,1 = pn−1

p∑
a=1

Bn(
a

p
)

Another way to relate Bernoulli polynomials and Bernoulli numbers is to write

∞∑
k=0

Bk(x)

k!
tk =

text

et − 1
=

∞∑
k=0

Bk
k!
tk
∞∑
m=0

(xt)m

m!

When we read off the coefficients to tk we get:

Bk(x)

k!
=

k∑
i=0

Bix
k−i

i!(k − i)!

giving us the expression for the Bernoulli polynomials in terms of Bernoulli numbers

Bk(x) =

k∑
i=0

(
k

i

)
Bix

k−i

Substituting this into our formula for Bernoulli numbers in terms of Bernoulli polynomials gives:

Bn = pn−1

p∑
a=1

n∑
i=0

(
n

i

)
(Bi)(

a

p
)n−i =

p∑
a=1

n∑
i=0

(
n

i

)
Bia

n−ipi−1
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We will now commence proof by induction. Suppose the result is true for all even Bernoulli numbers

up to but excluding n. Take the above expression modulo p to get

Bn ≡
p∑
a=1

B0a
np−1 + nB1a

n−1 +Bnp
n−1

because for all m positive even with m < n we have, looking modulo p, that either Bm ∈ Zp or

Bm + 1
p ∈ Zp. This means that pBm is certainly p-integral. Now B0 = 1 and B1 = − 1

2 so

Bn ≡
p∑
a=1

anp−1 − nan−1

2
+Bnp

n−1

It follows that

(1− pn)Bn =
1

p

p∑
a=1

an − n

2

p∑
a=1

an−1

Invoking Lemma 6.1.4 gives, if p − 1 does not divide n, that (1 − pn)Bn is a p-adic integer. Even

if p = 2, n is even so n
2 is a 2-adic integer. This means that Bn is a p-adic integer as 1 − pn ≡ 1

(mod p).

However, if p− 1 divides n, then we get

(1− pn)Bn +
1

p
≡ 1

p
(1 +

p∑
a=1

an)− n

2

p∑
a=1

an−1

The right hand side is a p-adic integer. In particular, Bn + 1
p is a p-adic integer. It follows that the

sum Bn +
∑
p−1|n

1
p ∈ Z is a p-adic integer for all primes p and hence it is an integer.

The above theorem proves that |Bn|p ≤ p and will be essential in our construction of p-adic

L-functions. We will give the construction now, and then develop the p-adic analysis necessary in

order to prove that p-adic L-functions converge where we want them to.

Until now we have only discussed Dirichlet characters, which take complex values, specifically

some root of unity. By Hensel’s lemma, for every non-zero equivalence class modulo a prime p, we

get a corresponding (p − 1)th root of unity in Zp. Therefore we can also define characters which

take values of roots of unity in p-adic rings.

Definition 6.1.6. The Teichmuller character is the group homomorphism

ω : (Z/pZ)× → Z×p

so that ω(a) ≡ a (mod p) for all a ∈ (Z/pZ)× and ω(0) = 0. This property uniquely characterizes

ω.

Due to the above definition we can normalize any p-adic unit so that it has value 1 modulo p.

Let a be a p-adic unit. We define

〈a〉 = ω−1(a)a

This will be a p-adic unit which has value 1 modulo p.
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Definition 6.1.7. The p-adic Hurwitz zeta function is defined as

Hp(s, a, F ) =
1

s− 1

1

F
〈a〉1−s

∞∑
k=0

(
1− s
k

)
(Bk)

F k

ak

for some integers a and F so that p 6 |a and p|F . If p = 2, we require 4 to divide F .

We will show that the non-positive integer values s of the p-adic Hurwitz zeta function are

related to the ordinary Hurwitz zeta function. Substituting s = 1− n for some integer n ≥ 1 gives

Hp(1− n, a, F ) = − 1

nF
〈a〉n

n∑
k=0

(
n

k

)
(Bk)(

F

a
)k = −F

n−1

n
ω−n(a)

n∑
k=0

(
n

k

)
(Bk)(

a

F
)n−k

Now the sum gives the nth Bernoulli polynomial evaluated at a
F and so

Hp(1− n, a, F ) = −F
n−1ω−n(a)

n
Bn(

a

F
) = Fn−1ω−n(a)ζ(1− n, a

F
)

ω has order p− 1, so in particular if p− 1|n then

Hp(1− n, a, F ) = Fn−1ζ(1− n, a
F

)

We now need some analytic results.

Lemma 6.1.8. We have the following bounds, for a prime p and an integer n.

n− 1

p− 1
≤ vp(n!) ≤ n

p− 1

Proof. We start with the result

vp(n!) =

∞∑
k=1

b n
pk
c

Then write n =
∑m
k=0 akp

k so that

vp(n!) =

m∑
k=1

∞∑
k=1

b
∑m
k=0 akp

k

pk
c =

m∑
k=1

k−1∑
i=0

akp
i =

m∑
k=1

ak
1− pk

1− p

The coefficients ai can be chosen so that 0 ≤ ai < p and thus

vp(n!) =

∑m
k=1 ak(1− pk)

1− p
=

(
∑m
k=1 ak)− pbnp c)

1− p

It is easy to check the bounds now. We get

n− 1

p− 1
≤ vp(n!) =

(
∑m
k=1 ak)− pbnp c)

1− p
≤ m(p− 1)− (n− (p− 1))

1− p
=

n

p− 1
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Proposition 6.1.9. Consider a p-adic function written as

f(x) =

∞∑
n=0

an

(
x

n

)
where the an are constants that decrease exponentially w.r.t. the p-adic metric as

|an|p ≤Mrn

for some positive real constant M and r < p−
1
p−1 . Then f may be expressed as a power series with

radius of convergence at least R = p
− 1
p−1

r > 1.

Proof. We define the partial sums

Pi(x) =
∑
n≤i

an

(
x

n

)
=
∑
n≤i

an,ix
n

for some constants an,i, since each
(
x
n

)
is a polynomial of degree n. We may write

an,i =

i−n∑
k=0

an+k
c(i, n, k)

(n+ k)!

where c(i, n, k) are p-integral and so |c(i, n, k)|p ≤ 1. As a result

|an,i|p ≤ max
k=0...i−n

{| an+k

(n+ k)!
|p}

Recall that |(n+ k)!|p ≥ p
n+k
1−p and |an+k|p ≤Mrn+k and so

| an+k

(n+ k)!
|p ≤Mrn+kp

n+k
1−p = M(

p−
1
p−1

r
)−(n+k) ≤MR−n

It follows that |an,i|p ≤MR−n. Now we compare coefficients across the partial sums to get

Pi+k(x)− Pi(x) =

i+k∑
n=i+1

an

(
x

n

)

|an,i − an,i+k|p = |
k∑
j=1

ai+j
d(i, n, j, k)

(i+ j)!
|p

where the d(i, n, j, k) are p-integral. Similarly to above, we get

|an,i − an,i+k|p ≤MR−(i+1)

which converges to 0 as i increases. Therefore the sequences {an,i}i are Cauchy. The limit

an,0 = lim
i→∞

(an,i)
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exists for each n because Qp is complete. Since |an,i|p ≤ MR−n for each element of the sequence,

we get that |an,0|p ≤MR−n also. Therefore the function

P0(x) =

∞∑
n=0

an,0x
n

Will clearly converge for {x ∈ Qp : |x|p < R}. It remains to show that P0(x) = f(x).

We know that f(x) = limi→∞(Pi(x)). We’ve shown that

|P0(x)− Pi(x)|p ≤ max(|(an,i − an,0)xn|p) ≤ max{MR−(n)|xn|p}

The right hand side converges to 0 as n grows, for x in our specified range, and so eventually for

large enough i we can instead use the bound

|P0(x)− Pi(x)|p ≤ max{|(an,i − an,0)xn|p} ≤ max{MR−(i+1)|xn|p}

so that Pi converges uniformly to P0 as the right hand side goes to zero for large enough i. It

follows that f = P0.

Proposition 6.1.10. The p-adic Hurwitz zeta function is analytic on {s ∈ Qp : |s|p < qp−
1
p−1 }

except for a simple pole at s = 1. Where we define q = p for odd p and q = 4 for p = 2.

Proof. We require q|F and p 6 |a and so as a result we can say |(F/a)j |p ≤ q−j . Together with our

result from von-Staudt Clausen we can say that |Bj(F/a)j |p ≤ pq−j .
We can therefore invoke Proposition 6.1.9 on

∞∑
j=0

(
s

j

)
(Bj)(F/a)j

as a function in s, setting r = q−1. This gives us that the function is analytic on D = {s ∈ Qp :

|s|p < qp−
1
p−1 } since q−1 < p−

1
p−1 . The function

∞∑
j=0

(
1− s
j

)
(Bj)(F/a)j

is also analytic on D, because 1 is a unit and the absolute value is non-archimedean. The function

〈a〉s = asω−s(a) is also analytic on D because as is, since

as = exp(s logp(a))

and by standard convergence facts about the p-adic logarithm and exponential, this is analytic on

D. By the same reasoning we get that 〈a〉1−s is analytic on D. It follows finally that

1

F
〈a〉1−s

∞∑
j=0

(
1− s
j

)
(Bj)(

F

a
)j = (s− 1)Hp(s, a, F )
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is analytic on D. Therefore Hp(s, a, F ) has a simple pole at s = 1 with residue

ress=1(Hp(s, a, F )) =
1

F
〈a〉0

∞∑
j=0

(
0

j

)
(Bj)(

F

a
)j =

1

F

We are now ready to define p-adic L-functions.

Definition 6.1.11. The p-adic L-function attached to a Dirichlet character χ of conductor f is

defined as

Lp(s, χ) =
∑

1≤a≤F :(a,p)=1

χ(a)Hp(s, a, F )

for some F divisible by both q and f .

Theorem 6.1.12. Lp(s, χ) as defined above is analytic on D = {s ∈ Qp : |s|p < qp−
1
p−1 } except

for a simple pole at s = 1 with residue 1− p−1 when χ is trivial. It takes the value

Lp(1− n, χ) = −(1− χω−n(p)pn−1)
Bn,χω−n

n

for positive integers n.

Proof. The analytic property follows from Proposition 6.1.10. The residue of the pole at s = 1 is

ress=1(Lp(s, χ)) =
∑

1≤a≤F :(a,p)=1

χ(a)

F
=

1

F

F∑
a=1

χ(a)− 1

F

F/p∑
b=1

χ(pb)

When χ is trivial the above sum equals 1− 1
F
F
p = 1− p−1. If not then

1

F

F∑
a=1

χ(a)− 1

F

F/p∑
b=1

χ(pb) = −χ(p)

F

F/p∑
b=1

χ(b)

Since p divides F , it must either divide f otherwise f will divide F/p. In the first case we have

χ(p) = 0, and in the second case we have
∑F/p
b=1 χ(b) = 0, so if χ is non-trivial we get that Lp(s, χ)

has no pole at s = 1.

For a positive integer n we have

Lp(1− n, χ) =
∑

1≤a≤F :(a,p)=1

χ(a)Hp(1− n, a, F ) = −
∑

1≤a≤F :(a,p)=1

χ(a)
Fn−1ω−n(a)

n
Bn(

a

F
)

We can write

Lp(1− n, χ) = −F
n−1

n

∑
1≤a≤F :(a,p)=1

χω−n(a)Bn(
a

F
)
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Lp(1− n, χ) = −F
n−1

n

F∑
a=1

χω−n(a)Bn(
a

F
) +−F

n−1

n

F/p∑
b=1

χω−n(bp)Bn(
b

F/p
)

since ω−n(a) 6= 0 for all a in the sum. By our results on generalized Bernoulli numbers this gives

Lp(1− n, χ) = − 1

n
(1− χω−n(p)pn−1)Bn,χω−n

Recall that when χ is non-trivial, the p-adic L-function is analytic on D. We can therefore

obtain its expansion about s = 1.

Proposition 6.1.13. Suppose we have the expansion

Lp(s, χ) =

∞∑
i=0

ai(s− 1)i

for χ non-trivial so that pq does not divide its conductor. Then |ai|p < 1 for i > 0 and |a0| ≤ 1.

Proof. Recall that q = p when p odd and q = 4 when p = 2. In the definition of Lp(s, χ) choose F

so that q divides F but pq does not, which can be done by assumption. Then we have

|BjF
j−1

j!aj
|p ≤

p
j
p−1 · p
qj−1

=
p
p+j−1
p−1

qj−1
= p−

p(j−2)−2(j−1)
p−1

for j ≥ 1 and p odd. For j ≥ 6, we automatically get that the right hand side is less that p−1. For

p = 2 we can check that

|BjF
j−1

j!aj
|p ≤

p
j
p−1 · p
qj−1

=
p
p+j−1
p−1

qj−1
= p−

p(2j−3)−3(j−1)
p−1 ≤ q−1

for j ≥ 6. Overall, for j ≥ 6 we get that the right hand side is less that or equal to q−1. We check

by hand the cases j = 3, 4, 5.

|B3F
2

3!a3
|p = |B5F

4

5!a5
|p = |0|p = 0 ≤ q−1

|B4F
3

4!a4
|p = | − F 4

3600a5
|p ≤

pvp(3600)

q3
≤ q−1

This tells us that the coefficients in

1

F

∑
j≥3

(
1− s
j

)
(Bj)(

F

a
)j

are divisible by p. We also have the expansion

〈a〉1−s = exp((1− s) logp(〈a〉)) =

∞∑
j=0

1

j!
(1− s)j(logp(〈a〉))j
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By standard results in p-adic analysis we have that q divides logp(〈a〉). Therefore every coefficient

in the above expansion is bounded above p-adically by p
j
p−1 q−j < 1 so they are p-integral. In

particular for j ≥ 3 the bound becomes p
3
p−1 q−3 ≤ (pq)−1. For j = 2 we manually compute the

upper bound to be pvp(2)q−2 < (pq)−1 still. It remains to study the cases j = 0, 1, 2 from the

original series. We have

|B2F
1

2!a2
|p = | F

12a2
|p ≤

pvp(12)

q
≤ 1

|B1

1!a
|p = | − 1

2a
|p ≤ pvp(2) ≤ p

|B0F
−1

1
|p = |0|p = 0

As a result, by removing all contributors whose coefficients are already divisible by p, we only need

to consider the finite sum

Lp(s, χ) ≡ 1

s− 1

∑
1≤a≤F :(a,p)=1

χ(a)(1+(1−s) logp(〈a〉))(
1

F
− 1− s

2a
+

(1− s)(1− s− 1)F

12a2
) (mod p)

This gives us the coefficients a0, a1 and a2 modulo p as

a0 ≡ −
∑

1≤a≤F :(a,p)=1

χ(a)(
1

F
logp(〈a〉)−

1

2a
− F

12a2
) (mod p)

a1 ≡ −
∑

1≤a≤F :(a,p)=1

χ(a)(
F

12a2
−

logp(〈a〉)
2a

−−
F logp(〈a〉)

12a2
) (mod p)

a2 ≡ −
∑

1≤a≤F :(a,p)=1

χ(a)(
F logp(〈a〉)

12a2
) (mod p)

q divides
F logp(〈a〉)

12a2 so obviously a2 ≡ 0 (mod p). p also divides
logp(〈a〉)

2a so we can write

a1 ≡ −
F

12

∑
1≤a≤F :(a,p)=1

χ(a)a−2 (mod p)

If p is not 2 or 3 then q divides F
12 and so a1 ≡ 0 (mod p). If p is 2 or 3 then a2 ≡ 1 (mod p) for

all units a. Hence the sum becomes − F
12

∑
1≤a≤F :(a,p)=1 χ(a) ≡ 0 (mod p) again.

1
F logp(〈a〉) and F

12a2 are both p-integral so showing that a0 is p-integral reduces to showing that

1

2

∑
1≤a≤F :(a,p)=1

χ(a)

a

is p-integral. This is only an issue when p = 2. We can write this as

1

2

F∑
a=1

χ(a)

a
− 1

2

F/p∑
b=1

χ(bp)

bp
=

1

2

F∑
a=1

χ(a)

a
≡ 1

2

F∑
a=1

χω−1(a) (mod p)

The right hand side is then p-integral by standard results on characters. This completes the proof.
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Corollary 6.1.14. If χ is nontrivial and pq does not divide its conductor then

Lp(m,χ) ≡ Lp(n, χ) (mod p)

for any p-integral m and and n.

Proposition 6.1.15. If m,n are positive integers with m ≡ n (mod p− 1) and neither of which is

divisible by p− 1 then
Bm
m
≡ Bn

n
(mod p)

Proof.

Lp(1−m,ωm) = −(1− ωm(p)ω−m(p)pm−1)
Bm
m

= −(1− pm−1)
Bm
m

If m ≡ n (mod p − 1) are integers not divisible by p − 1 then ωm = ωn are not trivial. By the

previous corollary, since pq does not divide the conductor p, we have

Lp(1−m,ωm) ≡ Lp(1− n, ωn) (mod p)

so −(1− pm−1)Bmm ≡ −(1− pn−1)Bnn (mod p) and the result follows.

Proposition 6.1.16. If m is a positive integer with m+ 1 not divisible by p− 1 then

B1,ωm ≡
Bm+1

m+ 1
(mod p)

with both sides p-integral.

Proof. From our corollary we have

Lp(0, ω
m+1) ≡ Lp(−m,ωm+1) (mod p)

The Bernoulli number computation gives

Lp(0, ω
m+1) = −(1− ωm(p))B1,ωm = −B1,ωm

Lp(−m,ωm+1) = −(1− ωm(p)pm)
Bm+1,ωmω−m

m+ 1
= −Bm+1

m+ 1

The result then follows.

We will now apply this result to refine our condition for the relative class number being divisible

by p. Recall the explicit formula for the relative class number

h−K = 2p
∏
χodd

−1

2
B1,χ
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The Bernoulli numbers B1,χ for odd χ correspond to B1,ωm for odd m, when taken modulo p. The

only Bernoulli number we need to worry about is B1,ω−1 which is calculated as

B1,ω−1 =
1

p

p∑
a=1

ω−1(a)a ≡ p− 1

p
(mod p)

As for the other Bernoulli numbers, we can use our results from p-adic L-functions to get

h−K ≡ 2(p− 1)
∏

m=1,3...p−4

−1

2
B1,ωm ≡ 2(p− 1)(−1

2
)
p−3
2

∏
m=1,3...p−4

Bm+1

m+ 1
(mod p)

Therefore, if p does not divide any of the Bernoulli numbers B2 . . . Bp−3, then the relative class

number is not divisible by p.

6.2 Gauss sums and the Stickelberger relation

Throughout this subsection we follow [IR90, Chapter 8] and [IR90, Chapter 14].

Definition 6.2.1. Let F be a finite field. Let χ be a multiplicative character on F and let ψ be an

additive character on F . Then the associated Gauss sum is defined as

g(χ, ψ) :=
∑
t∈F

χ(t)ψ(t)

Recall that a multiplicative character on F is a group homomorphism

χ : F× → C×

whose image must be (|F | − 1)th roots of unity. An additive character is a group homomorphism

ψ : (F,+)→ C×

whose image must be |F |th roots of unity. In particular, if the characteristic of the field F is a

prime p, then the image must be the pth roots of unity. Let |F | = pf . If no additive character is

given, the default additive character is

ψ(t) = ζTr(t)p

Where Tr(·) is the trace map that sends F to Z/(p) via

Tr(t) :=

f−1∑
i=0

tp
i

To see why this is the trace map, note that F ∼= Z[ζpf−1]/p where p is the prime above p, by

referring back to our classification of prime decomposition in cyclotomic fields. Then the Galois

group of the extension F : Z/p is generated by the Frobenius map t 7→ tp, so the above definition

of trace is correct.
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Proposition 6.2.2. Let g(χ, ψ) be a Gauss sum on F , with ψ non-trivial. Then |g(χ, ψ)|2 = |F |.

Proof. For 1 ≤ a < p define the modified additive characters ψa on F as

ψa(t) = ψ(at)

We will prove the proposition by evaluating
∑

1≤a<p g(χ, ψa)g(χ, ψa) in two different ways. Firstly

we note that

g(χ, ψa)g(χ, ψa) =
∑
x∈F

∑
y∈F

χ(x)χ(y)ψ(a(x− y)) =

χ(a)χ(a)
∑
x∈F

∑
y∈F

χ(ax)χ(ay)ψ(a(x− y)) =
∑
x∈F

∑
y∈F

χ(x)χ(y)ψ(x− y)

because multiplication by a, which is invertible, permutes the elements of F . It follows that

|g(χ, ψa)| = |g(χ, ψ)| for every a and so the sum above is (p− 1)|g(χ, ψ)|2.

Alternatively, we can write∑
1≤a<p

g(χ, ψa)g(χ, ψa) =
∑
x∈F

∑
y∈F

χ(x)χ(y)
∑

1≤a<p

ψ(a(x− y))

ψ(0) = 1 and so if x = y, then
∑

1≤a<p ψ(a(x − y)) = p − 1. Otherwise,
∑

1≤a<p ψ(a(x − y)) will

run through the pth roots of unity and so this sum will clearly be 0. Therefore∑
1≤a<p

ψ(a(x− y)) = (p− 1)δ(x, y)

where δ is the Kronecker delta. It follows that∑
x∈F

∑
y∈F

χ(x)χ(y)
∑

1≤a<p

ψ(a(x− y)) =
∑
x∈F

χ(x)χ(x)(p− 1) = (p− 1)|F |

Equating the two different formulae gives |g(χ, ψ)|2 = |F |.

Definition 6.2.3. Let F be a finite field. Let χ, ψ be multiplicative characters on F . We define

the associated Jacobi sum as

J(χ, ψ) :=
∑
a+b=1

χ(a)ψ(b)

Proposition 6.2.4. Let χ, ψ be multiplicative characters on F so that χ 6= ψ. Then

J(χ, ψ) =
g(χ)g(ψ)

g(χψ)

Proof. We begin by writing

g(χ)g(ψ) =
∑
x∈F

∑
y∈F

χ(x)ψ(y)ζTr(x+y)
p =

∑
0≤t<p

ζtp
∑

Tr(x+y)=t

χ(x)ψ(y)
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Then we can relate this sum to the Jacobi sum using

∑
Tr(x+y)=t

χ(x)ψ(y) =

f−1∑
i=0

∑
x+y=t+ri

χ(x)ψ(y) =

f−1∑
i=0

χψ(t+ri)
∑

x+y=1

χ(x)ψ(y) = J(χ, ψ)

f−1∑
i=0

χψ(t+ri)

where the ri are the zero trace elements of F . Next we have

g(χψ) =
∑
x∈F

χψ(x)ζTr(x)
p =

∑
0≤t<p

ζtp

f−1∑
i=0

χψ(t+ ri)

because
∑

0≤t<p
∑f−1
i=0 χψ(t+ ri) will run through all the elements of F , classifying them by trace.

Putting it all together gives the desired result. g(χψ) does not vanish since χ 6= ψ.

Corollary 6.2.5. For any multiplicative characters χ, ψ on F so that χ 6= ψ, we have

|J(χ, ψ)|2 =
|g(χ)|2|g(ψ)|2

|g(χψ)|2
= |F |

Proposition 6.2.6. Let χ be a multiplicative character on F . Let ord(χ) = m. Then

g(χ)m = χ(−1)|F |
m−2∏
i=1

J(χ, χi)

Proof. At the beginning we have

J(χ, χ) =
g(χ)2

g(χ2)
=⇒ g(χ)2 = J(χ, χ)g(χ2)

Now assume that

g(χ)k = g(χk)

k−1∏
i=1

J(χ, χi)

for k < m− 1. Then we can multiply both sides by g(χ) and use

g(χk)g(χ) = J(χ, χk)g(χk+1)

since χk 6= χ−1. This gives

g(χ)k+1 = g(χk+1)

k∏
i=1

J(χ, χi)

Inductively, we get to the expression

g(χ)m−1 = g(χm−1)

m−2∏
i=1

J(χ, χi) =⇒ g(χ)m = g(χ−1)g(χ)

m−2∏
i=1

J(χ, χi)

Then we need to make use of

g(χ−1) =
∑
x∈F

χ−1(x)ζTr(x)
p = χ(−1)

∑
x∈F

χ(−x)ζ
Tr(−x)
p = χ(−1)g(χ)
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But χ(−1) is either 1 or −1, so that χ(−1) = χ(−1). This means that g(χ−1)g(χ) = χ(−1)|F | and

the result follows directly.

We will now work on factoring certain Gauss sums into prime ideals. The factorization will

give us the Stickelberger relation, which finds an element in the group ring of the Galois group of

cyclotomic fields that annihilates the ideal class group. This, together with result from the next

subsection, will help us complete Kummer’s criterion.

Definition 6.2.7. Let p be a prime ideal in Q(ζm) not containing m. We define the power residue

symbol as a multiplicative character on Z[ζm]/p which sends a unit a to(
a

p

)
m

= ζk(a)
m

for the unique mth root of unity ζ
k(a)
m so that a

N(p)−1
m ≡ ζk(a)

m (mod p)

A few explanations are in order. The roots of unity are distinct modulo p, otherwise we get some

equivalence of the form 1−ζkm ≡ 0 (mod p) for some k not divisible by m. However, m is contained

in (1− ζkm) which is in turn contained in p and we get a contradiction. m divides N(p)− 1 because

N(p) = pf for f the residue field degree of p which satisfies ordm(p) = f by our classification of

prime decomposition in cyclotomic fields.

Let pf = N(p) where p is the prime below p. Then the finite field we are concerned about is

F = Z[ζm]/p. We associate the multiplicative character

χp(·) =

(
·
p

)−1

m

to this field. Then we will work on factoring the Gauss sum g(χp(·)), which is an element of

Q(ζpf−1, ζp). The order of χp is m so we can apply Proposition 6.2.6 to write

Θ(p) := g(χp)m = χp(−1)|F |
m−2∏
i=1

J(χp, χ
i
p)

which is an expression in χp and therefore g(χp)m ∈ Q(ζm). We will factor this Θ(p) first. We have

|Θ(p)|2 = pmf and so the only primes that could possibly divide Θ(p) are the primes above p.

We will work in the tower of fields Q(ζpf−1, ζp) : Q(ζpf−1) : Q(ζm) : Q. Let’s give a summary

of the decomposition of p in these fields. By assumption p will split in Q(ζm) and a fixed prime p

above p will have residue field degree f .

In the extension Q(ζpf−1) : Q(ζm), the prime p splits completely because ordpf−1(p) = f and

so the residue field degree remains unchanged. Fix a prime P above p.

In the extension Q(ζpf−1, ζp) : Q(ζpf−1), the prime P must ramify completely. To see this, note

that p has ramification degree at least p − 1 in the extension Q(ζpf−1, ζp) : Q but it is unramified

in the extension Q(ζpf−1) : Q. Let P be the unique prime above P.
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It is sufficient to know the orders of multiplicity ordP(Θ(p)) for each prime P above p in order

to factor it. From the decomposition of p above we know that Z[ζm]/p ∼= Z[ζpf−1]/P and all the

(pf − 1)th roots of unity are distinct modulo P. Therefore we can define the power residue symbol

modulo P as

γ(·) =

(
·
P

)
pf−1

It follows that γ−
pf−1
m = χp due to the isomorphism of fields. To compute the orders it is sufficient

to compute the orders ordP(g(γ−a)) for all a. We make use of the following facts.

1. ordP(g(γ−1)) = 1

We start with

g(γ−1) =
∑

t∈Z[ζ
pf−1

]/P

(
t

P

)−1

pf−1

ζTr(t)p ≡
pf−1∑
t=1

ζ−t
pf−1

ζ
Tr(ζt

pf−1
)

p (mod P)

The ideal (1− ζp) is contained in P and so we can expand binomially

ζ
Tr(ζt

pf−1
)

p = (1− (1− ζp))
Tr(ζt

pf−1
) ≡ 1− Tr(ζtpf−1)(1− ζp) (mod P2)

Altogether this gives us

g(γ−1) ≡
pf−1∑
t=1

ζ−t
pf−1

(1− (1− ζp)
f−1∑
i=0

ζtp
i

pf−1
) (mod P2)

However we know that
∑pf−1
t=1 ζ−t

pf−1
= 0 and so in fact

g(γ−1) ≡ −(1− ζp)
pf−1∑
t=1

ζ−t
pf−1

f−1∑
i=0

ζtp
i

pf−1
≡ −(1− ζp)

pf−1∑
t=1

f−1∑
i=0

ζ
t(pi−1)

pf−1
(mod P2)

Now
∑pf−1
t=1 ζ

t(pi−1)

pf−1
= 0 unless i = 0 and so

g(γ−1) ≡ −(1− ζp)
pf−1∑
t=1

1 ≡ −(pf − 1)(1− ζp) ≡ (1− ζp) (mod P2)

By ramification degree considerations, we know that (1− ζp) 6⊂ P2 and so ordP(g(γ−1)) = 1.

2. ordP(g(γ−(a+b))) ≤ ordP(g(γ−a)) + ordP(g(γ−b)) ∀a, b

We have J(γ−a, γ−b)g(γ−(a+b)) = g(γ−a)g(γ−b) by applying Proposition 6.2.4. Taking the

order of P dividing both sides gives the desired result.
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3. ordP(g(γ−(a+b))) ≡ ordP(g(γ−a)) + ordP(g(γ−b)) (mod p− 1) ∀a, b

Recall that J(γ−a, γ−b) belongs to Q(ζpf−1) as it is an expression in γ−a and γ−b. Q(ζpf−1, ζp) :

Q(ζpf−1) is totally ramified of degree p−1 so if P divides J(γ−a, γ−b), then Pp−1 = P divides

J(γ−a, γ−b). It follows that ordP(J(γ−a, γ−b)) is a multiple of p− 1.

Taking the order of P dividing both sides of J(γ−a, γ−b)g(γ−(a+b)) = g(γ−a)g(γ−b) then

reducing modulo p− 1 gives the desired result.

4. ordP(g(γ−pa)) = ordP(g(γ−a)) ∀a

We start with

g(γ−pa) =
∑

t∈Z[ζ
pf−1

]/P

(
t

P

)−pa
pf−1

ζTr(t)p =
∑
t

(
tp

P

)−a
pf−1

ζTr(t)p

since (p, pf − 1) = 1 and so p can be moved inside the power residue symbol. Then∑
t

(
tp

P

)−a
pf−1

ζTr(t)p =
∑
t

(
tp

P

)−a
pf−1

ζTr(t
p)

p = g(γ−a)

because t and tp are conjugates modulo P. The roots of unity being distinct modulo P and

spanning its quotient field means that tp runs through Z[ζpf−1]/P also. The result follows.

These four facts are enough to determine the orders of multiplicity for all a. It is given by the

following proposition.

Proposition 6.2.8. Let a ∈ Z and write a ≡
∑f−1
i=0 aip

i (mod pf − 1) with 0 ≤ ai < p Then

ordP(g(γ−a)) =

f−1∑
i=0

ai = (p− 1)

f−1∑
i=0

{ pia

pf − 1
}

Proof. We begin by proving the first equality. This is true for a = 1 by fact 1. Fact 2 gives us

ordP(g(γ−a)) ≤
a∑
i=1

ordP(g(γ−1)) = a

As a consequence, fact 3 tells us that for 1 ≤ a < p we have ordP(g(γ−a)) = a. Now take a in

general as above. Applying fact 2 again also gives

ordP(g(γ−a)) ≤
f−1∑
i=0

ordP(g(γ−p
iai)) =

f−1∑
i=0

ordP(g(γ−ai)) =

f−1∑
i=0

ai

where we repeatedly applied fact 4 to each summand in the middle equality. If ai = 0 then it is

easy to show that the corresponding order is 0. To show that the above inequality is an equality, it

would be sufficient to prove

pf−2∑
a=1

ordP(g(γ−a)) =

pf−2∑
a=1

f−1∑
i=0

ai =
f(pf − 2)(p− 1)

2
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where the last equality is easy to demonstrate using the same trick by Gauss on summing all the

integers from 1 to n. The left sum is simply

1

2

pf−2∑
a=1

ordP(g(γ−a)) + ordP(g(γ−(pf−1−a)))

However γ−(pf−1−a) = γ−a and we have shown before that g(χ) = χ(−1)g(χ) and so g(χ)g(χ) =

χ(−1)|F |. As a result ordP(g(γ−(pf−1−a))g(γ−a)) = (p − 1)f and so the above sum becomes
f(pf−2)(p−1)

2 . This is because |F | = pf and P goes into p a total of p− 1 times.

To prove the second equality, note that

f−1∑
i=0

pia ≡ (

f−1∑
i=0

ai)

f−1∑
i=0

pi (mod pf − 1)

We convert this statement into

f−1∑
i=0

{ pia

pf − 1
} =

(
∑f−1
i=0 ai)

∑f−1
i=0 p

i

pf − 1
=

∑f−1
i=0 ai
p− 1

which is about fractional parts. The result follows.

We are now ready to factor Θ(p). Its factors in Q(ζm) are p and its distinct conjugates. We

know that ordp(Θ(p)) = m
∑f−1
i=0 {

pi p
f−1
m

pf−1
}. As for its conjugates, when (t,m) = 1 we get

ordσ−1
t (p)(Θ(p)) = ordp(σt(Θ(p))) = m

f−1∑
i=0

{
tpi p

f−1
m

pf − 1
} = m

f−1∑
i=0

{ tp
i

m
}

The Artin symbol for p is σp and so the distinct conjugates are given by choosing representatives

from each coset of 〈σp〉 in Gal(Q(ζm) : Q). If t is a representative then its coset will look like

σt〈σp〉 = {σtpi : i = 0 . . . f − 1}. This means that the sum m
∑f−1
i=0 {

tpi

m } accounts for the entire

coset corresponding to t and so in fact we can write

Θ(p) =
∏

t∈(Z/(m))×/〈σp〉

σ−1
t (p)m

∑f−1
i=0 {

tpi

m } =

f−1∏
i=0

∏
t∈(Z/(m))×/〈σp〉

σ−1
t (p)m{

tpi

m } =
∏

(t,m)=1

σ−1
t (p)t

Definition 6.2.9. Let Q(ζm) be a cyclotomic field with Galois group G = (Z/(m))×. Let Z[G] be

the group ring of G. Then the Stickelberger element is defined as the element

θ =
1

m

∑
(t,m)=1

tσ−1
t

of Q[G]. For any subfield K of Q(ζm), its Stickelberger element is defined as the restriction of θ

under the quotient of group rings of Galois groups.
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We have proven that we can factorize

(Θ(p)) = (g(χp))m = (mθ)(p)

for every prime ideal p of Q(ζm). As a result the element mθ applied to any ideal of Z[ζm] will

always give a principal ideal, and therefore it annihilates the ideal class group of Z[ζm].

We want more annihilators of the ideal class group. Consider the ideal I = (θ)Z[G] ∩ Z[G].

Applying these elements to fractional ideals in Q(ζm) will give us an ideal in Q(ζm) which is

principal. The ideal I is called the Stickelberger ideal and it annihilates the ideal class group. It is

defined for abelian number fields analogously using their Stickelberger elements.

Proposition 6.2.10. Let K be the mth cyclotomic field with Galois group G over the rationals and

Stickelberger ideal I. Then

θi ⊂ I

where i is the ideal generated by elements of the form c− σc for integers c coprime to m.

Proof.

(c− σc)θ =
∑

(k,m)=1

kcσ−1
k − kσ

−1
kc

m
=

∑
(k,m)=1

(c{ k
m
} − {kc

m
})σ−1

k ∈ Z[G] ∩ (θ)Z[G]

This is true for each integer c coprime to m and so θi ⊂ I.

6.3 Herbrand’s theorem

In this subsection we follow [Was97, Chapter 6.3].

Take the ideal class group C of the pth cyclotomic field Q(ζp), for an odd prime p. Let G =

(Z/(p))× be its Galois group. We know that Z[G] acts on C. This action can sometimes tell us

about the nonexistence of some particular type of torsion. We can make Zp[G] act on C[p], the

p-torsion subgroup of the ideal class group, as follows. Let c ∈ C[p] and let e =
∑p−1
k=1 akσk for

some p-adic integers ak. Then

e(c) =

p−1∏
k=1

σk(c)ak

This is well-defined as cp = 1 for any c ∈ C[p] and so σk(c)ak = σk(c)ak where ak is the reduction of

ak modulo p. The Stickelberger ideal can be seen as an ideal I of Zp[G] which annihilates C[p]. We

will introduce some representation theory before we continue. Let ω be the Teichmuller character

on G. We define the element

εi :=
1

|G|
∑
g∈G

ωi(g)g−1 =
1

p− 1

p−1∑
k=1

ωi(k)σ−1
k

of the group ring Zp[G] for each character ωi. We now have an important theorem from represen-

tation theory.
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Theorem 6.3.1. The elements εi are orthogonal idempotents of the group ring Zp[G].

Proof. First of all, these elements exist because |G| = p− 1 is invertible in Zp. To show that they

are (clearly non-trivial) idempotents, we write

ε2i :=
1

|G|2
∑
g∈G

∑
h∈G

ωi(gh)(gh)−1 =
1

|G|2
∑
g∈G
|G|ωi(g)g−1 =

1

|G|
∑
g∈G

ωi(g)g−1 = εi

Orthogonality is also simple. Suppose i 6= j, then

εiεj =
1

|G|2
∑
g∈G

∑
h∈G

ωi(g)ωj(h)(gh)−1 =
1

|G|2
∑
g∈G

g−1
∑
h∈G

ωi(h)ωj(gh−1) =

=
1

|G|2
∑
g∈G

g−1ωj(g)
∑
h∈G

ωi(h)ωj(h)−1

From orthogonality relations we know that the sum
∑
h∈G ω

i(h)ωj(h)−1 is zero when i 6= j. It

follows that εiεj = 0.

Zp[G] is a free Zp-module of rank |G| = p − 1. It is then a theorem in algebra that for any

Zp[G]-module M we have

M =

p−2⊕
i=0

εiM =

p−2⊕
i=0

Mi

so the p-part of the ideal class group, being a Zp[G]-module, has a decomposition

C[p] =

p−2⊕
i=0

C[p]i

Lemma 6.3.2. We have εiσ = ωi(σ)εi for all σ ∈ G.

Proof.

εiσ =
1

|G|
∑
τ∈G

ωi(τ)τ−1σ =
1

|G|
ωi(σ)

∑
τ∈G

ωi(σ−1τ)(τσ−1)−1 = ωi(σ)εi

It follows from this lemma that the Stickelberger element will act by scalar multiplication on

each piece C[p]i. If these scalars are not 0 (mod p), then we must have C[p]i = 0 because the

Stickelberger element annihilates C[p]i.

Theorem 6.3.3. Let θ be the Stickelberger element of Q(ζp). By taking the p-adic Bernoulli number

B1,ω−i modulo p for some i, we have

εiθ ≡ B1,ω−iεi (mod p)

Proof.

εiθ =
1

p

p−1∑
k=1

kεiσ
−1
k =

1

p

p−1∑
k=1

kωi(σ−1
k )εi = B1,ω−iεi
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Corollary 6.3.4. By Proposition 6.2.10, (c− σc)θ ∈ I annihilates C[p] for any integer c coprime

to p. As a result (c− ωi(σc))B1,ω−i annihilates C[p]i for any c coprime to p.

Theorem 6.3.5 (Herbrand’s theorem). Let C be the ideal class group of Q(ζp). Let

C[p] =

p−2⊕
i=0

C[p]i

be the decomposition of C[p] with the above notation. Then C[p]0 = C[p]1 = 0 and if p - Bp−i for i

odd, then C[p]i = 0.

Proof. The above corollary states that (c − ωi(σc))B1,ω−i annihilates C[p]i. By results in Section

6.1, we know that B1,ω−i = 0 for even i 6= 0, so we get no information about C[p]i for nonzero

even i. Furthermore, we’ve shown that B1,ω−i ≡
Bp−i
p−i (mod p) and p− i is invertible modulo p for

nonzero i. As a result (c− ωi(σc))Bp−i annihilates C[p]i for i 6= 0.

• Let i = 0. Then (2− ω0(2))B1,ω0 = B1,ω0 = p−1
2 6≡ 0 (mod p) and so C[p]0 = 0.

• Let i = 1. Then (p+1−ω(p+1))B1,ω−1 = pB1,ω−1 ≡ p−1 6≡ (mod p). As a result C[p]1 = 0.

• Let i be odd and not equal to 1. Then we can choose c so that (c−ωi(σc)) ≡ ω(c)(1−ω(c)i−1) 6≡
0 (mod p). As a result Bp−i annihilates C[p]i and we are done.

We have just obtained the result from the end of Section 6.1 algebraically, and in fact we

obtained a strengthened result, which tells us information about individual pieces of the p-torsion

of the class group. However, we only know information about C[p]i for odd i, and in order to

check that a prime is regular, we need to show that C[p]i is trivial for all i. We will show in the

next subsection that the odd and even parts of the p-torsion of the class group are linked, and it is

sufficient to show that C[p]i is trivial for odd i.

6.4 Kummer’s criterion for the regularity of primes

Let E be the group of units of Z[ζp] and let G be the Galois group of the pth cyclotomic field over

the rationals. We will study, just as we did with the class group in the previous subsection, the

action of Zp[G] on E/pE. We can write

E/pE =

p−2⊕
i=0

εi(E/pE) =

p−2⊕
i=0

(E/pE)i

with the same notation as in the previous subsection. For i = 0 we have

ε0(u) = (
1

p− 1

p−1∑
k=1

σ−1
k )(u) = N(u)

1
p−1 = 1
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for any unit u, because ε0 acts as some power of the norm. As a result (E/pE)0 = 0. The following

result is from [Was97, Proposition 8.10].

Proposition 6.4.1. Let E/pE =
⊕p−2

i=0 (E/pE)i as above. Then we have

• (E/pE)1 = 〈ζp〉

• (E/pE)i = 0 for odd i 6= 1.

Proof. Let u be a unit. Write u = ζjpr for some real unit r and integer k. Then

ε1(r) = (
1

p− 1

p−1∑
k=1

ω(k)σ−1
k )(r) =

p−1∏
k=1

σ−1
k (r)

ω(k)
p−1 =

=

p−1
2∏

k=1

σ−1
k (r)

ω(k)
p−1 σ−1

k (r)
p−ω(k)
p−1 =

p−1
2∏

k=1

σ−1
k (r)

p
p−1 ≡ 0 (mod pE)

Meanwhile, the root of unity is mapped to

ε1(ζp) =

p−1∏
k=1

σ−1
k (ζp)

ω(k)
p−1 = ζp

It follows that (E/pE)1 = 〈ζp〉. Now let i 6= 1 be odd. Then

εi(ζ
j
pr) = εi(r) =

p−1∏
k=1

σ−1
k (r)

ωi(k)
p−1 =

p−1
2∏

k=1

σ−1
k (r)

ωi(k)
p−1 σ−1

k (r)
p−ωi(k)
p−1

The roots of unity are killed because they belong to the ε1 part, and the εi are orthogonal idempo-

tents. The same cancellation occurs as in the i = 1 case and so we get εi(r) ≡ 0 (mod pE).

We will now proceed to prove a special case of the reflection theorem, which will be sufficient

to imply Kummer’s criterion. We will assume some knowledge of Kummer theory and make use of

class field theory. We require the following results in particular.

Proposition 6.4.2. Let K be a number field with ideal class group C. Then the following are true.

1. There exists a unique number field extension H : K called the Hilbert class field of K which

is the maximally unramified abelian extension of K, in the sense that any other unramified

abelian extension of K is intermediate.

2. For any intermediate number field H : L : K, the Artin symbol (L:K
· ) induces an isomorphism

between Gal(L : K) and a subgroup of C. This constitutes a one-to-one inclusion preserving

bijection between subgroups of Gal(H : K) and subgroups of C.

Proof. This is class field theory for unramified abelian extensions. It is a special case of [Jan96,

Theorem 9.16].
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Proposition 6.4.3. Let K be a number field containing the pth roots of unity.

1. There is a one-to-one inclusion preserving bijection between p-extensions of K and subgroups

of K×/(K×)p as follows. Given a subgroup B/K×/(K×)p, we get a p-extension K( p
√
B) : K.

2. Given a p-extension K( p
√
B) : K as above with Galois group H = Gal(K( p

√
B) : K), there is

a perfect bilinear pairing

B ×H → 〈ζp〉

(b, h) 7→ h( p
√
b)

p
√
b

Proof. For an elaboration on the statements see [Stec]. For proofs see [Har].

For the remainder of this subsection we follow [Was97, Chapter 10.2].

Let G = Gal(Q(ζp) : Q). Let L be the maximally unramified elementary abelian p-extension of

Q(ζp). In other words, the maximally unramified abelian extension with Galois group of the form∑n
i=1 Z/(p) for some n. Let H = Gal(L : Q(ζp)). Then by Proposition 6.4.2 we have H ∼= C/pC,

where C is the ideal class group of Q(ζp). H is a normal subgroup of Gal(L : Q) and so G acts on H

by conjugation. In fact, H becomes a Z[G]-module, and the isomorphism H ∼= C/pC is Z[G]-linear.

To see this, for any g ∈ G we have

(
L : Q(ζP )

g(i)
) = g(

L : Q(ζP )

i
)g−1

as Artin symbols, which we’ve shown in Proposition 1.6.9.

Now L : Q(ζp) is a Kummer extension, and Proposition 6.4.3 states that we can get this

extension by adjoining some pth roots of elements in Q(ζp)
×. In particular there is a subgroup

B /Q(ζp)
×/(Q(ζp)

×)p so that L = Q(ζp,
p
√
B). It also states that there is a pairing

B ×H → 〈ζp〉

sending (b, h) to h(
p√
b)

p√
b

, and that this pairing is perfect and bilinear. This implies that B ∼= Ĥ

canonically by sending b to the map that sends h→ h(
p√
b)

p√
b

. This is Z[G]-linear because

g((b, h)) = g(
h( p
√
b)

p
√
b

) =
ghg−1( p

√
g(b))

p
√
g(b)

= (g(b), ghg−1)

for all g ∈ G. Since H is finite we also have some non-canonical isomorphism B ' H.

L : Q(ζp) is unramified so for each b ∈ B we claim that (b) = ip for some ideal i in Q(ζp). Suppose

not, then (b) = ( p
√
b)p in L whilst the prime ideals dividing (b) in Q(ζp) will do so with multiplicity

coprime to p. Therefore the prime ideals dividing (b) must be totally ramified in L : Q(ζp), a

contradiction.
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Now consider the map φ : B → C/pC induced by sending b to the ideal i discussed above. This

is well-defined because φ((Q(ζp)
×)p) ≡ 0 (mod pC). It is also Z[G]-linear because

φ(g(b)) = φ(g(i)p) = g(i) = g(i)

for any g ∈ G. We will also need the kernel of this map. Suppose φ(b) = 1. Then we have (b) = (a)p

for some a ∈ Q(ζp), and so b = uap for some unit u. However b ≡ ba−p ≡ u (mod (Q(ζp)
×)p).

Therefore the kernel of φ is induced by a subgroup of the group of units. In particular

ker(φ) ⊂ E/pE

because pE = E ∩ (Q(ζp)
×)p. This containment is Z[G]-linear, since g(uap) = g(u)g(a)p ≡ g(u)

(mod (Q(ζp)
×)p). We now have all the tools we need to finish Kummer’s criterion.

Theorem 6.4.4. Suppose p does not divide h−(Q(ζp)). Then p does not divide h(Q(ζp)).

Proof. Adopt the notation developed above. Recall that we have H ∼= C/pC ∼= C[p] as Z[G]-

modules. Then it follows that εiH ∼= C[p]i G-linearly for each εi as defined in Section 6.3.

Let h ∈ εiH. Then σahσ
−1
a = hω

i(a) for each σ ∈ G because εiσa = ωi(a)εi. Let b ∈ εkB. We

apply the Kummer pairing to these elements and study the action of G on the result. We get

(b, h)ω(a) = σa((b, h))

because (b, h) is a root of unity realized in Zp. Next we have

σa((b, h)) = (σa(b), σahσ
−1
a )

since we’ve shown that B ∼= Ĥ is G-linear. Then

(σa(b), σahσ
−1
a ) = (bω

k(a), hω
i(a))

as discussed earlier. Finally

(bω
k(a), hω

i(a)) = (b, h)ω
i+k(a) = (b, h)ω(a)

because the Kummer pairing is bilinear. Now if (b, h) 6= 1, we must have i+ k ≡ 1 (mod p− 1). It

follows that when there is an induced perfect bilinear pairing

εkB × εiH → 〈ζp〉

whenever i+ k ≡ 1 (mod p− 1). This implies, as before, that

εkB ∼= εiH ∼= C[p]i

Here is where we will use the G-linear map ψ : B → C[p]. This induces a map

ψk : εkB → C[p]k
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ker(φk) ⊂ εk(E/pE)

since the containment ker(φ) ⊂ E/pE is also G-linear. Now we can combine everything to write

dimFp(C[p]i) = dimFp(εkB) ≤ dimFp(C[p]k) + dimFp(ker(φk))

In particular, we get the bound

dimFp(C[p]i) ≤ dimFp(C[p]k) + dimFp(εk(E/pE))

From Proposition 6.4.1, when k = 1 we get

dimFp(C[p]0) ≤ dimFp(C[p]1) + 1

But we already know C[p]0 = 0 and C[p]1 = 0. When k 6= 1 is odd we get

dimFp(C[p]i) ≤ dimFp(C[p]k)

Suppose p does not divide Bp−k for k 6= 1 odd. Then C[p]k = 0 by Herbrand’s theorem and so the

above bound gives C[p]p−k = 0. Therefore if p does not divide the relative class number h−(Q(ζp)),

it will not divide the class number h(Q(ζp)) so p would be regular.

Combining this theorem with our condition for the divisibility of the relative class number by p

will give us Kummer’s criterion.

Corollary 6.4.5 (Kummer’s criterion). If an odd prime p does not divide Bp−i for i odd in the

range 3 ≤ i ≤ p− 2, then p is regular.

This gives a very nice way of proving Fermat’s last theorem in many cases.

Corollary 6.4.6. Let p ≥ 5 be a prime number. If p does not divide Bp−i for i odd in the range

3 ≤ i ≤ p− 2 then FLT holds for exponent p.
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