
Robust Communication: How Math Is Used To

Encode and Decode Messages

Riley Debski

June 2021

1 Introduction

In today’s society, effective communication is vital for everything people do
from texting and video chatting to shopping online. Whenever a transfer of in-
formation happens, there is the possibility that the information will encounter
interference that would disrupt its transmission. To protect messages from cor-
ruption, a system of encoding is used to ensure that a message can be recovered
from corrupted transmission. Encoding and decoding are done using vector
spaces called codes that strategically lengthen a message to protect it from er-
rors. By encoding and decoding a message, effective and reliable transmission
can be ensured.

The information presented in this paper follows from the book Fundamentals
of Error-Correcting Codes by Huffman and Pless [1]. A nine-week independent
study was done on the topics of this book. This paper covers the important top-
ics from chapter one of Huffman and Pless. For a more in-depth understanding
of the material presented here, refer to [1].

The following is a review of the encoding and decoding process. First, we
present a review of the linear and abstract algebra needed to comprehend codes.
Then we introduce codes, basic coding theory, and the example of the Hamming
Codes. Finally, we present the process of encoding, introducing errors, and
decoding. This process is illustrated throughout with the example of the [8, 4, 4]
binary extended Hamming Code. A full example of the entire encoding and
decoding process is presented at the end through a Python program written to
go through the steps outlined.

2 Mathematics Background

There are many applications of mathematical concepts in the process of encoding
and decoding for the transmission of information. Topics include finite fields,
vector spaces, and a basis of a vector space. If the reader is already familiar
with these topics, this section may be skipped. Presented is a general review of
the topics mentioned above and their relation to codes.

1

2.1 Fields and Finite Fields

The most commonly known field is R, the real numbers. There are many other
fields that are useful for the study of codes.

Definiton 1. A field is an abelian group that is closed under addition and
scalar multiplication, where additive and multiplicative inverses are present.
The additive identity 0 and multiplicative identity 1 must also be present. The
group also follows the rules of associativity, commutativity, and distributivity.

A helpful field for working with codes is F2. This is the finite field of only
two elements: 0 and 1. This binary field is the language of computers which
makes encoding and decoding practical in this field for application in the real-
world. Being a finite field, F2 is a set with addition and multiplication modulo
2, which satisfies the definition above. Modulo 2 refers to taking the answer of
the operation, dividing it by 2, and using the remainder as the number in the
field.

Example 1. Again, all examples will be worked in F2. To understand
calculations in a finite field and how it works, the addition and multiplication
tables for F2 are presented below. Calculations in F2 are simple as there are
only two elements. For other examples of working in a finite field, reference [2].

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

The typical fields used for encoding are F2, F3, or F4, but any field can
be used to form a code. For information about codes over other fields, see
[1]. Throughout this paper, theorems and processes will be presented as a
general case for any field, but all examples worked will be in F2. Notation used
throughout this paper will denote finite fields as Fq, and all these fields follow
Definition 1 under addition and multiplication of integers modulo q. For Fq

to be a field, q must an integer that is prime or a power of a prime, else the
definition of field will not hold. Therefore, all q referred to throughout this
paper will be a prime or a power of a prime.

2.2 Vectors and Vector Spaces

The most common vector space used in classrooms is Rn, but vector spaces can
be over Fq as well.

Definiton 2. A vector space is the set of all vectors of a certain length n with
elements that are a member of a field F.

In this paper, vector spaces are denoted as Fn
q and examples are in Fn

2 .
Elements of a vector in Fn are indexed from 0 to n− 1; the first element of each
vector is in the zeroth index. The key operations for working in a vector space

2

are addition and scalar multiplication. Combining those two, we can also use
linear combinations.

To write down a vector space, a basis is used.

Definiton 3. A basis of a vector space is a linearly independent set of vectors
that span the space. A set of vectors span a space when any linear combination
of the vectors is in the vector space.

These basis vectors can be put into a matrix where each row is a vector from
the basis. This matrix represents the vector space, as the rows of a matrix can
be linearly combined to form any other vector of the vector space.

Example 2. To form a basis for R5, take vectors with a 1 in each index:
[10000], [01000], [00100], [00010], [00001]. The vectors can be added and scaled
by any number in R to form any other vector in R5. This is called the standard
basis of R5.

The dot product acts as another calculation on vectors. The dot product
inputs two vectors, outputs a scalar, and is defined as

[v1v2....vn] · [u1u2...un] = v1u1 + v2u2 ++ vnun. (1)

The dot product multiplies vectors and matrices. To multiply a vector by a
matrix, we treat each column of the matrix as a vector, and the dot product of
the vector and column of the matrix is an element of the resulting vector i.e.

[v1v2....vm]


m11 m12 ... m1n

m21 m22 ... m2n

...
mn1 mn2 ... mnn

 = [(−→v · −→m1n)(−→v · −→m2n)...(−→v · −→mnn)] (2)

where −→m1n denotes the first column vector of the matrix, m2n the second column
vector, and so on. Performing this calculation on vectors changes the length of
the vectors, i.e. it sends vectors from Fm −→ Fn, where n is the length of the
n× n matrix.

Another helpful concept for understanding codes is subspaces, which are
smaller vector spaces contained in a larger vector space.

Definiton 4. A subspace is a set of vectors, closed under addition and
multiplication, contained within a larger vector space.

Subspaces reduce the amount of vectors in a space and shorten the basis for
a space. Subspaces have the same properties and act the same way as vector
spaces as mentioned above, just with fewer vectors. Subspaces have cosets
within the larger vector space. Cosets of a subspace are the subspace added to
a vector not in that subspace. Each subspace has multiple cosets that form the
larger vector space when joined together.

Subspaces also have a dimension to describe how large the subspace is.

3

Definiton 5. The dimension of a subspace is the number of vectors in the
subspace’s basis.

The dimension of a vector space is important for knowing the properties of
a subspace and for calculating how many vectors are in the subspace.

3 Introduction To Codes

The interruption of communication is due to “noise.” Noise in the form of wind,
machine malfunctions, or damage to the transmitter, like a scratch on a CD,
corrupts the information being sent. If this incorrect message is received, the
communication process fails to transmit the intended message.

3.1 Codes and Their Representations

To protect messages against noise, messages are encoded. To achieve this pro-
cess, we use codes. We let Fn

q denote the standard vector space of dimension n,
whose elements are vectors of length n with elements in the field Fq.

Definiton 6. A code is a sub-vector space of Fn
q .

As a code is only a subspace of a vector space, it has a dimension which we
denote by k. C denotes a [n, k] code. Since the code is a subspace of dimension
k, it has qk codewords. A codeword is any vector in the code.

In order to express a code in matrix form, one must choose a basis for the
code.

Definiton 7. Let Gk×n denote the generating matrix of a code, where the
rows of G consist of a basis for the code.

The generating matrix of a code can take many forms, as there is no one
basis to express a vector space. The standard form of a generating matrix is
G = [Ik|A] where Ik is the square identity matrix of size k, and A is any other
matrix that makes the rows of G a basis for the code.

Another type of matrix representing a code that is important to discuss is
the parity check matrix.

Definiton 8. The parity check matrix, H(n−k)×n, is such that C = {−→x εFn
q :

H−→x =
−→
0 }.

The rows of H are independent, just like G, but H also has independent
columns. If G is written in standard form, the parity check matrix is found by
H = [−AT |In−k]. Both matrices are good candidates to be used in the encoding
and decoding process. Depending on the type of code used, either the generator
or parity check matrix is more efficient for encoding.

4

3.2 Minimum Distance

A helpful measurement of a code is the code’s minimum distance. The distance
between two codewords is the number of elements that the codewords differ.

Definiton 9. The minimum distance of a code is the smallest amount of
elements that any two codewords differ.

Example 3. Consider the binary code with codewords [1000010] and [1100011].
These codewords have a distance of 2 because they differ only in the second and
seventh elements. Now consider the codeword obtained by summing the first
and second codewords above [0100001]. As the third codeword is the sum of the
first and second, codewords 1, 2, 3, and [00000000] form a code under addition
and scalar multiplication in Fn

2 . Now, the second and third codewords are only
different in 2 elements, so the minimum distance of this code is 2. Other code-
words in the code could have a distance of 3 and 4, but the minimum distance
is the smallest distance between two codewords of a code.

Minimum distance is an important concept, as it determines the error cor-
recting capability of a code. This idea will be explored further in the nearest
neighbor decoding section of this paper. To denote the minimum distance of a
code, the variable d is used and placed in the denotation of a code: [n, k, d].

3.3 Weight

Another helpful measurement of a code is its weight.

Definiton 10. A codeword’s weight is its distance from
−→
0 .

Much like the minimum distance of a code, a code also has a minimum
weight which is the smallest weight of any codeword in the code. The weight of
codewords will become useful when discussing syndrome decoding later in the
paper.

3.4 Hamming Codes

The example of the Hamming Codes is used to illustrate the process of encoding
and decoding. The Hamming Codes follow the structure that [n, k, d] = [2r −
1, 2r − 1 − r, 3] for some integer r. The significance of the Hamming Codes’
minimum distance of 3 is developed later in the paper.

To correct more than one error, the Extended Hamming Code is used. This
becomes a [2r, 2r − 1 − r, 4] code with the ability to correct up to two errors.
This is done by adding a parity check to the matrix. A parity check adds a
column to the matrix, where the element for each row is the opposite of the
sum of the elements of the row modulo q. This new column increases the length
of the codewords in the code.

Example 4. Take the example of the binary Hamming Code [7, 4, 3]. A
generating matrix for this code is:

5

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 (3)

To add a parity check, all the elements of each row are added modulo 2, since
this code is in binary, and added in a new column. Since −1 = 1 in binary, the
sum of the elements is added as the parity check, as that is also the opposite of
the sum. The first row has a sum of 3, which is equal to 1 modulo 2. So a 1 would
be added to the end of the first row like so: [1, 0, 0, 0, 1, 1, 0]→ [1, 0, 0, 0, 1, 1, 0, 1].
Therefore, adding a parity check to G, gives

Ĝ =


1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 1 1 1 0

 (4)

Ĝ is then the generating matrix for the [8, 4, 4] extended Hamming Code. The
minimum distance of this extended code increases due to the parity check. This
increase in distance allows the code to detect two errors, and correct up to two
errors which will be explained later.

Since Ĝ is in standard form, the parity check matrix for the [8, 4, 4] binary
Hamming code is easily obtained as

H =


1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 0 0 0 0 1

 (5)

Since H has independent columns, permuting the order of the columns does
not change the code and preserves the independence of the columns. So by
permuting the columns of H and performing basic row operations, H becomes

H =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 (6)

As shown above, H has the first row of all ones. The bottom three rows form
the numbers 0 through 2r − 1 in binary in each column. This representation of
the [8, 4, 4] binary Hamming Code will simplify the decoding process.

4 Encoding

Encoding a message before transmission protects the message against noise.
Encoding is done using either the generating or the parity check matrix of
a code. To illustrate the encoding process, the parity check matrix H with

6

columns of binary numbers as shown in Equation (6) is used. The same process
of encoding is used for every code, given a generating or parity check matrix.

To encode a message, the message is multiplied by the matrix. Since a matrix
has a specific size, the message must have the same length as the dimension k of
the code. To work with the [8, 4, 4] binary Hamming Code, messages will have
length 4, and elements of the message will be either 1 or 0, as the code is in
binary.

Example 5. Let −→m = [1011]. To encode −→m, multiply it by H to obtain the
codeword for the message.

−→mH = [1011]


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 = [10011001] (7)

By multiplying the message by the matrix H, the message is encoded into
a length 8 codeword. This codeword is in the code, and as stated earlier, a
code has qk codewords. For this code, there are 24 = 16 codewords, because
q = 2 and k = 4, giving messages of length 4. Since each message is in binary
and of length 4, there are 24 = 16 messages that can be encoded by this code.
Therefore, there is a bijection between the messages the code can encode and
the codewords within a code. So each message has a unique codeword that it is
encoded to. This fact is important for decoding because each codeword can be
decoded into a single message.

By extending the length of a message when making it into a codeword,
encoding protects a message from noise. The extra bits in a codeword allow
noise to change a codeword without affecting the code’s ability to accurately
decode into the originally sent message. For the extended Hamming Code, two
errors can be corrected when the errors are in specific indices of the codeword.
Not all errors can be corrected, but one more can be detected and corrected if
it is the appropriate index. This process is illustrated in Example 9.

5 Error Introduction From Noise

Before error correcting using H is explained in depth, some examples of a code-
word being corrupted are explored. When noise enters a channel, it disrupts the
transmission of the codeword, causing the codeword to have different elements
than it did before transmission.

Example 6. Consider the codeword [10011001] from Equation (7). Say the
second and fifth elements are corrupted by noise. This means that the second
element would flip from a 0 to a 1, and the fifth element would flip from a 1 to
a 0. The change in the codeword would be

[10011001]→ [11010001] (8)

7

with the red elements being what was corrupted during transmission.

An error can occur anywhere in a codeword during transmission, and we
assume that the probability that each bit of information is corrupted is equal
and independent of other bits. As was stated earlier, the [8, 4, 4] extended
Hamming Code can only correct up to two errors, so if a channel has too much
noise, the number of errors will be too much for the Hamming Code to handle.
Other codes are better equipped to correct more errors, the number of which is
determined by the minimum distance of the code.

6 Decoding

There are multiple ways to decode, including nearest neighbor decoding and
syndrome decoding. There is also a final step after both processes to regain the
originally sent message. All of these steps are explained in this section.

6.1 Nearest Neighbor Decoding

The minimum distance d of a [n, k, d] code describes how different two distinct
codewords must be in a code. Hence, the larger the minimum distance of a code,
the further apart codewords are from each other. Since these codewords have
a minimum distance between them, they are separated by a certain number of
elements. This means that other binary vectors of length n, which are not in
the code, are closest to some codeword, as the codewords are separated from
each other. Finding this codeword that is closest to a transmitted message with
errors is called nearest neighbor decoding [1] (Section 1.11.2). This process is
the simplest way to decode messages and find which codeword was originally
sent. Each binary vector of length n is sorted into a sphere of radius, labeled
r, which separates vectors into groups of which codeword they are closest to.
As long as the spheres of radius for each codeword are disjoint, i.e. a vector is
not equally distant from two different codewords, nearest neighbor decoding is
simple.

To achieve disjoint spheres, a radius r = (d− 1)/2 is used to ensure that the
spheres are disjoint. If the spheres of radius are disjoint, the sphere containing
the codeword with errors is found, and the corrected codeword is the codeword in
C for that sphere. If the spheres are not disjoint, a codeword with errors could be
a nearest neighbor to two or more codewords which would not effectively decode
messages. Therefore nearest neighbor decoding is only helpful for certain codes
where spheres of radius are disjoint.

Example 7. To see how nearest neighbor decoding works, take the received
vector [11110001] that has introduced errors. Using the extended [8, 4, 4] Ham-
ming Code example, it is known that the code has the codeword [11110000]. As
this is only one element different from the received vector, this must have been
the intended codeword, as the distance between these two vectors is less than
or equal to r = (4− 1/2) = 1.5. There is no other codeword that has a smaller

8

distance from the received vector. Therefore, [11110000] is the originally sent
codeword.

If there are a large amount of codewords, the process of finding the nearest
neighbor of each codeword is an inefficient method for decoding. Each vector
has to be compared to every codeword to find the closest match or one must find
a codeword with a distance less than r to the vector, which is highly inefficient
even though the process is simplistic.

The extra decoding capability of the extended Hamming Code is possible
because the minimum distance increases from three to four when extending the
code. Increasing the minimum distance of the code increases the spheres of
radius of the code which separates codewords further apart than they were in
the [7, 3, 3] Hamming Code. This allows for better decoding capabilities of the
[8, 4, 4] extended Hamming Code.

6.2 Syndrome Decoding

Another way to decode is by syndromes. Syndrome decoding is a version of
nearest neighbor decoding that uses cosets of C rather than finding the nearest
neighbor of every codeword. To begin, consider a [n, k, d] code C over Fq. Then
every codeword is an element of Fn

q . Since C has the properties of an abelian
group, Fn

q can be broken up into cosets of C, each with the same number of
vectors as C according to the theory of Lagrange [2]. Each coset is defined as
−→x +C = {−→x +−→c ,−→c ∈ C} for some −→x not in C. This process is done for each
coset with a different −→x not in C.

Each of these cosets can be defined by a coset leader −→s [1], which is a vector
of smallest weight in the coset. If a coset has multiple vectors of the smallest
weight, the decoder may choose which vector to use as the coset leader. Doing
this breaks Fn

q into qn−k cosets of C, which is much more manageable than
inspecting each vector individually in nearest neighbor decoding.

Example 8. Take the code used in Example 3. The codewords in this code are
[0000000], [1000010], [1100011], and [0100001]. To find a coset, take the vector
[1111111], which is not in the code, and add it to every codeword. This coset
now contains the codewords [1111111], [0111101], [0011100], and [1011110]. The
vector [0011100] has the smallest weight of 3 and is this coset’s coset leader.
This process is done to find each coset in F2 with a new vector that is not in
any previously found coset.

Once the cosets and coset leaders are found, a syndrome is associated with
each coset. To find the syndrome of a vector, multiply the parity check matrix
by the transpose of the vector:

syn(−→v) = H−→v T (9)

This calculation gives a vector in Fn−k
q , and every vector in Fn−k

q is a syn-

drome for vectors in Fn
q . Since there are qn−k cosets and qn−k syndromes in

Fn−k
q , there is a one-to-one correspondence between the cosets of C and the

9

syndromes found by Equation (9). It also happens that two codewords are in
the same coset if and only if they have the same syndrome. For a proof of this,
reference [1] (p. 41). Therefore, each coset has a unique associated syndrome
and coset leader. Creating a table of cosets, coset leaders, and associated syn-
dromes will make the decoding process quicker, as the table can be referenced
for each calculation.

To decode a vector, one must:

i Find the syndrome of a received vector with error corruption

ii Locate the coset leader associated with the syndrome

iii Calculate the originally sent codeword as the errored vector minus the coset
leader

−→c = −→v −−→s (10)

If −→v is an element of C, then its syndrome is
−→
0 , and the sent vector is the

original codeword.
This process of decoding to find the original codeword sent is more efficient

in that it works with qn−k vectors instead of qn vectors. Unfortunately, this
process does entail an initial setup of cosets and associated syndromes and a
matrix multiplication for each transmitted vector.

6.3 Hamming Codes and Decoding

Fortunately, Hamming Codes are especially efficient at decoding using the syn-
drome method.

Once a syndrome for the sent codeword is found, the syndrome will tell where
the error in the code is based on the binary number the syndrome expresses. If

the syndrome is
−→
0 , there is no error. Any other binary representation shows

the place in the codeword where the bit was flipped.

Example 9. To illustrate the process of decoding with the extended [8, 4, 4]
Hamming Code, take H from equation (6) and the codeword from Equation (7).

i Introduce errors to [10011001] to obtain the vector [11011001]

ii Compute the syndrome of this vector using the formula from Equation (9):

H−→v =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 [11011001] = [1001] (11)

Ignoring the first element for the moment, the binary number in the last
three bits of the syndrome indicates that there is an error in the first index of
the vector. Flipping the bit in index one of the vector obtains the codeword
[10011001], which was shown earlier to be the encoded version of the message

10

[1011]. The last three bits of the syndrome indicate the index where an error
has occurred. If just the Hamming Code was used, the syndrome would only
be three elements long and would indicate where the error is by those three
bits.

iii By using the extended Hamming Code, a second error can be detected and
corrected, as long as that error is in the zeroth or leftmost index of the
vector. Consider the errored vector [01011001], which is the same vector as
above with an error added in the zeroth index. Calculating the syndrome
for this equation results in:

H−→c =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 [01011001] = [0001] (12)

Equation (12) gives a nearly identical syndrome to that of Equation (11).
The zero in the zeroth index of this syndrome indicates that there is a second
error, and the bit in the zeroth index of the vector is incorrect. Having a 1
in said bit of the syndrome indicates there is only one error in the vector,
meaning there is no error in the zeroth bit of the vector.

6.4 Finishing Decoding

The final step for decoding is recovering the original message that was encoded.
Once the error-corrected codeword is found, multiply it by the inverse of the
matrix that was used to encode. Doing this multiplication results in the original
message.

Example 10. Take the matrix K below for the running example of the [8, 4, 4]
binary extended Hamming Code.

K =



1 1 1 1
1 0 0 0
0 1 0 0
1 1 1 1
1 0 1 1
0 1 1 0
1 0 0 1
0 0 0 0


(13)

HK = I4, where I4 is the 4× 4 identity matrix. To recover −→m, multiply K
by −→m to obtain:

11

−→mK = [10011001]



1 1 1 1
1 0 0 0
0 1 0 0
1 1 1 1
1 0 1 1
0 1 1 0
1 0 0 1
0 0 0 0


= [1011] (14)

This recovers the original message −→m = [1011] that was encoded in Equation
(7). This step finishes the process of encoding and decoding a message.

Encoding a message protects the message from errors during transmission.
If the original message is sent without encoding and adding extra parity bits,
the receiver is much more likely to receive the wrong message because there is
no method to correct errors without encoding.

7 Python Program

To illustrate the entire process with the same original message and random
errors, the following Python output is presented. A program was written to
illustrate the encoding and random error input such that the Hamming Code
could then error correct and decode the message. The following example works
with the message −→m = [1001] and shows three different encoding and decoding
processes.

12

This program is hard coded to encode and decode messages based on the
[8, 4, 4] Extended Binary Hamming Code. Error introduction is semi-random.
Errors are coded to possibly happen in the first bit of the vector and in one of the
other seven bits. As much as this program mimics real-world error introduction,
it is coded to only introduce errors that the code can handle. More errors can
not be corrected by the code and are therefore omitted in the program. Overall,
the program aims to simulate real-world error introduction and the process of
decoding for each error.

8 Cyclic Codes

In addition to the general codes described above, there are different families
of codes that follow specific rules for how they are constructed. One of these
families is cyclic codes.

Definiton 11. Cyclic codes are ideals of Rn = Fq[x]/(xn− 1) such that every
cyclic shift of a codeword is in the code. A cyclic shift of a polynomial is a
multiple of that polynomial by some power of x.

13

Example 11. Let’s see an example of what a cyclic shift looks like. Let there
be a polynomial in Fq[x]

∑
aix

i. Then a cyclic shift of this polynomial by x
makes the new polynomial x ·

∑
aix

i =
∑
aix

i+1 where the exponent is mod
n. This cyclically shifts the codeword by a factor of x. Any power of x can be
used to form a cyclic shift of a polynomial.

As this field is made of polynomials, we compute with these polynomials in
the standard way modulo xn−1. This allows for easy computations in the codes,
as polynomials are simple to work with and xn− 1 is especially simple. We also
assume that gcd(n, q) = 1, so xn−1 has distinct roots in some extension field of
Fq. This allows for the computation and use of cyclotomic cosets to describe the
roots of xn−1, which will be discussed later. Instead of computing with vectors
in Fn

q , the coefficients of the polynomials in Fq[x] correspond to the vectors in
Fn
q . By using polynomials instead of vectors, we can find useful properties of

codes to understand them and work with them better.

8.1 Generators of Cyclic Codes

Since each code is an ideal of Fq[x]/(xn− 1), it is generated by some element in
the ideal.

Definiton 12. A generator of a cyclic code C = (g(x)) is such that g(x)|xn−1.

As g(x) generates the entire code, each cyclic shift of g(x) must be in the
code. Therefore, C has the basis {g(x), xg(x), ...xk−1g(x)}, where k = n −
deg(g(x)) is the dimension of the code. This basis is used to find the generating
and parity check matrices of the code for the encoding process. The encoding
process is generally the same for cyclic codes as the process described above.
Because cyclic codes are cyclic shifts of codewords, systematic ways of encoding,
or ways that embed the message in the encoded codeword, can also be used.
For more information on these procedures, see [1] chapter 4. The multiplication
of a message in vector form by a matrix representing the code is simplified to
multiplying a message polynomial by the generating polynomial to encode using
cyclic codes.

Another way to generate cyclic codes by a single polynomial is by using
idempotents.

Definiton 13. A generating idempotent, e, of a code is such that C = (e(x))
and e(x)2 = e(x).

Idempotents also have the property that g(x) = gcd(e(x), xn−1). Therefore,
it is not too hard to find the generating or generating idempotent polynomials
of a code if you know the other.

Example 12. To see how this works for a code, let us continue the example
of the [7, 4, 3] Hamming Code. This code is a cyclic code, so we can find it’s
generating and generating idempotent polynomials.

14

The generating polynomial of the [7, 4, 3] Hamming Code is g(x) = 1+x+x3.
This translates to the vector [1101000] which can be cyclically shifted to form
the first row of (3) [1000110]. Therefore, we know that this polynomial must be
in the code.

The generating idempotent of the code is e(x) = x+ x2 + x4 which is also a
shift of g(x) as e(x) = xg(x). Therefore it must also be in the code.

In equation 6, the calculations of H were not shown. The permutation of
the columns of H are allowed due to the cyclic nature of the code. Shifting the
columns of H does not change the code, as each cyclic shift of the codewords is
still in the code.

Both of these representations of the code are useful for the coding process
and finding more information about cyclic codes.

9 BCH Codes

BCH codes are a family of codes that are cyclic. These codes are named after
the people that discovered them: Bose, Ray-Chaudhure, and Hocquenghem.
This family of codes is constructed to exploit the BCH bound on the minimum
distance of a code to construct a code of chosen minimum distance with a certain
length and highest dimension.

9.1 Defining Set of a Code

Before the definition of BCH Codes is discussed, we need some mathematical
background about BCH codes.

First, the defining set of a code helps to compute the zeros of a code and
will be used to find the bound on the minimum distance of a code.

Definiton 14. The defining set T of a code is a union of some subset of
cyclotomic cosets T = UsCs such that the roots of unity Z = {αi : iεT} are the
zeros of the code.

This defining set is computed based on the primitive nth root of unity α
that is chosen, so T will change depending on the chosen α. The zeros of the
code, ai, are the zeros of the irreducible polynomial of α over Fq where α is
an element of an extention field Fqt . By finding this polynomial and factoring
over Fqt , we can find all of the zeros and the defining set of the code. There is
however a quicker computation using cyclotomic cosets.

Since all of the zeros of the code are conjugate over Fq, we know that they
are all different powers of α. For some integer r, we will have that αqr = α and
all conjugates for i < r will be found. Therefore, we find the i to be the set
Cs = {s, sq, sq2, ..., sqr−1} (mod qt − 1). By finding the cyclotomic cosets, we
will know all the zeros of the code for a specific primitive nth root of unity α
and can find the union of the sets for each code.

15

Example 13. To see how this works for a specific code, let’s again use the
example of the [7, 4, 3] Binary Hamming Code. To begin, we need to compute
the 2-cyclotomic cosets mod 7.

C0 = {0}
C1 = {1, 1 · 2, 1 · 22, 1 · 23} (mod7) = {1, 2, 4}
C3 = {3, 3 · 2, 3 · 22, 3 · 33} = {3, 5, 6}
Here, we have 3 sets. Now we choose α as the primitive nth root of unity.

We can then deduce that for the [7, 4, 3] Binary Hamming Code with generating
polynomial g(x) = 1 +x+x3, the defining set is {1, 2, 4} as 1 +α+α3 = 0 from
the chosen α. 1 + (α2) + (α2)3 = 1 + α2 + α6 = (1 + α + α3)(1 + α + α3) = 0.
And 1 + α4 + (α4)3 = 1 + α4 + α5 = (1 + α+ α3)(1 + α+ α2) = 0. Therefore,
α, α2, and α4 are all zeros of this code for the chosen α. The defining set of this
code is T = C1 = {1, 2, 4}. No other cyclotomic coset is in T for this code.

9.2 BCH Bound

Now that we know how to compute cyclotomic cosets and use them to find the
zeros and defining set of a code, we can use the defining set to place a bound
on the minimum distance of the code.

Definiton 15. BCH Bound: For cyclic code C of length n over Fq with
defining set T and minimum weight d, if T has δ− 1 consecutive elements, then
d ≥ δ.

By finding this lower bound on the minimum distance of a code, the actual
minimum distance may be higher than previously thought. This increases the
error correcting capability of a code and finds codes that are better at decoding.
Finding higher lower bounds of minimum distance increases error correction
capabilities and shows that some codes are better at decoding than originally
thought.

Example 14. Let us see how the BCH Bound affects the minimum distance
of the [7, 4, 3] Binary Hamming Code. From the last example we know that this
code has the defining set {1, 2, 4} which has 2 consecutive elements. Therefore,
δ = 3 and d ≥ 3. We already know that the minimum distance of the code is 3,
but now we have confirmed that through the BCH Bound.

There are many other types of bounds for the minimum distance of a code
that work to show that a code has more error correcting capability than origi-
nally thought. For more information on these, see [1].

9.3 BCH Codes

BCH codes are designed to exploit the BCH bound and are constructed to be a
code with the highest minimum distance possible. A BCH code is constructed to
have a minimum distance δ which is chosen from the start. To find a code with
such a δ, choose a defining set T such that it has δ−1 consecutive elements. We
also choose T so the consecutive elements are in the of union of cyclotomic cosets

16

with the smallest order possible. This maximizes the dimension as k = n− |T |.
By designing a code in this way, we can ensure that the code has a designed
minimum distance based on the δ chosen.

Example 15. The [7, 4, 3] Binary Hamming Code is a BCH code. As we have
seen, d = 3⇒ δ = 3, which means we need a defining set with two consecutive
elements. As this code’s defining set is {1, 2, 4}, this is satisfied. In fact, the
Hamming Codes are a special type of BCH codes called narrow-sense BCH
codes. In these types of codes, n = (qr − 1)/(q − 1) and the defining set is
T = C1. For the [7, 4, 3] Binary Hamming Code, n = 7 = (23 − 1)/(2− 1) and
T = C1 = {1, 2, 4}.

The BCH family of codes is used to find codes of a designed minimum
distance producing a code with increased error correcting capabilities.

9.4 Reed-Solomon Codes

Reed-Solomon (RS) codes are a sub-family of BCH codes. RS codes are BCH
codes with a length of n = q− 1. Under this construction, all of the cyclotomic
cosets of an RS code have size 1, so T is a union of δ − 1 cyclotomic cosets.
The construction of these codes are the same as BCH codes, just with a specific
formula for n. RS codes are particularly interesting for their usefulness in cor-
recting burst errors which is discussed in the next section. RS codes are often
used in conjunction with a process called interleaving which is also discussed
in the next section. Interleaving and the use of RS codes help to prevent burst
errors which is common in real-world applications of sending messages.

10 Coding for a Compact Disc

Coding for a CD requires the use of RS codes and other processes to protect
against burst errors. Burst errors occur when large sections of data are erased
or encounter errors. On a CD this happens when scratches obscure a section of
data or dust obstructs the reading of the CD. Burst errors affect large sections of
data on a CD which makes decoding these large errors difficult. By using Reed-
Solomon codes and a process called interleaving, burst errors can be decoded.
Interleaving permutes bits of a codeword to separate consecutive bits to prevent
burst errors from corrupting large packets of consecutive data.

The fields used to encode these data strings are F2n for some larger n. Rather
than go through the specific details of calculations, a general process of the
encoding and decoding process will be discussed.

First, samples of the sound are taken from the right and left channels and
converted into digital or binary data. These samples are made into codewords
6 samples at a time to become L1R1L2R2L3R3L4R4L5R5L6R6. This codeword
of 6 samples from both the right and left channels serves as the data bits for
the CD which we call a frame.

17

Next, each frame goes through two encoding processes. During the first pro-
cess, the even and odd samples are separated in each frame. The left and right
even and odd samples are grouped together to separate individual samples and
consecutive samples. This creates the frame L1L3L5R1R3R5L2L4L6R2R4R6.
Then the even samples from two frames away replace the even samples from
this frame to create the new frame L1L3L5R1R3R5L2L4L6R2R4R6, where the
line indicates the samples are from a different frame. This new frame further
separates consecutive samples to ensure that burst errors do not corrupt packets
of consecutive data. This frame is then encoded in the usual way as explained
earlier in the paper using a RS code. Encoding in this way adds extra par-
ity bits Pi in the middle of the frame to further separate samples to become
L1L3L5R1R3R5P1P2L2L4L6R2R4R6. This completes the first encoding step.

The second step of the encoding process generally replicates the first, but
interleaves the data differently and encodes using a second RS code. The en-
coded codewords from step one are used to form a matrix. The columns of this
matrix are then encoded using the new RS code. These new encoded codewords
are then interleaved to group even samples and odd samples together.

Step three involves emprinting the data onto the physical CD. This process
will not be explained here. For more information see [1] section 5.6.

To decode, we undo the interleaving and encoding from steps one and two.
First, the even and odd samples that underwent the interleaving process at
the end of step two are put back into the matrix. The codewords are then
decoded fixing one error and detecting if there are more. Then the codewords
are decoded using the first RS code. If there are no errors detected, the samples
are put back in their original place and the sound will play correctly. If errors
are present, this RS code can fix an amount of errors and erasures, but not all.
Some errors and erasures may persist through the entire decoding process. After
the codewords are decoded, the samples are put in their original place. Each
RS code can correct more than one error, but neither RS code is used to its
full decoding ability. This ensures that persisting errors are detected. Without
detecting the remaining errors, there would be no way to deal with them at the
end of the decoding process.

If errors and erasures are left at the end of the decoding process, there are
two options for how to deal with them. The first is to use linear approximation
to estimate the data that is erased. Assuming that the samples on either side
of the erased sample are error-free, they can be used to approximate what the
missing data should be. This then will replace the erased data and give an
approximation of the correct sound. If this can not happen as consecutive
samples have errors, the sound mutes the frame before encountering the error.
Once the error is played at a lower volume, the volume is brought back to
normal. As frames and samples represent milliseconds of sound, this process is
nearly undetectable by listeners. Both of these processes are helpful to make
residual errors undetectable to listeners.

18

11 Conclusion

The coding process is essential for effective communication in today’s society
where communication is highly digital. Without these processes, naturally oc-
curring errors corrupt messages, and messages become difficult to interpret.
Increasing the distance between codewords in a code aids the decoding process
by making it easier to find the intended message. Burst errors are also a problem
with CDs and other types of communication. Encoding and interleaving help
to protect against these larger types of errors. Using coding theory protects
messages from corruption that happens in everyday communication.

References

[1] Huffman, W. Cary and Pless, Vera. Fundamentals of Error-Correcting
Codes. Cambridge, Cambridge University Press, 2003.

[2] Fraleigh, John. A First Course in Abstract Alegebra. Addison-Wesley, 2003.

12 Teaching Comments

Although the linear and abstract algebra concepts discussed in this paper may
be advanced for most students, the concepts of transmitting messages, random
errors, and binary computations are suitable for younger students. Ideas from
this paper can be adapted to teach high school students about sending messages
in real life. Students do not need to understand every mathematical detail
about the coding process to understand the usefulness of coding for everyday
life. Binary is also a great way to help students begin to understand computers
and other electronic ways of communication that they use every day. Lessons on
what binary is, how to compute in it, and why it is important for everyday life
to enhance students’ understanding of the importance of coding. These lessons
are vital in today’s world where most communication happens electronically.
Adapting these concepts to the level of high school students can pique their
interest in real-world application of mathematical concepts.

19

