
Cryptography and Number Theory

Shivan Parmar

Undergraduate Research Opportunity Programme (UROP)

Supervised by

Dr Carl Wang-Erickson

Department of Mathematics

Imperial College London

September 2019

Contents

1. Introduction 2

2. Basics of Finite Fields 3

3. Discrete Logarithms and Diffie–Hellman 7

3.1. The Discrete Logarithm Problem 7

3.2. Diffie–Hellman Key Exchange 7

3.3. ElGamal Cryptosystem 8

4. Algorithms to Solve Discrete Logarithm Problem 9

4.1. Quantifying the Efficiency of an Algorithm 9

4.2. Initial Algorithms 9

4.3. Chinese Remainder Theorem 10

4.4. Pollig–Hellman Algorithm 13

4.5. Pollard’s ρ algorithm 16

4.6. Discrete Logarithms via Pollard’s method 17

4.7. Index Calculus method for solving Discrete Logarithm Problem 20

5. Elliptic Curve Cryptography 23

5.1. Elliptic Curves over Finite Fields 24

5.2. Elliptic Curve Discrete Logarithm Problem (ECDLP) 27

5.3. Double and Add Algorithm 27

5.4. An Improvement to the Double and Add algorithm 28

5.5. Elliptic Diffie–Hellman key exchange 29

5.6. Lenstra’s Factorisation Algorithm 29

5.7. “Nothing up my Sleeve” Number 31

5.8. ECDSA 31

6. Acknowledgement 33

References 34

1

1. Introduction

It is almost impossible to overstate the importance of cryptography in the electronic age. Encryption

forms the backbone of internet security systems, allowing people to confidently do business online without

fear of deceit or deception and protecting the fundamental human right to privacy. Briefly, cryptography’s

importance is three-fold: it is used in authentication (e.g. logging onto online banking using unique digital ID

created by your computer), integrity (think of a digital signature attached to the bottom of an email to pre-

vent forgery), and confidentiality (end-to-end encryption on instant messaging platforms). The widespread

adoption of decentralised cloud-based platforms to store data means that network security of information in

transit is more crucial than ever.

Cryptographic algorithms fall broadly into two categories - symmetric and asymmetric ciphers. With

a symmetric cipher, both parties have access to a secret key beforehand, and this key is used to encrypt

information which is then transmitted across a public channel. This is notably different to the asymmetric

cipher used in public key cryptography, in which there is a public key which is widely disseminated, and a

private key known only to the owner.

Public key cryptography fundamentally relies on hard problems in mathematics, allowing the secure trans-

mission of private information over public communication channels. Good candidates for such hard problems

have a trapdoor – a piece of information which renders their solution trivial, but without which the problem

is extremely difficult. This means that if both parties (who in this paper we’ll refer to as Alice and Bob)

have access to the trapdoor information, any middleman eavesdropper (who we’ll call Eve) will be unable to

decrypt the message in a practical amount of time. This is loosely analogous to a combination lock: with the

code for the lock it is very easy to open, without it the prospect of trying every single possibility is enough

to put off even the most determined of thieves.

This paper starts with an overview of finite fields and a ‘hard problem’ known as the Discrete Logarithm

Problem. It explores how this is applied in practice with Diffie–Hellman key-exchange; a method by which

two parties can securely decide on a mutual private key using only a public communication channel, and

the various methods with which such an encryption system can be attacked. To finish, cryptographic

methods featuring elliptic curves are explored, and comparisons made between the finite field counterparts.

Throughout, Python implementations of different encryption and decryption algorithms are presented.

2

2. Basics of Finite Fields

We work towards proving that F×p is cyclic. This is important, since it guarantees the existence of a

unique solution to the discrete logarithm problem, which we will see in due course.

Definition 2.0.1. (Characteristic) The characteristic of a ring R is p if p is the smallest number of times

the multiplicative identity (1) must be added to itself to get the additive identity (0). A ring is said to have

characteristic zero when the additive identity 0 cannot be obtained by inductively adding the multiplicative

identity 1 to itself.

We can then state the following lemma:

Lemma 2.0.2. Any field has characteristic zero or a prime.

Proof. Consider the sequence of elements of a field (1, 1 + 1, 1 + 1 + 1, . . .). Define a0 = 0 and an = an−1 + 1.

Then since F is finite, it must be true that al = ak for some l > k. So then al − ak = 0, and l − k > 0. It

follows that there exists a least m > 0 such that am = 0. Since 1 6= 0, m ≥ 2. Suppose m = m1m2, where

m1 > 1 and m2 > 0. Then am = 0 =⇒ am1 = 0 or am2 = 0 since a field has no zero divisors. This is a

contradiction, since we defined m to be the least such number with this property. Hence m is prime, and we

call it the characteristic of the field. Note that since an integral domain has no zero divisors by definition,

this proof also applies to domains. �

Definition 2.0.3. A prime subfield of F is the intersection of all subfields of F.

Note the prime subfield can be finite or infinite, depending on the field F.

Proposition 2.0.4. The prime subfield can equivalently be defined as the the subfield of F generated by the

multiplicative identity 1.

Proof. Denote as K the intersection of all subfields of F , and denote as L the subfield of F generated by

1. It is obvious that K ⊂ L, since < 1 > is a subfield of F . Next we show that L ⊂ K. Take some l ∈ L.

Then in slightly sloppy notation, l = 1 + . . .+ 1. Since 1 ∈ U for all subfields U of F by definition, we have

that l ∈ U for all subfields U of F , because fields are closed under addition. Thus l ∈ K, completing the

proof. �

Proposition 2.0.5. Let K be a finite field of characteristic p. The prime subfield of K is isomorphic to Fp,

the finite field of p elements.
3

Proof. Represent Fp as {0, 1, ..., p − 1}. Define a map into K as φ : Fp → K, r → f · 1, where 1 is the

multiplicative unit. φ is clearly additive and multiplicative, so is a field homomorphism. To show Fp ⊂ K, it

remains to show that the map is injective. Assume to the contrary that for some p > r > s ≥ 0, φ(r) = φ(s).

Let c = r − s > 0. c can be considered an element of F?p, so has a multiplicative inverse c−1 ∈ Fp.

Then φ(1) = φ(c · c−1) = φ(c)φ(c−1) = (φ(r) − φ(s))φ(c−1) = 0. But by the definition of φ, φ(1) = 1 6= 0,

since K is a field, contradiction. So φ is an isomorphism between Fp and the image of the homomorphism

Im(φ) ⊂ K. This proves Im(φ) is a subfield of K. has no non-trivial subfield; it is its own prime subfield,

and so the same is a true of Im(φ). Thus Im(φ) is the prime field of K. �

We present a second, neater proof of the above proposition. It relies on the following lemma.

Lemma 2.0.6. The only ideals of a field are 0, or the entire field.

Proof. Clearly {0} is an ideal of F . Let I be a non-zero ideal of F . Then it contains at least one non-zero

element, denoted i. Since F is a field, i−1 ∈ F . Since I is an ideal, ir ∈ I ∀r ∈ R, and in particular,

ii−1 = 1 ∈ I. But if 1 ∈ I, then 1 · r = r · 1 = r ∈ I ∀r ∈ R, and so I = R. �

This allows us to prove using a different construction, the injectivity of the homomorphism from the field

to a ring, as re-stated in the following proposition.

Proposition 2.0.7. If φ : F → R is any homomorphism from a field to a non-trivial ring, then φ is injective.

Proof. Let I be the kernel of the homomorphism φ (recall that this is an ideal). Then I cannot be R, so

I = {0}, which implies that φ is injective. �

We now work towards proving an important theorem about the multiplicative group of a finite field of

prime-power order.

Let d be an integer ≥ 1. Let φ(d) denote Euler’s totient function.

Lemma 2.0.8. If n is an integer ≥ 1, then n =
∑
d|n φ(d).

Proof. If d|n, Let Cd be the unique subgroup of Z/nZ of order d and let Φd be the set of generators of Cd.

Since all elements of Z/nZ generate exactly one of the Cd, Z/nZ is the disjoint union of the Φd, and

n = |Z/nZ| =
∑
d|n

|Φd| =
∑
d|n

φ(d)

�
4

Lemma 2.0.9. Let G be a finite group of order n. Suppose that for all divisors d of n, {x ∈ H|xd = 1} has

at most d elements. Then G is cyclic.

Proof. Let d be a divisor of n, and consider the set Gd consisting of elements of G with order d. Suppose

Gd 6= ∅, then ∃y ∈ Gd. Clearly 〈y〉 ⊂ {x ∈ G|xd = 1}. But |〈y〉| = d, so 〈y〉 = {x ∈ G|xd = 1}, by the

hypothesis of the lemma. Thus, Gd is the set of generators of 〈y〉 of order d, so |Gd| = φ(d). So either Gd is

empty, or has cardinality φ(d) for all d dividing n. But

n = |G| =
∑
d|n

|Gd| =
∑
d|n

φ(d) = n

so |Gd| = φ(d) ∀d|n. In particular Gn is non-empty. Thus G is cyclic. �

Definition 2.0.10. A unique factorisation domain (UFD) is an integral domain in which every non-zero

non-unit element can be written as product of irreducible elements.

Proposition 2.0.11. A polynomial of degree d has at most d solutions in F, even when counted with

multiplicities.

Proof. It is clear that this is equivalent to proving that a polynomial of degree at most n with more than n

roots vanishes identically. This can be proved by induction. The base case n = 0 is obvious. Next take a

polynomial f of degree at most n and let x1, ..., xn+1 be distinct roots of f . By the factor theorem,

f(x) = (x− xn+1)g(x)

where g has degree at most n− 1. Substitute x = xi for i = 1, ..., n. For all these values of x, the left hand

side vanishes and (xi − xn+1) is non-zero. Hence all these xi must be roots of g, and so inductively, g is

identically zero. �

This proof works because F [x] is a unique factorisation domain, and thus the number of roots of any

polynomial in F [x] is the same as the number of linear factors in its unique prime factorisation.

Theorem 2.0.12. The multiplicative group F×q of a finite field Fq is cyclic of order q − 1, where q = pn, p

prime, n ≥ 1.

Proof. Note that F× has pn−1 elements. Let d be any divisor of pn−1. By the previous proposition, it is

clear that the polynomial xd − 1 = 0 has at most d roots. And by the lemma, this implies that our group is

cyclic. �
5

Finally we state and prove Fermat’s Little Theorem, a useful result for the following section.

Theorem 2.0.13. Let p be a prime, and a an integer. then

ap−1 ≡ 1 mod p

Proof. Consider the set G = {1, ..., p− 1}. It can easily be checked that under multiplication modulo p, this

forms a group. Let a be an element of G. Let k be the order of a in the group. Then < a > is a subgroup

of order k, and so by Lagrange’s theorem, k|(p− 1), the order of G. Therefore we can express p− 1 as km,

for some positive integer m, and

ap−1 ≡ akm ≡ (ak)m ≡ 1m ≡ 1 mod p

�

6

3. Discrete Logarithms and Diffie–Hellman

In this section, the concept of a discrete logarithm is introduced, and its application in an elementary key

exchange procedure is outlined. First we introduce some mathematical preliminaries.

3.1. The Discrete Logarithm Problem.

Definition 3.1.1. Let g be a primitive root for Fp and let h be a non-zero element of Fp. The Discrete

Logarithm Problem is the problem of finding an exponent x such that gx ≡ h mod p.

The existence of a solution to the discrete logarithm problem is guaranteed by the cyclicity of F×p . Note

that since the field is finite, if there is one solution then there are infinitely many by the following reasoning.

Fermat’s little theorem says that gp−1 ≡ 1 mod p. Hence if x is a solution to gx ≡ h, then x + k(p − 1) is

also a solution for every value of k because gx+k(p−1) = gx · (gp−1)k ≡ h · 1k ≡ h mod p. Thus our discrete

logarithm logg(h) is defined only up to adding and subtracting multiples of p− 1.

It is a ‘hard problem’ to solve the discrete logarithm problem; we will come back to exactly what this

means later but in essence the most efficient way to compute the discrete logarithm is not much better than

checking every case. This makes it an ideal candidate for the basis of a cryptographic algorithm.

3.2. Diffie–Hellman Key Exchange. To best demonstrate the principle of the key exchange, consider the

following hypothetical scenario. Suppose Alice and Bob want to transmit a private message through a public

communication channel, without an eavesdropper Eve being able to decipher the message. They first agree

on a large prime and a non-zero integer g mod p, whose order in F?p is a large prime. Alice picks a secret

integer a, and Bob picks a secret integer b. They then each compute ga mod p and gb mod p respectively,

and these computed values are exchanged on a public platform which Eve has access to. Then Alice and

Bob use their secret integers to compute A′ ≡ Ba mod p and B′ ≡ Ab mod p respectively. However, note

that

A′ ≡ Ba ≡ (gb)a ≡ (ga)b ≡ Ab ≡ B′ mod p.

Thus they have exchanged a ‘secret’ key. In order to intercept this key, Eve would have to solve the following

‘hard’ problem.

Definition 3.2.1. Let p be a prime and g an integer. The Diffie–Hellman Problem is that of computing gab

mod p from the known values of ga mod p and gb mod p.
7

It is clear that the Diffie–Hellman problem is no harder than the Discrete Logarithm Problem, since if

Eve knows a and b, computing gab mod p is trivial. However the converse is unclear, but in practice it is

generally acknowledged that the Diffie–Hellman problem is hard enough to be secure (simply because no-one

has discovered a way of solving it which does not involve solving the Discrete Logarithm Problem).This key

exchange can be developed into a complete crypto-system.

3.3. ElGamal Cryptosystem. Alice requires a large prime p and an element g mod p of large prime order.

She then computes A ≡ ga mod p, where a is a secret number of her choice, and publishes the quantity

A. Bob has a message m, suppose it is an integer between 2 and p. He chooses a random ‘ephemeral’ key

k mod p, and uses it to encrypt one message, then discards k. He then computes the quantities c1 ≡ gk

mod p and c2 ≡ mAk mod p, and sends the ciphertext (c1,c2) to Alice. Alice knows a, so can compute

x ≡ ca1 mod p, and hence also x−1 mod p. Thus Alice can compute the quantity

x−1 · c2 ≡ (ca1)−1 · c2 mod p

≡ (gak)−1 · (mAk) mod p

≡ (gak)−1 · (m(ga)k) mod p

≡ m

and decrypt Bob’s message! It can be shown that ElGamal is as hard to attack as the Diffie–Hellman

problem.

Proposition 3.3.1. Fix a prime p and base g to use for ElGamal encryption. Suppose the eavesdropper Eve

can access an oracle decrypting arbitrary ElGamal ciphertexts encrypted using arbitrary ephemeral public

keys. Then this oracle can be used to solve the corresponding Diffie–Hellman problem.

Proof. Recall that in the Diffie–Hellman problem, Eve knows the quantities A ≡ ga mod p and B ≡ gb

mod p and wants to compute the value of gab mod p. An ElGamal oracle takes a prime p, base g, public

key A and public cipher-text (c1, c2), and returns the quantity (ca1)−1 · c2 mod p. In order to solve the

Diffie–Hellman problem, Eve can simply choose c1 = B = gb and c2 = 1. Then she will obtain (gab)−1, and

can easily just take the inverse. �

In comparison with the RSA algorithm, the ElGamal algorithm has the advantage that each time the

plaintext is encrypted, it gives a completely different ciphertext. However it has the disadvantage that the

ciphertext is twice as long as the plaintext.

8

4. Algorithms to Solve Discrete Logarithm Problem

In order to better understand the difficulty of breaking Diffie–Hellman and ElGamal, we now shift our

attention to the algorithms available at the disposal of Eve, in order to solve the Discrete Logarithm Problem.

We begin by considering algorithms which work in all cases, and then some quicker algorithms which work

in special cases where Alice and Bob have been careless with their choice of numbers. These have been

implemented in Python.

4.1. Quantifying the Efficiency of an Algorithm. Before diving into different algorithms to solve the

discrete logarithm problem, it is worth first formalising the notion of how efficient an algorithm is, given by

how many steps are required to come to a solution. For this we introduce some new notation.

Definition 4.1.1. Let f : S → R≥0, where S ⊂ R≥0, and g : R≥0 → R≥0. We say f(x) is O(g(x)) if there

exist real constants C > 0 and M ≥ 0 such that f(x) ≤ C · g(x) for x ≥M .

In a cryptography context, an algorithm is considered fast if it works in polynomial time, i.e. is O(xn) :

n ∈ R, and slow if it works in exponential time, i.e. is O(ex). Many of the most difficult questions in

cryptography involve trying to find ways to solve hard problems in sub-exponential times.

4.2. Initial Algorithms. We first note that there is a trivial bound on the time order of any algorithm to

solve the discrete logarithm, however using more advanced algorithms we hope to improve on this baseline.

Proposition 4.2.1. Let g be a group and g ∈ G an element of order N. Then the discrete logarithm problem

can be solved in O(N) steps, where each step consists of a multiplication by g.

Explicitly, this algorithm is simply raising g to successive powers modulo p until the required power x is

found, such that gx ≡ h mod p. A slightly faster algorithm to solve the Discrete Logarithm Problem is the

following.

Proposition 4.2.2. (Shanks’ Babystep-Giantstep algorithm) Let G be a group, and g ∈ G have order N ≥ 2.

The following algorithm solves the Discrete Logarithm Problem gx ≡ h mod p in O(
√
N ·log(N)) steps, using

O(
√
N) of storage.

(1) Let n = 1 + b
√
Nc.

(2) Create two lists:

List 1: e, g, g2, ..., gn

List 2: h, hg−n, hg−2n, ..., hg−n
2

.
9

(3) Find a match between both lists, of the form gi = hg−jn. Then x = i+jn is a solution to the discrete

logarithm problem gx = h.

The proof of this result is presented, followed by a Python implementation of the method.

Proof. First we show that the algorithm works in O(
√
N · log(N)) steps. Creating the two lists takes 2n

multiplications, and assuming a solution exists, finding a match between the two lists takes some multiple

of n · log n ≈ n · log
√
N steps using standard sorting and searching algorithms, so the run-time is as given.

It remains to prove that lists 1 and 2 always have such a match. Let x be the unknown solution to the

discrete logarithm problem, and write x as x = nq + r, where 0 ≤ r < n and 1 ≤ x < N . Then since

n >
√
N , q = x−r

n < N
n < n since n >

√
N . Thus gx = h can be rewritten as gr = h · g−qn with 0 ≤ r < n

and 0 ≤ q < n. Note that gr is in list 1, and hg−qn is in list 2. �

import numpy as np

def dlp(p,g,h):

N = 1

while pow(g,N,p) != 1:

N+=1

n = int(1 + np.floor(np.sqrt(N)))

list_1 = []

list_2 = []

for y in range(n):

list_1.append(pow(g,y,p))

z = pow(g,y*n,p)

z_inv = pow(z,p-2,p)

list_2.append((h*z_inv)%p)

intersection = list(set(list_1).intersection(list_2))

position_1 = list_1.index(intersection[0])

position_2 = list_2.index(intersection[0])

x = (position_1 + n*position_2) % p

print('The solution to the Discrete Logarithm Problem is x = ', x)

4.3. Chinese Remainder Theorem. The next algorithm we consider is much quicker but only works in

the case where Alice and Bob have carelessly chosen an element g ∈ G of order N , where N factors into the
10

product of small primes. However, it relies on the Chinese Remainder Theorem, which we state and prove

in full:

Theorem 4.3.1. Let m1,m2, ...,mk be a collection of pairwise relatively prime integers. Let a1, ..., ak ∈ Z

be arbitrary integers. Then the system

x ≡ a1 mod m1, x ≡ a2 mod m2, ..., x ≡ ai mod mi

has a unique solution modulo m1m2...mk.

Proof. Existence. Suppose that for some value of i, we have a solution x = ci to the first i simultaneous

congruences, and we want a solution which also satisfies one more congruence, x ≡ ai+1 mod mi+1, of the

form x = ci +m1m2...miy. Thus we need to find a value of y satisfying

ci +m1m2...miy ≡ ai+1 mod mi+1 (?).

Well, since

gcd(a,m) = 1⇐⇒∃b ∈ Z s.t. a · b ≡ 1 mod m

by elementary number theory, we have

gcd(mi+1,m1,m2, ...,mi) = 1⇐⇒∃z s.t. m1m2...miz ≡ 1 mod mi+1.

Letting η = ai+1 − ci mod mi+1 and y = ηz, this is exactly the condition (?) we wish to satisfy.

Uniqueness. We prove this for the case of two congruences, and the argument easily generalises to

multiple congruences. Suppose for a contradiction there are two solutions to the congruences modulo mn.

So if we have x ≡ a mod m, x ≡ b mod n with x ≡ c mod mn and x ≡ d mod mn, then 0 ≡ (c − d)

mod mn. Thus c ≡ d mod mn, and so c = d since c and d are both non-negative and less than mn. �

The Chinese Remainder Theorem can be implemented as follows

import numpy as np

def chinese_remainder(a,m):

if len(a) != len(m):

return 'a and m are of different lengths'

else:

11

for i in range(len(m)):

for j in range(i+1,len(m)):

if ehcf(m[i],m[j])[2] != 1:

return 'The chosen moduli are not coprime'

moduli_product = np.prod(m)

return solve_system(a,m) % moduli_product

def solve_system(a,m):

function takes in as arguments two vectors of equal length, a and m

i=len(a)

if i==1:

x=a[0]

else:

b,n=a[0:i-1],m[0:i-1]

c=solve_system(b,n)

p = np.prod(n)

y=findinverse(p,m[i-1])*(a[i-1]-c)

x=c+p*y

return x

extended Euclid's algorithm

def ehcf(a, b):

#initialisation

p1,q1,h1,p2,q2,h2 = 1,0,a,0,1,b

from math import floor

while h2 != 0:

r = floor(h1/h2)

p3 = p1-r*p2

q3 = q1-r*q2

h3 = h1-r*h2

reassign variables

p1,q1,h1,p2,q2,h2=p2,q2,h2,p3,q3,h3

12

return output as a tuple

return (p1, q1, h1)

def findinverse(k,p):

l = ehcf(k,p)[0] % p

return l

4.4. Pollig–Hellman Algorithm. The Pollig–Hellman algorithm is a method for rapidly solving the dis-

crete logarithm gx ≡ h mod p in the case that N = |g| is a product of small prime powers.

Proposition 4.4.1. Let G be a group, and suppose that we have an algorithm which can solve gx = h in

O(Sqe) steps, given that g ∈ G has order qe. Then if instead N factors into a product of prime powers as

N = qe11 ...q
et
t , then the discrete logarithm problem can be solved in O(

∑t
i=1 Sqeii

+ logN) steps, using the

following procedure:

(1) For each 1 ≤ i ≤ t, let gi = g
N

q
ei
i and hi = h

N

q
ei
i . Notice gi has prime power order, so we can use e.g.

Shanks’ Babystep-Giantstep algorithm to solve the discrete logarithm problem gyi = hi. Let y = yi be

a solution to this.

(2) Then put these solutions together, using the Chinese Remainder Theorem to solve

x ≡ y1 mod qe11 , x ≡ y2 mod qe22 , ... , x ≡ yt mod qe
t

t (?)

Proof. The run-time of the algorithm is clear; it takes O(
∑t
i=1 Sqeii

) to complete step 1, and O(logN) to

piece these together using the Chinese Remainder Theorem.

Suppose x is a solution to the system of congruences (?). Then for each i, we can write x = yi + qeii zi, for

some zi. Then

(gx)
N

q
ei
i = (gyi+q

ei
i zi)

N

q
ei
i

= (g
N

q
ei
i)yi · gNzi

= (g
N

q
ei
i)yi since gN = 1

= gyii by definition of gi

= hi

= h
N

q
ei
i by definition of hi

13

Expressed in terms of discrete logarithms,

N

qeii
· x ≡ N

qeii
· logg(h) mod N (?)

Since N
q
ei
i

, 1 ≤ i ≤ t have no non-trivial common factors, by the extended Euclid’s algorithm it is possible

to find coefficients ci such that N
q
e1
1

+ N
q
e2
2

+ ...+ N
q
e3
3

= 1. Therefore summing over both sides of (?),

t∑
i=1

N

qeii
cix ≡

t∑
i=1

N

qeii
ci logg(h) mod N

=⇒x ≡ logg(h) mod N

�

Below is a Python implementation of this

import numpy as np

from sympy.ntheory import factorint

solve discrete logarithm problem for g a product of prime powers

def pohlig_hellman(g,h,p):

first need to calculate order of g

N = 1

while pow(g,N,p) != 1:

N+=1

split into prime factors

N_fact = factorint(N)

a = []

m = []

for i in N_fact:

g_i = pow(g,int(N/(i**N_fact[i])),p)

h_i = pow(h,int(N/(i**N_fact[i])),p)

y_i = dlp(g_i,h_i,p)

a.append(y_i)

m.append(i**N_fact[i])

crt used to piece together the solutions for prime powers

return chinese_remainder(a,m)

14

Because of the Pohlig–Hellman method, we conclude that gx = h is easy to solve if the order of g is a

product of powers of small primes. Consider the discrete logarithm problem in Fp. Since p − 1 is always

even, the best Alice and Bob can do is to pick some p = 2q + 1, where q is prime, and use an element g of

order q. Then the running time of Shanks’ Babystep-Giantstep would be O(
√
q) = O(

√
p).

The following proposition demonstrates that the runtime does not scale up significantly if g has order

prime power, rather than prime order.

Proposition 4.4.2. Let G be a group and q be a prime. Suppose that we know an algorithm which takes Sq

steps to solve the discrete logarithm problem gx = h in G whenever g has order q. Now suppose g ∈ G is an

element of order qe, e ≥ 1. Then the discrete logarithm problem gx = h can be solved in O(eSq) steps.

Proof. Write the unknown exponent x in the form

x = x0 + x1q + x2q
2 + ...+ xe−1q

e−1

. Note we’ve essentially written x in a different base. We aim to successively determine the coefficients xi.

Since gq
e−1

has order q, we have that

hq
e−1

= (gx)q
e−1

= (gx0+x1q+x2q
2+...+xe−1q

e−1

)q
e−1

= gx0q
e−1

· (gq
e

)x1+x2q+...+xe−2

= (gq
e−1

)x0

since gq
e

= 1. But this final expression just gives us a discrete logarithm problem whose base is an element

of order q. By assumption, it can be solved in Sq steps for x0.

Next we do the same for qe−2:

hq
e−2

= (gx)q
e−2

= (gx0+x1q+x2q
2+...+xe−1q

e−1

)q
e−2

= gx0q
e−2

· gx0q
e−1

· (gq
e

)x1+x2q+...+xe−2

= gx0q
e−2

· gx0q
e−1

So the discrete logarithm problem

(gq
e−1

)x1 = (h · g−x0)q
e−2

).
15

Continuing inductively, the entire exponent x = x0 +x1q+x2q
2 + ...+xe−1q

e−1 can be calculated in O(eSq)

steps, solving the original DLP. �

4.5. Pollard’s ρ algorithm. So far the most efficient general algorithm introduced to solve the discrete

logarithm problem in all cases is Shanks’ Babystep-Giantstep algorithm. Pollard’s ρ algorithm is slightly

more sophisticated, taking the same amount of time but with the advantage that only two numbers have

to be stored at any one time for the algorithm to run. We first introduce the method abstractly and then

apply it specifically to solving our system gx = h.

Let S be a finite set, and choose f : S → S to be a function which is good at mixing up the elements of

S. Start with some element x ∈ S, and repeatedly apply the function f to create a sequence of elements.

Since S is finite, this sequence must eventually loop back on itself. Denote by T the number of elements in

the ‘tail’ (the portion of the sequence before getting to the loop), and by M the number of elements in the

loop.

We define a collision as an element of the sequence which is repeated. Using this construction, it is

possible to detect a collision in O(
√
N) steps without storing all the values. We compute not only the se-

quence xi defined above, but also a second sequence yi defined by yi+1 = f(f(yi)), i = 0, 1, ..., i.e. yi = x2i.

To prove that a collision always occurs, note that for j > i, xj = xi⇐⇒i ≥ T and j ≡ i mod M . So,

x2i = xi⇐⇒i ≥ T and 2i ≡ i mod M⇐⇒M |i. Since one of T, T + 1, ..., T + M − 1 is divisible by M, this

proves x2i = xi for some 1 ≤ i < T +M .

We apply this in the specific context of solving the discrete logarithm problem, but first consider a general

proposition concerning the efficiency of any algorithm which solves the DLP.

Proposition 4.5.1. Let G be a group and h ∈ G an element of order N. Then assuming the discrete

logarithm problem hx = b has a solution, we claim it can be found in O(
√
N) steps, where each step is an

exponentiation in the group G.

Sketch of Proof. We write x = y− z and look for a solution to hy = b · hz, by making a list of hy values and

a list of bhz values, and looking for a match between the lists.

16

First choose random exponents y1, ..., yn between 1 and N, and compute the values of hy1 , hy2 , ..., hyn in

G. Note that these values are all in the set S = {1, h, ..., hN−1}. Next choose additional random exponents

z1, ..., zn between 1 and k, and compute bhz1 , bhz2 , ..., bhzn . Since we assume a solution exists, bhzi is also

in the set S for some i ∈ {1, ..., n}. Once we get a match of the form hy = bhzi , we’ve solved the discrete

logarithm problem, setting x = y − zi.

Each of the lists has n elements, so it takes about 2n steps to assemble each list. Each of these ‘steps’

consists of computing hi for some i between 1 and N . Using a fast exponentiation algorithm, this takes

approximately 2 log2(i) group multiplications. Thus in total it takes about 4n log2(N) multiplications to

assemble both lists. It will then take n log2(n) to check that for a common element between the lists.

Taking n ≈ 3
√
N , which gives us a relatively high chance of a success, the computation is of the time order

stated. �

4.6. Discrete Logarithms via Pollard’s method. We want to solve gt = a in F?p where g is a primitive

root mod p, by finding a collision between giaj and gkal for known exponents i, j, k, l.

Let

f(x) =


g(x) 0 ≤ x < p

3

x2 p
3 ≤ x <

2p
3 (mod p)

ax 2p
3 ≤ x < p

After i steps, we have xi = (f ◦ f ◦ ... ◦ f)(1) = gαi · aβi , where α0 = β0 = 0, and

αi+1 =


αi+1 0 ≤ x < p

3

2αi
p
3 ≤ x <

2p
3

αi
2p
3 ≤ x < p

βi+ 1 =


βi 0 ≤ x < p

3

2βi
p
3 ≤ x <

2p
3

βi+1
2p
3 ≤ x < p

It suffices to keep track of these constants mod p − 1, since gp−1 = 1, ap−1 = 1. We then compute the

sequence given by y0 = 1, yi+1 = f(f(yi)). Note that yi = x2i = gγi · aδi .

17

Applying the procedure, eventually a collision is found in the x and y sequences, say yi = xi, meaning

gαiaβi = gγiaδi . Let u ≡ αi − γi mod p− 1 and v = δi − βi mod p− 1, then gu = av in Fp. Equivalently,

v logg(a) ≡ u mod p− 1 (?).

If gcd(v, p−1) = 1, can simply multiply both sides by inverse of v mod p−1 to solve the discrete logarithm

problem. And if d = gcd(v, p− 1) ≥ 2, use extended Euclidean algorithm to find integer s such that sv ≡ d

mod p − 1. Multiplying both sides of (?) by s, d logg(a) ≡ w mod p − 1, where w ≡ su mod p − 1. Thus

the full set of solutions are

logg(a) ∈ {w
d

+ k · p− 1

d
: k = 0, ..., d− 1}.

Note that in practice the value of d is small, so it suffices to check each of the d values until the correct

one is found.

extended Euclid's algorithm

def ehcf(a, b):

p1,q1,h1,p2,q2,h2 = 1,0,a,0,1,b # initialisation

from math import floor

while h2 != 0:

r = floor(h1/h2)

p3 = p1-r*p2

q3 = q1-r*q2

h3 = h1-r*h2

p1,q1,h1,p2,q2,h2=p2,q2,h2,p3,q3,h3 # reassign variables

return (p1, q1, h1) # return output as a tuple

modular inverse

def findinverse(k,p):

l = ehcf(k,p)[0] % p

return l

def mixing_function(x,g,a,p):

x = x % p

if x <= p/3:

18

return g*x % p

elif x < 2*p/3:

return pow(x,2,p)

else:

return a*x % p

def alpha_function(alpha,x,p):

alpha = alpha % (p-1)

if x <= p/3:

return (alpha + 1) % (p-1)

elif x < 2*p/3:

return 2*alpha % (p-1)

else:

return alpha

def beta_function(beta,x,p):

beta = beta % (p-1)

if x <= p/3:

return beta

elif x < 2*p/3:

return 2*beta % (p-1)

else:

return (beta + 1) % (p-1)

def pollards_rho(g,a,p):

i = 1

x = mixing_function(1,g,a,p)

y = mixing_function(mixing_function(1,g,a,p),g,a,p)

alpha = alpha_function(0,x,p)

beta = beta_function(0,x,p)

gamma = alpha_function(alpha_function(0,y,p),mixing_function(y,g,a,p),p)

delta = beta_function(beta_function(0,y,p),mixing_function(y,g,a,p),p)

19

while x != y:

i += 1

alpha = alpha_function(alpha,x,p)

beta = beta_function(beta,x,p)

gamma = alpha_function(alpha_function(gamma,y,p),mixing_function(y,g,a,p),p)

delta = beta_function(beta_function(delta,y,p),mixing_function(y,g,a,p),p)

x = mixing_function(x,g,a,p)

y = mixing_function(mixing_function(y,g,a,p),g,a,p)

u = (alpha - gamma) % (p-1)

v = (delta - beta) % (p-1)

d = ehcf(v,p-1)[2]

if d == 1:

return (findinverse(v,p-1)*u) % p

else:

s = ehcf(v,p-1)[0]

w = (s*u) % (p-1)

for k in range(d):

if pow(g,(w//d + k*(p-1)//d)%p,p) == a %p:

return (w//d + k*(p-1)//d)%p

return 'Algorithm failed'

4.7. Index Calculus method for solving Discrete Logarithm Problem. We conclude this section

with a discussion of the index calculus method, currently the fastest known method to solve the discrete

logarithm problem.

Definition 4.7.1. An integer n is called B-smooth if p ≤ B, for every prime factor p of n.

Consider the now familiar discrete logarithm problem, in which g is a primitive root mod p, so its powers

give all of Fp. We choose a value B and solve gx ≡ l mod p for all primes l ≤ B. Having done this, consider

hg−k mod p for k = 1,2,... until we find a value of k such that hg−k is B-smooth.

For this value of k, we have hg−k for certain exponents el. Taking discrete logarithms, we obtain

logg(h) ≡ k +
∑
l≤B

el · logg(l)

20

where discrete logarithms are defined only modulo p− 1.

This can then be solved, assuming we’ve already calculated logg(l) for all primes l less than B. In order to

calculate these, for a random selection of exponents i we compute gi ≡ gi mod p, with 0 < gi < p. If gi is

not B-smooth, discard it. But if it is, factor it as gi =
∏
l≤B

lu
(i)
l . This gives us the relation

i ≡ logg(gi) ≡
∑
l≤B

ul(i) · logg(l) mod p− 1

Consider an equation of the above form. We first solve congruences mod q for each prime q dividing p−1.

If q appears in the factorisation of p− 1 to a power qe, we lift the solution from Z/qZ to Z/qeZ, before using

the Chinese Remainder Theorem to combine solutions modulo prime powers to obtain a solution modulo p−1.

Perform this process for each equation of the above form. We introduce the notation π(x) to denote the

number of primes less than or equal to x. So long as we have π(B) equations of the above form, we can use

the Chinese Remainder Theorem to knit them together, and thus solve the system of equations.

The algorithms below check that g is a primitive root modulo p, and calculate a list of integers of the

form gi = gi mod p, all of which are B-smooth.

from sympy.ntheory import factorint, isprime

from random import randint

first we need to check whether g is a primitive root mod p:

def primitive_checker(a,p):

if isprime(p) == False:

return 'p is not prime'

else:

list1 = []

s = p-1 # this is Euler's totient function

N_fact = factorint(s)

for i in N_fact:

list1.append(pow(a,int(s/i),p) != 1)

if all(char==True for char in list1):

return True

21

else:

return False

Returns a list of integers, each of which is a product of primes less than B

def B_smooth_gis(g,p,B):

primes = []

for i in range(B):

if isprime(i)== True:

primes.append(i)

print('primes: ',primes)

gi_list = []

for _ in range(1000):

g_i = pow(g,randint(1,1000), p)

gi_list.append(g_i)

gi_factors = []

B_smooth_gis = []

for g_i in gi_list:

gi_factors = factorint(g_i)

if all(factors < B for factors in gi_factors):

B_smooth_gis.append(g_i)

B_smooth_gis = B_smooth_gis[0:len(primes)]

B_smooth_gis = list(set(B_smooth_gis))

return B_smooth_gis

22

5. Elliptic Curve Cryptography

Instead of presenting the discrete logarithm problem, Diffie–Hellmann key exchange and ElGamal encryp-

tion over the F×p , it is possible to instead construct them analogously over E(Fp), which is also a group.

Multiplication in an elliptic curve is a more difficult task than exponentiation in a finite field and so the

fundamental hard problem of the elliptic discrete logarithm problem is harder than the classic discrete log-

arithm problem, making it a very good candidate for cryptography. The mathematical preliminaries of this

construction are discussed.

Definition 5.0.1. An elliptic curve E is the set of solutions to a Weierstrass equation

E : Y 2 = X3 +AX +B

together with an extra point O, where the constants A and B must satisfy 4A3 + 27B2 6= 0

We can define an addition law on the elliptic curve. If P and Q are two points on E, and L is the line

connecting P to Q (or the tangent line to P , if P = Q), then the intersection of E and L consists of P , Q and

one other point, call it R. Suppose R has coordinates (x, y). Then P +Q is defined as equal to R′ = (x,−y).

Note that the point O is defined as living on every vertical line, at ‘infinity’. Thus the addition of two

points lying on the same vertical line is defined as O.

Similarly, subtraction of points P − Q is defined as P + (−Q), where −Q is the reflection of the point

Q in the x-axis. The extra condition on A and B is essentially saying that the discriminant of the cubic

x3 +Ax+B is not equal to zero, i.e. the solution set has no singularities.

23

The elliptic curve, along with addition of points defined as above, forms an abelian group (all conditions

except for associativity can be checked easily). An efficient algorithm for calculating the addition of two

points on an elliptic curve is implemented in Python as follows:

Elliptic curve addition algorithm

E: Y^2 = X^3 + AX + B

def elliptic_add(A,B, p_1,p_2):

if 4*A**3 + 27*B**2 == 0:

return 'This is not a valid elliptic curve'

if p_1 == (0,0):

return p_2

elif p_2 == (0,0):

return p_1

else:

(x_1,y_1) = (p_1[0],p_1[1])

(x_2,y_2) = (p_2[0],p_2[1])

if x_1 == x_2 and y_1 != y_2:

return (0,0)

else:

if p_1 != p_2:

l = (y_2-y_1)/(x_2-x_1)

elif p_1 == p_2:

l = (3*x_1**2 + A)/2*y_1

x_3 = l**2 - x_1 - x_2

y_3 = l*(x_1 - x_3) - y_1

return (x_3,y_3)

5.1. Elliptic Curves over Finite Fields.

E(Fp) = {(x, y) ∈ Fp such that y2 = x3 +Ax+B} ∪ {O}

The elliptic curve addition algorithm applied to P and Q yields a point in E(Fp), which we denote P +Q.

This addition law makes E(Fp) a finite abelian group.

24

In order to implement addition over E(Fp), we need to remember that a fraction over a finite field is a

representation of the solution to a certain algebraic equation. For instance, 2
5 over the field F13 represents

the solution to 5x = 2 mod 13.

def finite_frac_eval(a,b,p):

if b%p == 1:

return a%p

elif a%p == 1:

return findinverse(b%p,p)

else:

for x in range(p):

if (b*x) % p == a % p:

return x

return 'Modular inverse does not exist'

def elliptic_finite_add(A,B,p,p_1,p_2):

if 4*A**3 + 27*B**2 == 0:

return 'This is not a valid elliptic curve'

if p_1 == (0,0):

return p_2

elif p_2 == (0,0):

return p_1

else:

(x_1,y_1) = (p_1[0],p_1[1])

(x_2,y_2) = (p_2[0],p_2[1])

if x_1 == x_2 and y_1 != y_2:

return (0,0)

else:

if p_1 != p_2:

l = finite_frac_eval(y_2-y_1,x_2-x_1,p)

elif p_1 == p_2:

25

l = finite_frac_eval(3*x_1**2 + A,2*y_1,p)

x_3 = l**2 - x_1 - x_2

y_3 = l*(x_1 - x_3) - y_1

return (x_3%p,y_3%p)

The following lists all the points lying in the field E(Fp) and checks that under addition, it does indeed

form an abelian group.

from elliptic_finite_add import add

import itertools

def elliptic_finite_points(A,B,p):

if p <= 3:

return 'Choose a larger finite field'

F_p = []

for y in range(p):

for x in range(p):

if pow(y,2,p) == (x**3 + A*x + B) % p or x == y == 0:

F_p.append((x,y))

return F_p

def finite_group_checker(A,B,p):

for pair in itertools.combinations(elliptic_finite_points(A,B,p), 2):

A_plus_B = (add(A,B,p,*pair)[0] % p, add(A,B,p,*pair)[1] % p)

if A_plus_B not in elliptic_finite_points(A,B,p):

return 'Not a group'

return 'This is a group'

Before moving on to the explicit use of elliptic curves in cryptography, in the form of the elliptic curve

analogy to the discrete logarithm problem, it is worth pausing to give a bound on the number of points on

an elliptic curve over a finite field.

Theorem 5.1.1. (Hasse) Let E be an elliptic curve over Fp. Then

#E(Fp) = p+ 1− tp
26

where tp satisfies |tp| ≤ 2
√
p.

5.2. Elliptic Curve Discrete Logarithm Problem (ECDLP). We are now in a position to define our

discrete logarithm problem. Alice chooses and publishes P and Q, and her secret is an integer n such that

Q = nP . By analogy with the discrete logarithm problem in F?p, we denote this integer n by n = logP (Q).

The elliptic discrete logarithm of Q with respect to P.

Note that if there is one value of n satisfying Q = nP , then there are many (since E(Fp) is finite). Thus

the value of logp(Q) is really an element of Z/sZ, where s is the least integer such that kP = (k + s)P

for some k. Since logP (Q1 +Q2) = logP (Q1) + logP (Q2) ∀Q1, Q2 ∈ E(Fp), the elliptic discrete logarithm

defines a group homomorphism E(Fp)→ Z/sZ.

In general, the fastest way to solve the ECDLP is an algorithm such as a modified form of Pollard’s ρ

algorithm, which solves it in O(
√
p). However, there are no sub-exponential algorithms to solve ECDLP,

as the index calculus method solved the normal DLP. This is because there is no straightforward notion

of ‘smoothness’ in E(Fp). In prime fields there is an easy mapping from the multiplicative group to the

integers, but such a simple mapping does not exist for E(Fp). There are again special cases for Alice and

Bob to avoid, where fast algorithms exist to solve ECDLP, and these cases will be explored in more detail

later in this paper.

5.3. Double and Add Algorithm. In order to take advantage of the cryptographic opportunities the

elliptic curve DLP presents, a fast algorithm is needed for scalar multiplication, i.e. to compute the value of

nP given both n and P, without having to iterate through the n addition steps. Though faster algorithms

do exist, the moderately fast ’double and add’ method is described here for its simplicity.

First n is decomposed into its binary representation:

n = n0 + n1 · 2 + n2 · 4 + ...+ nr · 2r with n0, n1, ..., nr ∈ {0, 1}

Then the following algorithm is implemented:

import numpy as np

def multiply(A,B,p,n,P): # using the double and add algorithm

Q = P

R = (0,0)

27

print(n,Q,R)

while n>0:

if n % 2 == 1:

R = elliptic_finite_add(A,B,p,R,Q)

Q = elliptic_finite_add(A,B,p,Q,Q)

n = np.floor(n/2)

print(n,Q,R)

return R

Addition of two points in E(Fp) is referred to as a point operation. Computing nP using this method

takes at most 2r point operations in E(Fp).

5.4. An Improvement to the Double and Add algorithm. The double and add algorithm is reasonably

fast, but relies on doubling in an elliptic curve over a finite field which is an intrinsically involved computation.

It can be made more efficient by replacing the doubling map by the Frobenius one:

Definition 5.4.1. The Frobenius map is defined as τ : Fpk → Fpk ; α 7→ αp

It is much easier to compute τ(P) than 2P , since the exponentiation can be applied to each coordinate

in turn. Note that the Frobenius map has lots of nice properties - for instance it is an automorphism group

of E(Fp).

The following theorem gives us the key idea that the action of the Frobenius map on E(F2k) satisfies a

certain quadratic equation:

Theorem 5.4.2. Let E be an elliptic curve over Fp, and denote t = p+ 1−#E(Fp). Note that by Hasse’s

theorem (see previous), |t| ≤ 2
√
p. Claim the following

(1) If α and β are roots of Z2 − tZ + p, then |α| = |β| = √p and ∀k ≥ 1, #E(Fpk) = pk + 1− αk − βk

(2) Let τ : E(Fp)→ E(Fp), (x, y) 7→ (xp, yp) (i.e. the Frobenius map).

Then for all Q ∈ E(Fp), τ2(Q)− t · τ(Q) + p ·Q = 0.

This is an important theorem, because it enables us to calculate the number of elements in E(Fp) with

relative ease.

Definition 5.4.3. A Koblitz curve is defined as an elliptic curve defined over F2 by Eα : Y 2 + XY =

X3 + aX2 + 1, a ∈ {0, 1}. The discriminant of the curve is one.
28

When our curve is a Koblitz curve, there is a very easy algorithm for adding points on the curve. When

the curve is not Koblitz, some adjustment is needed but a similar method can be used. See [1,p.334] for

details.

5.5. Elliptic Diffie–Hellman key exchange.

• Trusted party chooses and publishes large prime p, elliptic curve E over Fp, and point P in E(Fp).

• Alice chooses secret integer nA, and computes QA = nAP ; Bob chooses nB and computesQB = nBP .

• Values of QA and QB are publicly exchanged

• Alice computes nAQB and Bob computes nBQA. But note these are the same, since nAQB =

nA(nBP) = nB(nAP) = nBQA.

Note that Alice and Bob should only send each other the x-values of QA and QB , and should use only the

x-value of their final product as their shared secret value. This is because the y-values can be very easily be

determined from the corresponding x-values, so are not secure.

5.6. Lenstra’s Factorisation Algorithm. Elliptic curves were introduced to the cryptographic commu-

nity by Lenstra’s algorithm, an elliptic analogue of Pollard’s ρ− 1 factorisation algorithm to factorise large

integers. It works especially well when the number has a relatively small factor.

Consider an elliptic curve modulo N, where N is not prime (so that the ring Z/NZ is not a field). Suppose

P = (a, b) is a point on E modulo N, i.e. b2 ≡ a3 + A · a + B mod N . Apply the elliptic curve addition

algorithm to compute multiples of P, until you get ”stuck”. This will occur when a certain number x does

not have a reciprocal modulo N, and so tells us that x is a divisor of N. Once we’ve computed Q = (n−1)! ·P ,

it is easy to compute n! · P , since this is equal to nQ. There are three possibilities for this stage:

(1) nQ can be computed.

(2) We need to find the reciprocal of a number d which is a multiple of N (this case is unlikely so if it

occurs we just try again with a different initialisation).

(3) Need to find the reciprocal of a number d satisfying 1 < gcd(d,N) < N , and so the computation

fails, and gcd(d,N) is a nontrivial factor of N .

This is implemented below:

def lenstra_factorise(N):

initialisation

A = randint(1,N)

a = randint(1,N)

29

b = randint(1,N)

P = (a,b)

B = (b**2 - a**3 - A*a) % N

lenstra_iterate(N,A,B,P)

def lenstra_iterate(N,A,B,P):

for j in range(2,50):

try:

Q = dna.multiply(A,B,N,j,P)

P = Q

if this computation fails, have found d>1 s.t. d|N

except:

Q = P

R = (inf,inf)

d = 1

while j>0:

if j % 2 == 1:

try:

R = add(A,B,N,R,Q)

print('R,Q = ',R,Q)

except:

print('exception 1 raised')

d = ehcf((Q[0] - R[0]) % N , N)[2]

break

try:

Q = add(A,B,N,Q,Q)

j = j//2

except:

print('exception 2 raised')

d = ehcf((2*Q[1]) % N, N)[2]

break

30

if d < N:

print('d = ', d)

break

elif d == N:

lenstra_factorise(N)

return 'I can\'t factorise ',N

5.7. “Nothing up my Sleeve” Number. The one disadvantage of elliptic curve cryptography, in compar-

ison to RSA, is that it requires the use of a specified elliptic curve which is not susceptible to any particular

form of special attack. This raises trust issues about the vulnerability of a particular elliptic curve.

In order to convince someone that a particular curve is safe and not susceptible to some form of special

attack, an additional domain parameter called the seed is used. This is a random number, the hash of which

is used to generate either the coefficients of the elliptic curve, or the base point g, or both. Since hash

inversion is a difficult problem, it is hard to construct a seed from the domain parameters. Curves generated

from a seed are said to be verifiably random.

However, this trust can still be eroded. The random seeds for NIST curves having been published with no

justification by the US government, and they are now used for a wide variety of internet security purposes.

It is therefore possible that some weak class of elliptic curves was found and specified:

“I no longer trust the constants. I believe the NSA has manipulated them through their relationships

with industry” —Bruce Schneier, The NSA Is Breaking Most Encryption on the Internet (2013)

5.8. ECDSA. Digital signature algorithms aim to have the property that only one individual can create a

signature, which is then published, but anyone is able to check the validity of this signature. In the context

of our protagonists, Alice wants to sign a message with her private key, dA, and Bob wants to validate the

signature using Alice’s public key HA. Denote the hash of the message, truncated to the bit length of the

order of the subgroup n, as z.

5.8.1. Generating signature.

(1) Choose random integer k ∈ {1, ..., n− 1}.

(2) Calculate P = kG and r = xp mod n (where xp denotes the x coordinate of P)

(3) If r = 0, choose another k and try again
31

(4) Calculate s = k−1(z + rda) mod n

(5) If s = 0, choose another k and try again

The pair (r, s) is the signature. Essentially, the ’secret’ is k, which is hidden in r because of point

multiplication. r is then bound to the message hash by s = k−1(z + rdn).

5.8.2. Verifying signature.

(1) Calculate u1 = s−1z mod n and u2 = s−1r mod n

(2) Let P = u1G+ u2HA

(3) The signature is valid if r = xp mod n

This is because

P = u1G+ u2HA

= u1G+ u2dAG

= (u1 + u2dA)G

= (s−1z + s−1rdA)G

= s−1(z + rdA)G

Recall that s was defined as s = k−1(z + rda) mod n, and so k = s−1(z + rdA) mod n. Thus P =

s−1(z + rdA)G = kG

5.8.3. Security precautions. When generating signatures, k must be kept secret and must be changed for

each instance of the generated signature. Sony PlayStation 3 games were found to have a serious security

flaw whereby the signatures on all games were generated by a static k [7]. This meant that Sony’s private

key, call it ds, could be recovered simply by buying two signed games, and extracting their hashes(z1 and

z2), signatures((r1, s1) and (r2, s2)), and domain parameters, as follows.

• Since r = xp mod n and P = kG is the same for both signatures, we have r1 = r2.

• Consider (s1 − s2) mod n = k−1(z1 − z2) mod n. Rearranging, k = z1−z2
s1−s2 mod n.

• Since s = k−1(z + rds) mod n, ds = r−1(sk − z) mod n. All of these quantities are known, and so

the value of Sony’s private key could then be calculated.

It is also important that a suitable elliptic curve is chosen, over which to perform these algorithms. All

curves which are super-singular must be avoided, since the elliptic curve discrete logarithm problem can be

reduced to the discrete logarithm problem in a finite field, which is known to have sub-exponential complexity.
32

6. Acknowledgement

I’d like to extend my gratitude to Dr Carl Wang-Erickson for all his support and guidance, especially

for agreeing to supervise me whilst busy moving to a new teaching post in a different country, and without

whom this project would not have been possible.

33

References

[1] Conrad, K. (2019). Cyclicity of (Z/(p))×. [ebook]

Available at: https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf [Accessed 1 Sep.

2019].

[2] Hoffstein, J., Pipher, J. and Silverman, J. (2014). An Introduction to Mathematical Cryptography. New

York, NY: Springer New York.

[3] Serre., J. (1973). A Course in Arithmetic. New-York: Springer-Verlag, p.14.

[4] Silverman, J. and Tate, J. (2015). Rational points on elliptic curves. New York: Springer.

[5] Smart, N. (1997). The Discrete Logarithm Problemon Elliptic Curves of Trace One. [ebook] Bristol:

HP Laboratories. Available at: https://www.hpl.hp.com/techreports/97/HPL-97-128.pdf [Accessed

1 Sep. 2019].

[6] Green, H. (2018). The p-adic numbers. [ebook] London.

Available at: http://wwwf.imperial.ac.uk/ cwangeri/pdfs/Green--The_p-adic_-

numbers--UROP2018.pdf [Accessed 1 Sep. 2019].

[7] Corbellini, A. (2015). Elliptic Curve Cryptography: a Gentle Introduction - Andrea Corbellini. [online]

Corbellini.name. Available at: https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-

a-gentle-introduction/ [Accessed 17 Sep. 2019].

[8] Ruprai, R. (2007). Improvements in the Index-Calculus Algorithm for

Solving the Discrete Logarithm Problem over Fp. [online] Available at:

http://www.isg.rhul.ac.uk/ prai175/ISGStudentSem07/IndexCalculus.pdf [Accessed 17 Sep. 2019].

34

