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Abstract. We prove that when the dividend rate of the underlying asset following a geo-
metric Brownian motion is slightly larger than the risk-free interest rate, the optimal
exercise boundary of the American put option is not convex.

1. Introduction

Recently we provided a rigorous proof that the early exercise boundary for an American put
option on an asset whose price followed a geometric Brownian motion was convex when the dividend
rate was zero [12]; an independent proof was obtained by Ekstrom [13]. To date the convexity of
the early exercise boundary is an open problem when the dividend rate is non-zero. Numerical ex-
periments suggest that convexity obtains for dividend rates, D 6 r, the risk-free rate, and convexity
breaks down when D becomes larger than r (D. Chakraborty [9] confirming independent private
communications from J. Detemple, P. Duck and G. Meyer). In this note we provide a rigorous proof
that for 0 < D − r ¿ 1 the early exercise boundary loses convexity.

The proof is based on careful estimates obtained from a pair of integro-differential equations ((4.6),
(4.7) in §4) for the optimal exercise boundary. Since these equations involve the derivative of the
boundary, complete rigor necessitates a proof of its regularity. To this end we provide a short, direct
proof that the boundary is C∞. We note that the regularity of the boundary was recently established
for more general underliers (Bayraktar and Xing [5] proved C∞ for jump-diffusion processes and
Lamberton and Mikou [21] proved continuity of the boundary for general Lévy processes) but these
proofs are necessarily considerably more technical than the proof presented here.

The paper is organized as follows. In the next section we provide a direct and rigorous formulation
of the American put problem as a variational inequality. We then provide mathematically precise
statements of the main results. In §3 we prove the regularity of the early exercise boundary. An
outline of the derivation of the integro-differential equations central to our proof of the non-convexity
is provided in §4. The details of the proof of the non-convexity of the optimal exercise boundary
when 0 < D − r ¿ 1 are provided in §5. Finally, in §6 we provide a rigorous proof of the (time-
to-expiry)1/2 near expiry asymptotic behavior of the early exercise boundary formally derived in
[27]. Combining these results confirms the generally accepted belief that for 0 < D − r ¿ 1 the
boundary begins convex at expiry and loses convexity as the time-to-expiry increases. Analytic
and numerical estimates for the location of the non-convex region are provided in §2 and §5. We
also provide numerical evidence that convexity returns when D becomes sufficiently large (e.g.,
D > e0.4r ∼= 1.5r, when r = 0.05 and the volatility, σ = 0.25).

2. Background, Notation, and Main Results

We consider a financial market consisting of a bond and a stock, whose time t prices, Bt and St,
are stochastic processes defined by the stochastic differential equations

dSt = µt St dt + σ StdWt, dBt = rBt dt(2.1)
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where σ and r are positive constants and {Wt} is the standard Brownian motion (Wiener process).
In the time interval [t, t+dt), the stock pays DStdt dividend at time t+dt. An American put option
with strike price E and expiry T is a guaranteed right to sell a stock at price E at any time on or
before expiry. One wants to know the value of the option and the optimal time to exercise the right
of the option.

The Black–Scholes model is widely used to value options. An important advantage of the model is
that European options (no early exercise) can be valued analytically by the Black–Scholes formula
[17, 24]. The situation is quite different, however, for American put options with early exercise.
While considerable progress has been made, no completely satisfactory analytic solution has been
found. As a result, people resort routinely either to numerical methods or to analytic approximations.
There is a considerable literature in these fields; see, for example, [1–13, 17, 19–23, 25–27] and the
references therein.

2.1. The Black–Scholes Theory. We denote the Black–Scholes operator by

L∗P =
∂P

∂t
+

σ2

2
S2 ∂2P

∂S2
+ (r −D)S

∂P

∂S
− rP.

Proposition 1 (Black-Scholes Theory). Consider the American put option with strike price E and
expiry T , on a stock that pays dividends at a constant rate, D > 0, in a system where the bond and
stock prices obey (2.1), with positive constants σ and r. Let (B,P ) be the classical solution of





max{L∗P, (E − S)+ − P} = 0 in (0,∞)× (−∞, T ),

P (S, T ) = (E − S)+ := max{E − S, 0} on (0,∞)× {T},
B(t) := inf{S > 0 | P (S, t) > (E − S)+} on (−∞, T ].

(2.2)

Then the no-arbitrage price of the option at time t is P (St, t); more precisely, the following holds:
(1) For any t0 < T , there exists a self-financing portfolio starting at time t0 with a value Πt0 =

P (St0 , t0) such that at any time t ∈ (t0, T ] its value, Πt, is at least as large as P (St, t).
Consequently, if the option is sold at t0 at a price, p̄, higher than P (St0 , t0), then the

seller can make a profit, p̄− P (St0 , t0), at time t0 and use P (St0 , t0) to form the above self-
financing portfolio, cashing it to pay the option obligation whenever the option is exercised,
making an additional profit Πτ − (E − Sτ )+ at the exercise time, τ .

(2) Define the optimal exercise time, τ∗, by

τ∗ := sup{t 6 T | Ss > B(s) ∀ s ∈ [t0, t)}.
Then τ∗ 6 T and Πτ∗ = (E − Sτ∗)+.

Consequently, if at time t0 the option can be bought at a price, p, lower than P (St0 , t0),
then the buyer can make the profit, P (St0 , t0) − p, at time t0 by short selling the above
portfolio at time t0 and clearing it at the optimal exercise time at which the payment,
(E − Sτ∗)+ = Πτ∗ , from the option is just enough to clear the short position.

Proof. The self-financing portfolio is maintained in each time interval (t, t + dt] with

∂P (S, t)
∂S

∣∣∣
S=St

shares of stock, and the remainder, Πt − St
P (St, t)

∂S
, in the bond.

The stochastic change, dΠt, of the value of the portfolio from t to t + dt can be calculated by

dΠt =
∂P (St, t)

∂S

{
dSt + DSt dt

}
+

{
Πt − St

∂P (St, t)
∂S

}
rdt.

Note that, by Itô’s Lemma,

dP (St, t) =
∂P (St, t)

∂S
dSt +

{∂P (St, t)
∂t

+
σ2S2

t

2
∂P (St, t)

∂S2

}
dt.

Taking the difference of dΠt and dP (St, t) we find that

d[Πt − P (St, t)] = r[Πt − P (St, t)]dt− L∗P (St, t)dt > r[Πt − P (St, t)]dt
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by the variational inequality. Thus,

Πt − P (St, t) > [Πt0 − P (St0 , t0)]e
r[t−t0] = 0 ∀ t ∈ [t0, T ].

This completes the proof. ¤

2.2. The Change of Variables. It is mathematically convenient to use the dimensionless quanti-
ties:

x := ln
S

E
, s :=

σ2

2
(T − t), k :=

2r

σ2
, ` :=

2D

σ2
, α := k − `− 1,

P (S, t) = E p(x, s) = E p
(

ln
S

E
,
σ2

2
(T − t)

)
, B(t) = Eeb(s).

In a typical financial situation we might have σ = 20% (year−1/2), T − t = 0.5 (year), with St

fluctuating in (40%E, 250%E). The resulting range of interest for the dimensionless variable (x, s)
would be x ∈ (−1, 1), s ∈ [0, 0.01].

With

p0(x) := max{1− ex, 0}, Lp := pxx + α px − kp,

the variational problem for (B,P ) is transformed to

max{Lp− ps, p0 − p} = 0 in R× (0,∞), p(·, 0) = p0;

b(s) := inf{x | p(x, s) > p0(x)} ∀ s > 0.
(2.3)

We shall call x = b(s) the free boundary and use the default extension b(0) := lims↘0 b(s).

2.3. The Main Results. The well-posedness, i.e., the existence of a unique solution (P, B) of (2.2)
follows from the standard theory of variational inequalities; see for example, [10, 14]. Here we are
concerned with the behavior of the free boundary (the optimal exercise boundary). We will give a
self-contained proof, of the C∞ regularity of the boundary, that focuses the presentation on the key
ingredients in the case of the classical American put option.

Theorem 1. There exists a unique solution of (2.3). In addition, b ∈ C∞((0,∞)) ∩ C([0,∞)).

As mentioned earlier, numerical experiments suggest that there is a breakdown of the convexity
of the early exercise boundary as the dividend rate, D, increases past the risk-free interest rate,
r. Figure 1 shows the loss of convexity as ε := ln(D/r) = ln(`/k) crosses zero. These numerics
were carried out using an integro-differential equation derived in §4. It is clear that at its onset
when 0 < D − r ¿ 1, the non-convex region occurs close to expiry. On the other hand, the formal
expansion of Wilmott et. al. [27, p121], for s ↘ 0,

b(s) = ln
r

D
− [A + o(1)]

√
s, A = 0.9034...,

does not capture this behavior. More specifically,

B′′(t) =
Eeb(s)σ4

4

[
b̈(s) + (ḃ(s))2

]

is positive for the above near-expiry asymptotics agreeing with the numerics in Figure 1 that the
boundary begins convex. To observe the loss of the convexity, more precise estimates are required.
In particular, we will prove

Theorem 2. When 0 < D − r ¿ 1, the optimal exercise boundary is not convex. More precisely,
when ε := ln(D/r) = ln(`/k) is positive and sufficiently small, neither S = B(t) nor x = b(s) is
convex. In particular, there exist a t̂ for which B′′(t̂) < 0 and hence b̈(ŝ) < 0, where

0 < ŝ 6 ε2

6| ln ε| and t̂ = T − 2ŝ

σ2
.
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Figure 1. Loss of Convexity as ε = ln(D/r) crosses zero
The figure on the left, in the original S, t variables, shows that the optimal free boundary is not
convex. Numerical accuracy is demonstrated by the overlap of the curves produced from 400,800,
and 1600 mesh points. The figure on the right shows the variation of the free boundary as ε
increases. Here z = b(0)− b(t); for ε < 0, all free boundaries are convex. For ε positive and small,
the free boundary loses its convexity near s = 0, i.e., near expiry.

The proof of Theorem 2 is given in §5. The intuition for the upper bound on ŝ, the location of
the non-convexity, comes from a formal argument giving

lim
ε→0

ŝ| ln ε|
ε2

=
1
8
.

See Figure 2.
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Figure 2. Time interval for which the free boundary is non-convex
The solid curves in the left figure are inflection points of the free boundary curves. The dashed
curve is the analytic estimate for the location of the non-convexity. The figure on the right shows
that when ε is large enough (> 0.4), the free boundary regains convexity, the teardrop region in
the ε− s domain indicating where the free boundary is concave.

In the course of this analysis, some of the estimates can be used to provide a rigorous proof of
the previously mentioned near-expiry expansion [27].
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Theorem 3. Assume that D > r. Let A = 0.903446597884.... Then

b(s) = ln
r

D
− [A + o(1)]

√
s, ḃ(s) = −A + o(1)

2
√

s
, b̈(s) =

A + o(1)
4s3/2

∀ s > 0

where lims↘0 o(1) = 0. Consequently, the inverse, s = s(z), of z = ln(D/r)− b(s) satisfies

s(z) =
z2

A2 + o(1)
, s′(z) =

2z

A2 + o(1)
, s′′(z) =

2
A2 + o(1)

∀ z > 0.

Note that the above asymptotic behavior implies that very near expiry, the optimal exercise
boundary begins convex. The location of the non-convex region occurs a little farther from expiry
near t̂ given in Theorem 2.

3. Regularity of The Free Boundary

3.1. Basic Properties of the Solution. Note that

Lp0(x) = δ(x) + (`ex − k)H(−x)

where H is the Heaviside function, H(z) = 1 for z > 0 and H(z) = 0 for z < 0, and δ(x) = H ′(x) is
the Delta function. It is critical here that Lp0 changes sign only once:

Lp0 > 0 in [b0,∞), Lp0 < 0 in (−∞, b0); b0 := min{0, ln(k/`)}.
This property implies that the free boundary in (2.3b) is well-defined. Indeed, for each s > 0,

p(x, s) > p0(x) ∀x > b(s), p(x, s) = p0(x) ∀x 6 b(s).

Later we shall show that b ∈ C∞((0,∞)), from which we can derive the following: for each s > 0,

p(b(s), s) = 1− eb(s),

px(b(s), s) = −eb(s),

ps(b(s), s) = 0,

pxx(b(s)±, s) = −eb(s) + ( 1
2 ± 1

2 )(k − `eb(s)),

psx(b(s)±, s) = ( 1
2 ± 1

2 )ḃ(s)(`eb(s) − k).

The first and second equations are a direct consequence of p(x, s) = p0(x) = 1 − ex for x 6
b(s). The equation ps(b(s), s) = 0 is derived by differentiating p(b(s), s) = p0(b(s)) and using
px(b(s), s) = p0x(b(s)). The value pxx(b(s)+, s) is obtained from the differential equation ps = Lp
and ps(b(s)±, s) = 0. Similarly, differentiating px(b(s)±, s) = p0x(b(s)) we obtain the expression for
psx(b(s)±, s).

To see the monotonicity of the free boundary b, it is useful to notice that q := ps satisfies the free
boundary problem





qs(x, s) = Lq(x, s) ∀x > b(s), s > 0,

q(x, s) = 0 ∀x 6 b(s), s > 0,

q(x, 0) = max{Lp0(x), 0} ∀x ∈ R, s = 0,

Π(b(s)) =
∫ s

0
qx(b(t), t)dt ∀ s > 0

(3.1)

where

Π(z) =
∫ z

∞
min{Lp0(x), 0}dx =

{
0 if z > b0,∫ z

b0
(`ex − k)dx if z < b0.

Here the last equation in (3.1) is a weak formulation of the free boundary condition

b(0) = b0, ḃ(s)[`eb(s) − k] = qx(b(s), s), b(s) 6 b0 ∀ s > 0.(3.2)
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Formally, p > p0 implies q(·, 0) = ps(·, 0) > 0. Since Lp0(x) < 0 when x < b0, one readily sees
that b(0) > b0. In the case b0 = 0, we have q(·, 0) = δ(x) so clearly b(0) 6 b0. In the case b0 < 0, we
have q(·, 0) > 0 in (b0, 0] so we also have b(0) 6 b0. Thus, we should have b(0) = b0. We denote

Qb = {(x, s) | s > 0, x > b(s)}.
Note that q > 0 on the parabolic boundary of Qb, so by the maximum principle and Hopf’s Lemma,
q > 0 in Qb and qx(b(s), s) > 0 for each s > 0. Thus,

ḃ(s)[`eb(s) − k] > 0, ḃ(s) < 0, `eb(s) − k < 0 ∀ s > 0.

We now turn to the proof of Theorem 1. Existence and uniqueness of weak solutions of (2.3)
follows from the standard theory of variational inequalities (see [14] and [10] for more details). The
key consideration here is the regularity. As remarked in [12], for the American put option, it is
convenient to carry out the analysis in terms of the function q := ps; i.e., using the free boundary
problem (3.1), for (q, b). This is a Stefan type free boundary problem which has been well-studied
(see, for example, [16, 18]). The existence of a smooth classical solution would be standard if the
free boundary condition is not degenerate; i.e., the coefficient of ḃ at s = 0 in (3.2) is not zero. We
shall treat the degeneracy that arises here in (3.2) by using the initial value b(0) = b0− ε for positive
ε and then sending ε ↘ 0. (Note that this ε is unrelated to ε := ln(`/k)).

3.2. The Bootstrap Argument. We begin with the bootstrap argument which shows that b ∈
C∞((0,∞)) if b ∈ Cγ((0,∞)) for some γ > 1/2.

For this, we denote D = {(x, t) | x > b(s), s > 0}. Suppose that b ∈ Cβ/2((0,∞)) for some β > 1
that is not an integer. Then by standard local regularity theory, e.g. the potential theory in [15],
the solution of qs = Lq in Qb with zero boundary value on x = b(s) has the regularity q ∈ Cβ,β/2(D)
and qx ∈ Cβ−1,(β−1)/2(D). Consequently, qx(b(·), ·) ∈ C(β−1)/2((0,∞)). Since `eb(s) − k < 0 for all
s > 0, the last equation in (3.1) can be differentiated to give ḃ[`eb − k] = qx(b, s), from which we
conclude that b ∈ C(β+1)/2((0,∞)). Thus, by induction, b ∈ C∞((0,∞)).

3.3. An Upper Bound for q. Let q0 be the solution of

q0s = Lq0 on R× (0,∞), q0(·, 0) = max{Lp0, 0}.
Then q0 > 0 on R× (0,∞) so by comparison, q 6 q0 on R× [0,∞).

For the subsequent analysis, we consider the function q̃0 := q0(x, t)eαx/2+(k+α2/4)t which satisfies
q̃0s = q̃0xx on R× (0,∞) with initial data δ(x) + eαx/2(`ex − k)H(−x)H(x− b0). Hence,

q̃0(x, s) =
e−x2/(4s)

√
4πs

+
∫ 0

b0

e−(x−y)2/(4s)

√
4πs

eαy/2(`ey − k)dy.

Note that ‖q̃(x, ·)‖L∞([0,∞)) is finite for every x 6= 0.

3.4. Long Time Behavior. Let (p∗(·), b∗) ∈ C1(R)× R be the solution of

p∗ = p0 on (−∞, b∗], p∗′′ + αp∗′ − kp∗ = 0 in (b∗,∞), p∗(∞) = 0.(3.3)

The solution is given by

p∗(x) := max
{

1− ex,
e−λ(x−b∗)

1 + λ

}
, b∗ := ln

λ

1 + λ
, λ :=

α +
√

α2 + 4k

2
.

One can use a comparison argument to show that p 6 p∗, b∗ 6 b. Since ps > 0 > ḃ, the
limt→∞(p(·, t), b(s)) exists and must be the solution of (3.3). Hence,

p(x, s) 6 p∗(x), b(0) > b(s) > b∗, lim
t→∞

(p(x, t), b(t)) = (p∗(x), b∗) ∀x ∈ R, s > 0.
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3.5. An Upper Bound for |ḃ|. Let η be any positive constant such that η > −b0. We define

M0 := max
x∈[b0,0]

∣∣∣d[eαx/2(`ex − k)]
dx

∣∣∣,

M(η) := max
{

M0, sup
t>0

q̃0(−η/2, t)
η/2

}
,(3.4)

bη(s) := min{−η, b(s)},
q1(x, s) := M(η) (x− bη(s))e−αx/2−(k+α2/4)s.

Note that bη is a continuous decreasing function. The following is the key to our analysis:

q1s − Lq1 = −M(η)[x− bη(s)]ḃη(s)e−αx/2−(k+α2/4)s > 0 ∀x > bη(s), s > 0.

Now we compare q1 with q on Q where Q = {(x, t) | b(s) < x < −η/2, s > 0}. Since q 6 q0 on
R × (0,∞) and q = 0 when x 6 b(s), our choice of M(η) implies that q1 > q on the parabolic
boundary of Q so q < q1 in Q.

Suppose b(s) 6 −η. Then q(b(s), s) = q1(b(s), s) = 0 and q(x, s) < q1(x, s) for x ∈ (b(s),−η/2].
Hence,

0 6 qx(b(s), s) 6 q1x(b(s), s) = M(η)e−αb(s)/2−(k+α2/4)s if b(s) 6 −η.

It then follows from the last equation in (3.1) or from (3.2) that

0 6 eαb(s)/2[`eb(s) − k]ḃ(s) 6 M(η)e−[k+α2/4]s if b(s) 6 −η.(3.5)

As b∗ < b(s) < b0 for all s > 0, for any δ > 0, by taking η = −b(δ), we see that b is Lipschitz
continuous on [δ,∞). Hence, b is locally Lipschitz on (0,∞), so by the bootstrap argument, we have
b ∈ C∞((0,∞)).

Remark 3.1. When ` > k, we have −b0 = ε := ln(`/k) > 0. Hence, we can set η = −b0 = ε in the
above analysis and use b∗ < b 6 b0 to derive that there exists a constant C > 0 such that

{
0 < [b(s)− b0]ḃ(s) 6 Ce−(k+α2/4)s ∀ s > 0,

0 6 q(x, s) 6 C[x− b(s)]e−(k+α2/4)s ∀ s > 0, x ∈ [b(s),−ε/2].
(3.6)

3.6. An Approximation. Once we have the a priori estimate, the existence will be standard.
There are many ways to do it. We find the following interesting. Let ε > 0 be a fixed small number.
We remove the degeneracy of the free boundary condition by requiring b(0) = b0 − ε. Hence, we
consider the following problem, for (qε, bε):





qε
s(x, s) = Lqε(x, s) ∀x > bε(s), s > 0,

qε(x, s) = 0 ∀x 6 bε(s), s > 0,

qε(x, 0) = max{Lp0(x), 0} ∀x ∈ R, s = 0,

Π(bε(s)) = Π(b0 − ε) +
∫ s

0
qx(b(t), t)dt ∀ s > 0.

(3.7)

This is a standard Stefan problem, for which the existence of a classical solution can be proven
as follows. We establish the existence of a solution in a time interval [0, h] for an arbitrary large h.
We define a function space

B =
{

b ∈ C1([0, h])
∣∣∣ b(0) = b0 − ε; 0 6 eαb/2[`eb − k]ḃ 6 M(ε− b0) in [0, h]

}

where M(·) is defined in (3.4). Clearly, B is a closed subset of C1([0, h]).
For each b ∈ B, we let q be the solution of the following initial–boundary value problem





qs(x, s) = Lq(x, s) ∀x > b(s), s ∈ (0, h],

q(b(s), s) = 0 ∀ s > 0,

q(x, 0) = max{Lp0(x), 0} ∀x > b0 − ε.
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This problem admits a unique classical solution q. As the boundary is C1, we see that q ∈
∩0<β<1C

2β,β(Qb \ ([b0, 0]× {0})). This implies qx(b(·), ·) ∈ ∩0<β<1/2C
β([0, h]).

From the solution, we define b̃ = T[b] by solving the ode

eαb̃(s)/2[`eb̃(s) − k]
db̃(s)
ds

= qx(b(s), s)eαb(s)/2 ∀ s ∈ (0, h], b̃(0) = b0 − ε.

Since q > 0 in Qb, we have qx(b(s), s) > 0. Hence, b̃ is well-defined and b̃(s) 6 b0− ε for all s ∈ [0, h].
We want to show that T has a fixed point in B. This fixed point is a solution of (3.7).

First of all, since ḃ 6 0, following the same line of proof as in the previous subsection, we find
that 0 6 q 6 q0 and 0 6 qx(b(s), s) 6 M(ε− b0)e−αb(s)/2−(k+α2/4)s. Hence,

0 6 eαb̃/2[`eb̃ − k] ˙̃b 6 M(ε− b0)e−(k+α2/4)s.

Thus, T maps B to itself. In addition {T[b] | b ∈ B} is a bounded set in C1+1/4([0, h]) which is a
compact subset of C1([0, h]). Hence, by the Schauder’s fixed point theorem, T admits a fixed point,
bε, in B. Extend the corresponding q by zero for x < bε and denoting it by qε, we see that (qε, bε) is
a classical solution of (3.7) in R× [0, h]. Since M(ε− b0) does not depend on h, we can let h →∞
to obtain a solution of (3.7) on R× (0,∞).

Remark 3.2. When α > 0, we may need extra care to prevent bε from being unbounded from below.
Since we know the limit b := limε↘0 bε is bounded from below by b∗, this technicality can be treated
by replacing eαb/2 by max{eαb/2, eαb∗/2}. We omit the details.

3.7. Monotonicity of the Approximation Sequence. Let 0 < ε1 < ε2. Then bε2(0) < bε1(0).
We claim that bε2 < bε1 on [0,∞). Suppose this is not true. Then t∗ := sup{t > 0 | bε2 <
bε1 in [0, t]} is finite and we have bε2 < bε1 in [0, t∗) and bε2(t∗) = bε1(t∗).

Now by comparison on D = {(x, t) | x > bε1(s), s ∈ [0, t∗]} we see that qε2 > qε1 on D. Since
bε1 is C1, we obtain from Hopf’s lemma that qε2

x (bε1(t∗), t∗) > qε1
x (bε1(t∗), t∗). Consequently, since

bε1(t∗) = bε2(t∗), we find from the boundary condition that

−ḃε2(t∗) =
qε2
x (bε1(t∗), t∗)
k − ebε1 (t∗) >

qε1
x (bε1(t∗), t∗)
k − ebε1 (t∗) = −ḃε1(t∗).

That is (bε2 − bε1)′|s=t∗ < 0. But this implies bε2(s)− bε1(s) > 0 when 0 < t∗− s ¿ 1, contradicting
the definition of t∗. Hence, we must have bε2 < bε1 on [0,∞). Consequently, by comparison, we have
qε1 < qε2 in Qbε1 .

3.8. The Limit of the Approximation Sequence. Now we define (q, b) = limε↘0(qε, bε). We
shall show that (q, b) solves (3.1) and b ∈ C∞((0,∞)) ∩ C([0,∞)).

First of all, q ∈ C∞(Qb) and qs = Lq in Qb := {(x, t) | s > 0, x > b(s)} = ∩ε>0Qbε .
Next we establish the regularity of b. As the limit of a sequence of decreasing functions, b is also

decreasing. Next we claim that b(s) < b0 for every s > 0. Indeed, if this is not true, then we have
b(s) = b0 for all s ∈ [0, δ] for some δ > 0. Note that for the ε problem, integrating qε

s = Lqε over
Qbε we have the following identity, for t2 > t1 > 0,
∫

R
qε(x, t2)dx−

∫

R
qε(x, t1)dx + k

∫ t2

t1

∫

R
qε(x, t)dxdt = −

∫ t2

t1

qε
x(bε(t), t)dt = Π(bε(t1))−Π(bε(t2).

Sending ε ↘ 0 and using Lebesgue’s dominated theorem we obtain
∫

R
q(x, t2)−

∫

R
q(x, t1)dx + k

∫ t2

t1

∫

R
q(x, t)dxdt = Π(b(t1)−Π(b(t2)) ∀ t2 > t1 > 0.

Now if b ≡ b0 on [0, δ], we can integrate qs = Lq over (0,∞)× (δ/2, δ) to derive
∫ δ

δ/2

qx(b0, t)dt = Π(b(δ)−Π(b(δ/2)) = 0,
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which is impossible since Hopf’s maximum principle implies that qx(b0, s) > 0 for each s ∈ (0, δ). In
conclusion, b(s) < b0 for every s > 0.

Now let η > −b0 be any small positive constant. Passing the estimate of ḃε to the limit we find that
(3.5) holds. This implies that b is Lipschitz continuous on [δ,∞) where δ := inf{s > 0 | b(s) < −η}.
A bootstrap argument shows that b ∈ C∞((δ,∞)). Now we can use (qε, bε) → (q, b) in the needed
norm to conclude that q(b(s), s) = 0 and qx(b(s), s) = ḃ[`eb(s) − k] for all s ∈ (δ,∞). Sending
η ↘ −b0, we must have δ → 0 since b(s) < b0 for each s > 0. Thus, b ∈ C∞((0,∞)) and (q, s) is a
solution of (3.1).

Finally, let δε := inf{s > 0 | bε(s) > b0 − 2ε}. Then δε ∈ (0,∞] and b(s) > bε > b0 − 2ε for all
s ∈ (0, δε). Hence, lims↘0 b(s) > b0 − 2ε. Sending ε ↘ 0 we find lims↘0 b(s) > b0. As b(s) < b0 for
s > 0, we conclude that lims→0 b(s) = b0, so b ∈ C([0,∞)).

3.9. Recovering p from q. Once we have a classical solution of (q, b) of (3.1), we can define

p(x, s) := p0(x) +
∫ s

0

q(x, t)dt ∀x ∈ R, t > 0.

Since q(x, t) = 0 for x 6 b(t) and since ḃ < 0, we see that q = 0 on (−∞, b(s)] × [0, s] for each
s > 0. Hence, p(x, s) ≡ p0(x) when x 6 b(s) and px(b(s), s) = p0x(b(s)) for each s > 0. Also, ps = q
on R× (0,∞). In addition, when x > b0,

Lp(x, s) = Lp0(x) +
∫ s

0

Lq(x, t)dt = Lp0 +
∫ s

0

qt(s, t)dt = q(x, s),

since q(·, 0) = max{Lp0, 0} = Lp0 when x > b0.
When x ∈ (b(s), b0), write s = ŝ(x) the inverse of x = b(s). Then

p(x, t) = p0(x) +
∫ s

ŝ(x)

q(x, t)dt.

Consequently,

Lp(x, s) = Lp0(x)− ŝ′(x)qx(x, ŝ(x)) +
∫ s

ŝ(x)

Lq(x, t)dt

= Lp0(x)− 1
ḃ(ŝ(x))

qx(x, ŝ(x)) + q(x, s) = q(x, s) = ps.

Thus, (p, s) is a solution of the variational inequality (2.3).
Since the solution of variational inequality (2.3) is unique [10, 14], the assertion of Theorem 1

thus follows.

Remark 3.3. Let pε := p0 +
∫ t

0
qε(x, t)dt. Then (pε, bε) does not solve the original problem; one

finds that pε
s − Lpε = −Lp0(x) in (b0 − ε, b0)× (0,∞). Indeed, as ε ↘ 0, pε ↘ p and bε ↗ b.

4. Integral Formulation

Introduce φ(x, s) = p(x, s)− p0(x). Then

φs − Lφ(x, s) = H(x− b(s))Lp0(x) on R× (0,∞), φ(·, 0) = 0 on R× {0}.
Hence, we can use Green’s formula to write

φ(x, s) =
∫ s

0

∫ ∞

b(s−t)

Γ(x− y, t)Lp0(y)dydt ∀ (x, s) ∈ R× [0,∞),

where Γ is the fundamental solution given by

Γ(x, s) := K(x + αs, s)e−ks, K(z, t) := (4πt)−1/2e−z2/4t.
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We therefore obtain the following, for every (x, s) ∈ R× (0,∞),

φ(x, s) =
∫ s

0

Γ(x, t)dt +
∫ s

0

∫ 0

b(s−t)

[`ey − k]Γ(x− y, t)dydt,

φx(x, s) =
∫ s

0

Γx(x, t)dt +
∫ s

0

∫ 0

b(s−t)

[`ey − k]Γx(x− y, t)dydt,

φs(x, s) = Γ(x, s) +
∫ 0

b(0)

[`ey − k]Γ(x− y, s)dy −
∫ s

0

ḃ(s− t)[`eb(s−t) − k]Γ(x− b(s− t), t) dt

= Γ(x, s) +
∫ 0

b0

[`ey − k]Γ(x− y, s)dy −
∫ s

0

ḃ(t)[`eb(t) − k]Γ(x− b(t), s− t) dt.

Also, for every s > 0 and x 6= b(s),

φsx(x, s) = Γx(x, s) +
∫ 0

b0

[`ey − k]Γx(x− y, s)dy −
∫ s

0

ḃ(t)[`eb(t) − k]Γx(x− b(t), s− t) dt.

Evaluating these expressions at x = b(s) we then obtain the following.

Theorem 4. Let (b, p) be the solution of the variational inequality (2.3). Then b satisfies the
following integral identities:

0 =
∫ s

0

Γ(b(s), t) dt +
∫ s

0

∫ 0

b(s−t)

[`ey − k]Γ(b(s)− y, t)dydt,(4.1)

0 =
∫ s

0

Γx(b(s), t)dt +
∫ s

0

∫ 0

b(s−t)

[`ey − k]Γx(b(s)− y, t)dydt,(4.2)

0 = Γ(b(s), s) +
∫ 0

b0

[`ey − k]Γ(b(s)− y, s)dy(4.3)

−
∫ s

0

ḃ(t)[`eb(t) − k]Γ(b(s)− b(t), s− t) dt,

ḃ(s)[`eb(s) − k] = 2Γx(b(s), s) + 2
∫ 0

b0

[`ey − k]Γx(b(s)− y, s)dy(4.4)

−2
∫ t

0

ḃ(t)[`eb(t) − k]Γx(b(s)− b(t), s− t) dt.

Also, for any θ ∈ R,

ḃ(s)[`eb(s) − k] =
(
θ − b(s)

s

)
Γ(b(s), s) +

∫ 0

b0

[`ey − k]
(
θ − b(s)− y

s

)
Γ(b(s)− y, s)dy(4.5)

−
∫ s

0

ḃ(t)[`eb(t) − k]
(
θ − b(s)− b(t)

s− t

)
Γ(b(s)− b(t), s− t) dt .

With the particular choice of θ = 0 and θ = [b(s)− b0]/s we have

ḃ(s)[`eb(s) − k] =
−b(s)Γ(b(s), s)

s
+

1
s

∫ 0

b0

[`ey − k][y − b(s)]Γ(b(s)− y, s)dy(4.6)

+
∫ s

0

ḃ(t)[eb(t)−b0 − 1]
b(s)− b(t)

s− t
Γ(b(s)− b(t), s− t) dt,

ḃ(s)[`eb(s) − k] =
−b0Γ(b(s), s)

s
+

1
s

∫ 0

b0

[`ey − k][y − b0]Γ(b(s)− y, s)dy(4.7)

−
∫ s

0

ḃ(t)[`eb(t) − k]
(b(s)− b0

s
− b(s)− b(t)

s− t

)
Γ(b(s)− b(t), s− t) dt.
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Here (4.5) is obtained by adding a θ + α multiple of (4.3) to (4.4) and using

Γx(x, s) =
−x− αs

2s
Γ(x, s).

We shall use (4.6) and (4.7) for our analysis. For numerical simulation we use (4.5) with θ =
(b(s)− b0)/(2s), since a formal asymptotic expansion suggests that for ` > k

b(s)− b0 ∝
√

s, ḃ(s) ∼ b(s)− b0

2s
when 0 < s ¿ 1.

Hence, taking θ = (b(s) − b0)/(2s) in (4.5) removes the singularity of the last integral in (4.5) in a
natural way.

5. Non-Convexity

From now on we assume that ` > k. We shall prove Theorem 2.

5.1. The Idea. It is convenient to visualize graphs in the first quadrant. Hence, we introduce

z(s) = b0 − b(s) = −ε− b(s) ∀ s > 0.

Since z′(s) > 0 for all s > 0, z = z(s) admits an inverse, which we denote by s = s(z).

We can rewrite (4.6) and (4.7) as follows. Note that `ey − k = k[ey−b0 − 1]. Hence we can use
the change of variable ỹ = y − b0 in the first integral and the change of variable y = b0 − b(t) in the
second integral in (4.6) and (4.7) to obtain

[1− e−z]
dz

ds
= I1 + I2 − I3 = J1 + J2 + J3(5.1)

where

I1 :=
(ε + z)Γ(−ε− z, s)

k s
,

I2 :=
1
s

∫ ε

0

[ey − 1][z + y]Γ(−y − z, s)dy,

I3 :=
∫ z

0

[1− e−y]
( z − y

s(z)− s(y)

)
Γ(y − z, s(z)− s(y)) dy,

J1 :=
ε Γ(−ε− z, s)

k s
,

J2 :=
1
s

∫ ε

0

y[ey − 1]Γ(−z − y, s)dy,

J3 :=
∫ z

0

[1− e−y]
( z

s(z)
− z − y

s(z)− s(y)

)
Γ(y − z, s(z)− s(y)) dy.

Since the coefficient of dz/ds at s = 0 is zero, it may be better to consider the inverse function,
which is smooth on [0,∞). Hence we write (5.1) as

ds

dz
=

1− e−z

I1 + I2 − I3
=

1− e−z

J1 + J2 + J3
.(5.2)

Recall that

B(t) = Eeb(s) = Ee−ε−z(s)
∣∣∣
s= σ2

2 (T−t)
.
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It follows that
4eε

σ4E

d2B(t)
d2t

=
d2e−z(s)

ds2
= −dz

ds

d

dz

( 1
ez ds

dz

)

= e−2z
(dz

ds

)3 d

dz

(
ez ds

dz

)

= e−z
(dz

ds

)3(d2s

dz2
+

ds

dz

)
.

Thus, to show that B is not convex (B′′(t) > 0 not true), we need only show that ezds/dz is not
an increasing function. For this, we compare the values of ezds/dz at two points:

z1 := z(s1), s1 :=
ε2

[8 + ν] | ln ε| , z2 := z(s2), s2 :=
ε2

[8− ν] | ln ε|(5.3)

where ν can be any constant in (0, 8). For definiteness, we fix ν = 2.
For convenience, we introduce

z∗ := sup
{

z > 0
∣∣∣ d2s

dz2
+

ds

dz
> 0 in (0, z]

}
, s∗ := s(z∗).(5.4)

Note that the optimal exercise boundary is convex if and only if s∗ = ∞. In the sequel, we shall
show that when ε is small, s∗ < s2; that is, the convexity changes at time before s2.

We remark that the convexity of s(·) implies the convexity of B(·) since B′′ is proportional to
s′′ + s′ with s′ > 0. Hence, if B(·) is not convex, then neither is s(·).

In the sequel, ε = ln(D/r) = ln(`/k) is a small positive constant. We use the standard notation
o(1) to denote a generic small quantity that approaches zero as ε ↘ 0.

5.2. The General Lower Bound of ds/dz. We shall utilize the first equation in (5.2) to estimate
the positive lower bound of ds/dz. The key here is that all terms I1, I2 and I3 are positive, so we
have the basic estimate

(1− e−z)
dz

ds
6 I1 + I2,

ds

dz
> 1− e−z

I1 + I2
.

We can estimate I2 as follows. Notice that α = k − `− 1 < −1. Hence, when 0 6 y 6 z,

Γ(−y − z, s) =
e−(y+z)2/(4s)+[y+z]α/2−(k+α2/4)s

√
4πs

6 e−(y+z)2/(4s)−y−(k+α2/4)s

√
4πs

.

It then follows, using 0 6 ey − 1 6 yey 6 1
2 (y + z)ey, that

I2 :=
1
s

∫ ε

0

[ey − 1][z + y]Γ(−y − z, s)dy

6 e−(k+α2/4)s

4
√

πs3

∫ ε

0

(y + z)2e−(y+z)2/(4s)dy =
e−(k+α2/4)s

4
√

π

∫ (z+ε)/
√

s

z/
√

s

η2e−η2/4dη

6 e−(k+α2/4)s

4
√

π

∫ ∞

0

η2e−η2/4dη =
e−(k+α2/4)s

2
6 1

2
∀ s > 0.

Next, we consider

I1 :=
(ε + z)Γ(−ε− z, s)

k s
=

(ε + z)e−(ε+z−αs)2/(4s)−ks

√
4πk2s3

.

Since α < 0, we see that

∂ I1

∂ z
=

I1

ε + z

{
1− (ε + z)(ε + z − αs)

2s

}
< 0 when s <

ε2

2
.

It then follows that when s ∈ (0, ε2/2],

I1 6 ε Γ(−ε, s)
k s

6 ε e−ε2/(4s)

√
4πk2s3

.
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Combing these estimates, we then obtain

ds

dz
=

1− e−z

I1 + I2 − I3
> 1− e−z

I1 + I2
> z e−z

ε e−ε2/(4s)√
4πk2s3 + 1

2

∀ s ∈
[
0,

ε2

2

]
.(5.5)

5.3. The Lower Bound of ds/dz on [0, s∗2] where s∗2 = min{s2, s
∗}.

(1) First we consider s ∈ [0, s1] where s1 := ε2/(10| ln ε|), 0 < ε ¿ 1. It is easy to verify that
I1 = o(1) when s ∈ (0, s1], so that

ds

dz
> ze−z

o(1) + 1
2

, s > z2e−z

1 + o(1)
∀ z ∈ [0, z1].(5.6)

This also implies that when s ∈ [0, s1], z(s) = o(ε). In particular, z1 := z(s1) = o(ε).

To extend the estimate beyond s1, we notice that s′′+s′ > 0 implies that (ezs′)′ > 0 so integrating
it over [x, x + h] ⊂ (0, z∗] we obtain

s′(x + h) > e−hs′(x) ∀ 0 < x < x + h 6 z∗.(5.7)

(2) With z1 := z(s1), s∗ := s(z∗), s∗2 := min{s2, s
∗}, and z∗2 := z(s∗2), we claim that z∗2 < 2z1.

Suppose not. Then we take h = z1 and integrate (5.7) over [0, z1] to obtain s(2z1) − s(z1) >
e−z1s(z1), so s(2z1) > [1 + e−z1 ]s(z1) = [2 − o(ε)]s(z1). However, since s2 = 5

3s1, we obtain
s(2z1) > [2 − o(ε)]s1 > s2 > s(z∗2), contradicting the assumption z∗2 > 2z1. Hence, we must have
z∗2 < 2z1.

(3) We now consider the lower bound of ds/dz in [s1, s
∗
2]. From (5.7) and (5.6) we derive, for any

z ∈ [z1, z
∗
2 ] ⊂ [z1, 2z1],

ds(z)
dz

> e−z∗2
ds(z1)

dz
> e−z∗2 z1e

−z1

o(1) + 1
2

=
e−z1−z∗2 z1

[o(1) + 1
2 ]z

z > z

2
.

In conclusion, when ε is positive and sufficiently small,

ds(z)
dz

> z

2
, s(z) > z2

4
, s(z)− s(y) > z2 − y2

4
∀ 0 6 y 6 z 6 z∗2 .(5.8)

5.4. Upper Bounds of ds/dz. The optimal exercising boundary is convex if and only if s∗ = ∞.
In what follows, we shall show that when ε is small positive, s∗ < s2. To do this, we show that the
value ezds/dz at z2 is much smaller than at z1, so it cannot be an increasing function and therefore
the free boundary cannot be convex. In (5.8), we already have a lower bound of ezdz/ds at z1 if
s∗ > s1 (if s∗ < s1, the non-convexity is established). Here what we need is an upper bound at
z = z2. The basic idea is to use the second equation in (5.2).

5.4.1. Estimate of J3. In the case s′′ > 0, it is easy to show that J3 is positive. Under the weaker
condition s′′ + s′ > 0 in (0, s∗], we shall show that J3 is almost positive. For this purpose, we write

J3 =
∫ z

0

[1− e−y]R(z, y)Γ(y − z, s(z)− s(y)) dy

where

R(z, y) :=
z

s(z)
− z − y

s(z)− s(y)
=

ys(z)− zs(y)
s(z)[s(z)− s(y)]

=
zy

s(z)[s(z)− s(y)]

(s(z)
z

− s(y)
y

)

=
zy

s(z)[s(z)− s(y)]

∫ z

y

s′(x)x− s(x)
x2

dx

=
zy

s(z)[s(z)− s(y)]

∫ z

y

∫ x

0
x̂s′′(x̂)dx̂

x2
dx.
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Since s′′ + s′ > 0 in (0, z∗], when x̂ ∈ (0, z∗], we have s′′(x̂) > −s′(x̂). Also s′(x̂) 6 ex−x̂s′(x) 6
ezs′(x) when 0 < x̂ 6 x 6 z 6 z∗. Hence s′′(x̂) > −s′(x̂) > −ezs′(x). Thus, when 0 < y < z < z∗2 ,

R(z, y) > − zy

s(z)[s(z)− s(y)]

∫ z

y

∫ x

0
x̂ezs′(x)dx̂

x2
dx = − zyez

2 s(z)
.

Next using (5.8) we derive that

Γ(y − z, s(z)− s(y)) <
1√

4π[s(z)− s(y)]
6 1√

π[z2 − y2]
.

Hence,

J3 =
∫ z

0

[1− e−y]R(z, y)Γ(y − z, s(z)− s(y)) dy

> −
∫ z

0

y
zyez

2 s(z)
1√

π(z2 − y2)
dy = −

√
πz3ez

8 s(z)
> −z ∀ z ∈ (0, z∗2 ].

5.4.2. Estimate of J2. One can estimate the lower bound of J2 as follows:

J2 =
1
s

∫ ε

0

y[ey − 1]Γ(−z − y, s)dy > eαz−(k+α2/4)s

√
4πs3

∫ ε

0

y2e−(z+y)2/(4s)dy

=
eαz−(k+α2/4)s

√
4π

∫ (z+ε)/
√

s

z/
√

s

e−η2/4dη.

In view of (5.8), we see that when s ∈ (0, s∗2], we have

J2 > eo(ε)

√
4π

∫ ε/
√

s

2

e−η2/4dη > 1
4

∫ 3

2

e−η2/4dη := c > 0.

It then follows that

J2 + J3 > c− z > 0 ∀ s ∈ (0, s∗2] ( ⇔ ∀ z ∈ (0, z∗2 ]).

5.5. Completion of the Proof of Theorem 2. Now suppose z∗ > z2. Then z∗2 = z2 and s∗2 = s2.
Hence we can use the second equation in (5.2) to conclude that

1
z

ds(z)
dz

∣∣∣
z=z2

=
1− e−z

z

1
J1 + J2 + J3

6 1
J1

=
k

ε

√
4πs3e(ε+z(s)−αs)2/(4s)+ks

∣∣∣
s= ε2

−6 ln ε

6 ε1/4.

In comparing with (5.8), we see that

ez2
ds(z2)

dz
− ez1

ds(z1)
dz

6 z2e
z2ε1/4 − 1

2
ez1z1 6 2z1e

2z1ε1/4 − ez1z1

2
< 0.

This implies that ezds(z)/dz is not an increasing function on [z1, z2]. Consequently, we must have
z∗ < z2. This completes the proof of Theorem 2.

6. Expansion Near Expiry

6.1. A Formal Expansion. In [27], the ideas were presented for obtaining a formal expansion for
the leading order behavior, as s ↘ 0. Here we extend these ideas to a full expansion. Recall that
φ := p− p0 satisfies φs −Lφ = δ(x) + k[ex−b0 − 1]H(x− b(t))H(−x), with zero initial value. When
ε = −b0 = ln(`/k) > 0, the Delta function will not interfere much with the solution near (b0, 0).
Hence, we expect the following expansion

φ(x, s) = Φ(ξ, s)
∣∣∣
ξ=

x−b(0)√
s

, Φ(ξ, s) ∼ s
∞∑

n=1

φn(ξ)sn/2, b(s) ∼ b0 +
∞∑

n=1

Ansn/2.



AMERICAN PUT OPTION 15

Note that Φ satisfies

Φs − ξ

2s
Φξ − 1

s
Φξξ =

α√
s
Φξ − kΦ + k

∞∑
n=1

ξnsn/2

n!
∀ ξ ∈

(b(s) + ε√
s

,
ε√
s

)
, s > 0.

This leads to the following

Lnφn =
k ξn

n!
+ αφn−1 − kφn−2 ∀ ξ ∈ (A1,∞)

where

Lnψ :=
(
1 +

n

2
− ξ

2
d

dξ
− d2

dξ2

)
ψ.

Here we have used the extension φ0 = φ−1 ≡ 0.
The boundary conditions for φn and the unknown An will be derived from

0 = φ(b(s), s) = Φ(ξ(s), s), 0 = φx(b(s), s) = s−1/2Φξ(ξ(s), s),

ξ(s) = [b(s)− b0]s−1/2 ∼ A1 +
∞∑

n=2

Ansn−1/2.

Using the asymptotic expansion, we have

0 ∼
∞∑

n=1

sn/2φn

(
A1 +

∞∑
m=2

Ams(m−1)/2
)

∼
∞∑

n=1

sn/2
∞∑

i=0

φ
(i)
n (A1)

i!

( ∞∑
m=2

Ams(m−1)/2
)i

∼ φ1(A1)s1/2 + [φ2(A1) + φ′1(A1)A2]s +
∞∑

n=3

[φn(A1) + φ′1(A1)An + · · · ]sn/2

0 ∼
∞∑

n=1

sn/2φ′n
(
A1 +

∞∑
m=2

Ams(m−1)/2
)

∼ φ′1(A1)s1/2 + [φ′2(A1) + φ′′1(A1)A2]s +
∞∑

n=3

[φ′n(A1) + φ′′1(A1)An + · · · ]sn/2.

Hence, we obtain the boundary conditions and the free boundary conditions

φ1(A1) = 0, φ′1(A1) = 0, φ1(ξ) = O(ξ) as ξ →∞,

φ2(A1) = 0, φ′2(A1) + φ′′1(A1)A2 = 0, φ2(ξ) = O(ξ2) as ξ →∞,

φn(A1) = an−1, φ′n(A1) + φ′′1(A1)An = bn−1, φn(ξ) = O(ξn) as ξ →∞
where am, bm are constants depending only expansions of order up to m.

For the homogeneous equation Lnψ = 0, one can verify that the following are two linear inde-
pendent solutions:

ψn(ξ) =
∫ ∞

ξ

(η − ξ)n+2e−η2/4dη, ψ̃n(ξ) =
∫

R
(η − ξ)n+2e−η2/4dη.

Here ψ̃n is a polynomial of degree n + 2. It is easy to verify that

φ1(ξ) = k
{

ξ − A1ψ1(ξ)
ψ1(A1)

}

where A1 is the solution of the transcendental equation
∫ ∞

A1

(η −A1)2(η + 2A1)e−η2/4dη = 0 ⇒ A1 = −0.9034465978843...(6.1)
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6.2. An Alternative Formal Derivation. We can also use the first or second equation in (5.2) to
derive the asymptotic behavior. Assume that 0 < s < ε3. Also assume that z(s) = [A + O(

√
s)]
√

s.
Then one finds J1 = O(e−ε2/(4s)) can be neglected in the expansion for small s. Also,

J2 =
1√
4π

∫ ∞

A

(A− η)2e−η2/4dη + O(z).

For J3, one uses the change of variable

η =
(z − y)√

s(z)− s(y)
≈ A

√
z − y

z + y
.

Then one derives that

J3 =
A2

√
4π

∫ A

0

(A2 − η2

A2 + η2

)2

e−η2/4dη + O(z).

Thus the differential equation (5.2) gives the following equation for A:

A2 =
1√
π

∫ ∞

A

(A− η)2e−η2/4dη +
A2

√
π

∫ A

0

(A2 − η2

A2 + ζ2

)2

e−η2/4dη

=⇒ A = 0.9034465978843....

Numerically it is evident that A = −A1 and is precisely the value obtained in [27].

6.3. Proof of Theorem 3. The leading order expansion can be made rigorous. Instead of consid-
ering the premium φ = p− p0, we consider the rate, q = ps = φs, of the premium change. We study
the blow-up family {qL, bL}L>0 defined by

qL(x, s) := L q(b0 + L−1x, L−2s), bL(s) = L [b(L−2s)− b0 ].

Information obtained from bL will be cycled back to b through the identity

b(sθ) = b0 +
√

s bL(θ)
∣∣∣
L=1/

√
s

∀ θ ∈
[1
2
, 2

]
, s > 0.(6.2)

We shall show that limL→∞ bL(θ) = A1

√
θ in C2([δ, h]) for any h > δ > 0.

For each L > 0, (qL, bL) satisfies




qL
s = qL

xx + αL−1qL
x − kL−2qL ∀x > bL(s), s > 0,

qL(x, s) = 0 ∀x 6 bL(s), s > 0,

kL[eL−1bL(s) − 1]ḃL(s) = qL
x (bL(s), s) ∀ s > 0,

qL(x, 0) = δ(x− εL) + k max{ ex/L−1
L , 0} ∀x ∈ R.

From (3.6) we derive that

0 < bL(s) ḃL(s) 6 C, 0 > bL(s) > −
√

2Cs ∀ s > 0,

0 6 qL(x, s) = Lq(b0 + xL−1, sL−2) 6 LC{b0 + xL−1 − b(L−2s)}
= C[x− bL(s)] 6 C[x +

√
2Cs] ∀ s > 0, x ∈ [bL(s), εL/2].

Since the bounds of the above estimates for qL and bL are independent of L, one can show that
{(qL, bL)}L>1 is locally compact and we can select a subsequence along which (qL, bL) approaches
a limit, (Ψ, ζ). The limit satisfies




Ψs = Ψxx ∀x > ζ(s), s > 0,

Ψ(x, s) = 0, ∀x 6 ζ(s), s > 0,

kζ(s)ζ̇(s) = Ψx(ζ(s), s) ∀ s > 0,

Ψ(x, 0) = k max{0, x} ∀x ∈ R,

0 6 Ψ(x, s) 6 C[x− ζ(s)] ∀x > ζ(s), s > 0.

Since the solution is unbounded, the last condition imposes a constraint on the growth of the solution.
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This problem admits a unique solution and the solution is self-similar, given by

ζ(s) = A1

√
s ∀ s > 0,

Ψ(x, s) = k
(
x−

A1
√

s
∫∞

x/
√

s
(η − x√

s
)e−η2/4dη

∫∞
A1

(η −A1)e−η2/4

)
∀x > ζ(s), s > 0,

where A1 is the solution of the equation

1 +
A1

∫∞
A1

e−η2/4dη∫∞
A1

(η −A1)e−η2/4dη
=

A2
1

2
.

It is easy to verify that this equation is equivalent to (6.1).
Once we know the uniqueness of the limit, we then know that the whole sequence (qL, bL) con-

verges. In addition, by compactness, limL→∞ bL = ζ in C2([1/2, 2]). Using (6.2) and its differentia-
tion with respective θ, we obtain the assertion of Theorem 3. This completes the proof. ¤
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