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nnovation researchers have known for some time that a new information technology may

be widely acquired, but then only sparsely deployed among acquiring firms. When this

happens, the observed pattern of cumulative adoptions will vary depending on which event
in the assimilation process (i.e., acquisition or deployment) is treated as the adoption event.
Instead of mirroring one another, a widening gap—termed here an assimilation gap—will exist
between the cumulative adoption curves associated with the alternatively conceived adoption
events. When a pronounced assimilation gap exists, the common practice of using cumulative
purchases or acquisitions as the basis for diffusion modeling can present an illusory picture
of the diffusion process—leading to potentially erroneous judgments about the robustness of
the diffusion process already observed, and of the technology’s future prospects. Researchers
may draw inappropriate theoretical inferences about the forces driving diffusion. Practitioners
may commit to a technology based on a belief that pervasive adoption is inevitable, when it
is not.

This study introduces the assimilation gap concept, and develops a general operational
measure derived from the difference between the cumulative acquisition and deployment
patterns. It describes how two characteristics—increasing returns to adoption and knowledge
barriers impeding adoption—separately and in combination may serve to predispose a tech-
nology to exhibit a pronounced gap. It develops techniques for measuring assimilation gaps,
for establishing whether two gaps are significantly different from each other, and for estab-
lishing whether a particular gap is absolutely large enough to be of substantive interest. Fi-
nally, it demonstrates these techniques in an analysis of adoption data for three prominent
innovations in software process technology—relational database management systems (RDBs),
general purpose fourth generation languages (4GLs), and computer aided software engineer-
ing tools (CASE). The analysis confirmed that assimilation gaps can be sensibly measured,
and that their measured size is largely consistent with a priori expectations and recent research
results. A very pronounced gap was found for CASE, while more moderate—though still
significant—gaps were found for RDBs and 4GLs.

These results have the immediate implication that, where the possibility of a substantial
assimilation gap exists, the time of deployment should be captured instead of, or in addition
to, time of acquisition as the basis for diffusion modeling. More generally, the results suggest
that observers be guarded about concluding, based on sales data, that an innovation is destined
to become widely used. In addition, by providing the ability to analyze and compare assimi-
lation gaps, this study provides an analytic foundation for future research on why assimilation
gaps occur, and what might be done to reduce them.

(Assimilation Gap; Software Process Innovation; Adoption; Deployment; Diffusion Modeling)

1047-7047 /99/1003 /0255$05.00
Copyright @{999,/1“%‘/9 for Oi,aﬁom Research INPORMATION SysTEMS RESEARCHE/ Vol. 10, No. 3, September 1999

and the Management Sciences pp 255-275

Copyright © 1999. All rights reserved.



FICHMAN AND KEMERER
The Iilusory Diffusion of Innovation

1. Introduction

For innovations in information technology to have a
positive impact on quality and productivity, they must
actually be deployed. Yet, innovation researchers have
known for some time that a new technology may be
introduced amid great enthusiasm and enjoy wide-
spread initial acquisition, but nevertheless still fail to
be thoroughly deployed among many acquiring firms.
Liker et al. report that Computer Aided Design (CAD)
technologies had achieved unusually rapid market
penetration in the 1980s, yet, as late as 1992 “true
CAD/CAM [utilization was] still quite rare” (Liker et
al. 1992, p. 75) Cooper and Zmud, in a study of mate-
rial requirements planning (MRP), report that, while
73% of surveyed companies were using MRP, only
27% of respondents had progressed beyond Class C
MRP implementation, a relatively low level of utili-
zation (Cooper and Zmud 1990). Eveland and
Tornatzky, in describing the fate of machine vision sys-
tems (a popular innovation introduced in the late
1970s) observe that: “Many plants simply gave up.
Some large, and expensive machine vision systems
were ‘de-installed.” Automation consultants, in visits
to plants, found unused machine vision systems sitting
in boxes, relics of failed deployment” (Eveland and
Tornatzky 1990, p. 123).

These examples illustrate the following basicinsight:
widespread acquisition of an innovation need not be
followed by widespread deployment and use by ac-
quiring organizations. While the implications of this
insight have been incorporated into some of the more
recent studies focusing on the antecedents of organi-
zational innovation (Meyer and Goes 1988, Cooper and
Zmud 1990), there has not been a comparable recog-
nition by researchers engaged in modeling macro-level
patterns of diffusion, even though the implications for
diffusion modeling are arguably equally important.

Diffusion modeling studies are concerned with un-
derstanding the patterns innovations follow as they
spread across a population of potential adopters over
time. A typical approach is to define adoption as the
purchase or physical acquisition of the innovation, and
then to fit a times series of observed cumulative adop-
tion counts or percentages to some functional form,
such as the logistic distribution (Mahajan and Peterson
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1985). Some studies seek to infer support for alterna-
tive theories of diffusion based on the observed pattern
of adoption for a particular innovation (Brancheau and
Wetherbe 1990, Gurbaxani 1990, Gurbaxani and
Mendelson 1990). Others compare multiple innova-
tions, seeking to explain why some innovations diffuse
more rapidly and widely than others (Mansfield 1993).
Still others have a more applied focus and seek to make
predictions about the future course of innovation for a
technology (Mahajan et al. 1990).

When it can be safely assumed that later events in
the process of intraorganizational assimilation will
nearly always follow quickly on the heels of earlier
events, then the observed pattern of cumulative adop-
tions will not vary much depending on the particular
assimilation event used to define the time of adoption.
The diffusion pattern that results when an earlier event
(e.g., acquisition) is used will closely mirror the pattern
that results when a later event is used (e.g., deploy-
ment), as illustrated in Figure 1. In this case, the con-
clusions a particular study draws are not likely to be
contingent on the definition employed for adoption.

However, for some technologies it may be inappro-
priate to assume that in most organizations these later
assimilation events will automatically follow earlier
events. As a result, the pattern of cumulative deploy-
ments may not closely mirror the pattern of cumulative
acquisitions, but rather, there may be a widening
“gap” between the two curves plotted as a function of

Figure 1 Diffusion Curves for Alternative Definitions of “Adoptlion”
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time (see Figure 2). Because this gap is bounded by the
cumulative adoption curves associated with two alter-
native assimilation events, we label it the assimilation
gap.

When a substantial assimilation gap exists for an in-
novation, the use of cumulative acquisition as the basis
for diffusion modeling can present an illusory picture
of the diffusion process—leading to potentially erro-
neous judgments about the robustness of the diffusion
process already observed, and about the technology’s
future prospects. Researchers may draw inappropriate
theoretical inferences about the forces driving diffu-
sion. Practitioners may commit to a technology based
on a belief that pervasive adoption is inevitable, when
it is not.

Prior innovation research lays the groundwork for
several potential explanations for why some innova-
tions might be prone to an especially large assimilation
gap. For example, it could be that high knowledge bar-
riers, which have been found to generally slow diffu-
sion, tend to have an especially negative effect on de-
ployment compared with acquisition (Attewell 1992).
Alternatively, it could be that the potential option
value to use some innovations in the future is so high
that many organizations are willing to initiate deploy-
ment simply to preserve this option (Cohen and
Levinthal 1990). Or, perhaps something about the way
some innovations are marketed leads many organiza-
tions to acquire technologies under one set of expec-
tations, only to subsequently encounter a much differ-
ent, less favorable reality (Rosenberg 1976). Whatever
the reason for the existence of pronounced assimilation
gaps, the first step toward using the concept to make
predictions or to test rival theories is to develop a foun-
dation of definitions, measures, and analytical tech-
niques for the concept. The purpose of this research is
to provide such a foundation. With this in place, re-
searchers will be in a position to investigate a number
of important questions, such as:

(1) Is an observed assimilation gap large enough to
be of substantive interest?

(2) Is the observed assimilation gap for one tech-
nology significantly larger than for another?

(3) Why does a particular technology have a sub-
stantial assimilation gap?

INFORMATION SYSTEMS RESEARCH
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Figure 2 Assimifation Gap
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(4) Why do two technologies have significantly dif-
ferent gaps?

(5) Why do two adopter populations for the same
technology have significantly different gaps?

In this article we address the first two questions, and
suggest alternative avenues for investigating the other
three. We begin by formalizing the assimilation gap
concept and proposing an operational definition (§2).
We then present several explanations for why some
technologies—including those in this study—might be
especially prone to assimilation gaps (§3). Next, we
provide an empirical examination, based on both
graphical and survival analysis techniques, of the as-
similation gap for three prominent IT innovations: re-
lational database management systems (RDBs), fourth
generation languages (4GLs), and computer aided soft-
ware engineering tools (CASE) (§4-§5). Finally, we dis-
cuss these empirical results and draw conclusions for
researchers and practitioners (§6-§7).

2. The Assimilation Gap Concept

When Jater events in the assimilation process do not
follow quickly or reliably from earlier events, the result
Is an assimilation gap. For this study we propose two
different, but complementary ways to conceive the as-
similation gap. Our primary approach is based on tra-
ditional diffusion modeling concepts, and has a
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straightforward interpretation as the difference be-
tween two cumulative adoption curves for the popu-
lation as a whole. Our second approach is based on
survival analysis concepts, and considers the durations
of the lags between acquisition and deployment within
acquiring firms. The first approach maps most directly
to our theoretical construct, while the second lays a
foundation for key statistical inferences, such as that

the magnitudes of two assimilation gaps significantly
differ.

2.1. The Diffusion Modeling Concept of the
Assimilation Gap

Diffusion is a process whereby an innovation spreads
across a population of potential adopters over time
(Rogers 1995). The process begins with introduction of
the innovation to the population, and ends when the
population becomes saturated with adoptions, i.e.,
when all those who will ever adopt have, in fact,
adopted. Saturation may occur at close to 100% of the
population, or may fall far short of this. The primary
tool for analysis of diffusion patterns is the cumulative
adoption curve, which shows the percentage of a
population that has adopted at any given point during
the diffusion process.

The assimilation gap occurs when the pattern of
adoptions based on one assimilation event is at odds
with the pattern for a later assimilation event. For this
study we define the assimilation gap as the difference
between the pattern of cumulative acquisitions and cumu-
lative deployments of an innovation across a population of
potential adopters. Although this definition is made in
reference to two particular events—acquisition and de-
ployment—in principle, any two assimilation events
could be used to define an assimilation gap, if so war-
ranted by the objectives of the research.

For an operational measure of the assimilation gap
we propose the area between the cumulative acquisition
and cumulative deployment curves at time T as a proportion
of the area under the cumulative acquisition curve at time
T. As illustrated in Figure 3, this measure is computed
as the cross-hatched area divided by the area under
the cumulative acquisition curve. Although a large as-
similation gap (as we operationalize it here) may some-
times occur even when acquisition of a technology has
been slow—as long as deployment is much slower
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Figure 3 Computing the Assimilation Gap
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still—we focus on the case where a large assimilation
gap occurs for a technology that has been rapidly ac-
quired. This is so for two reasons. First, from a practical
standpoint, it means that a larger proportion of the
population may be affected by the gap. Second, we
believe that this case raises the most interesting theo-
retical questions, since the technology appears “suc-
cessful” according to one view of its diffusion (based
on acquisition) but much less so according to another
(based on deployment). In this situation, the illusory
quality of diffusion is at its peak.

2.2. The Survival Analysis Concept of the
Assimilation Gap
With the survival analysis concept of the assimilation
gap, we depart from traditional diffusion modeling
techniques and look at the deployment process within
acquiring firms. Specifically, we consider the time it
takes for firms that have already acquired an innova-
tion to actually deploy it. The longer the typical ac-
quiring firm takes to deploy an innovation once ac-
quired, the larger the assimilation gap will be.
Survival analysis techniques were originally devel-
oped by biostatisticians studying the duration of hu-
man lifetimes, hence the label, “survival analysis,” al-
though, more recently, these techniques have received
growing attention by social scientists for use in studies
that share the central problem presented by lifetime
data, namely, the censoring of event times (Lawless
1982, Cox and Oakes 1984, Singer and Willett 1991).
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Censoring occurs when some units in a study have not
exhibited the event of interest during the study’s ob-
servation period, and so all that is known for those
units is that the event times will exceed the durations
for which the units have been observed." In the current
study censoring has occurred whenever a firm has ac-
quired but not yet deployed during the observation
window.

One of the key tools in survival analysis—and the
one of particular interest here—is the survivor function
(see Figure 4). The survivor function provides a sum-
mary view of the event times for a population. More
specifically, the survivor function provides an estimate
of the proportion of a population expected to have an
event time exceeding any given time T. In this case we
are interested in the time it takes for an acquiring firm
to deploy a technology, so the “survivor function” can
be thought of as the “survival” of the earlier technol-
ogy, despite acquisition of the new technology.

In more typical applications—such as those involv-
ing the time until death, job turnover, or component
failure—long event times, as evidenced by a slowly
decreasing survivor function, are assumed to be desir-
able. In our current application, the opposite is true:
long event times (i.e., the time it takes acquiring firms
to deploy) are assumed to be undesirable, since this

"With traditional statistical techniques, such as regression analysis,
censoring of data leads to biases in the estimation of parameters;
sensitivity to the length of the data collection period is also common.
Survival analysis, by contrast, makes appropriate use of all obser-
vations, even censored ones.

The Survivor Funetion
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represents the time it takes for firms to get significant
benefits from a technology they have purchased.

The survivor analysis concept of the assimilation
gap, as embodied in the survivor function for deploy-
ment times, relates to our graphically-based, diffusion
modeling concept as follows. A rapidly decreasing sur-
vivor function corresponds to a small assimilation gap,
while a slowly decreasing survivor curve corresponds
to a large gap. The benefits of introducing survivor
analysis on top of diffusion modeling are two fold.
First, it opens up new kinds of analyses, such as esti-
mating the expected median time to deployment, and
the expected fraction of acquirers that will never de-
ploy. Second, and more importantly, it provides a
means to draw statistical inferences on the relative
sizes of two observed assimilation gaps.

3. Theoretical Explanations for the
Assimilation Gap

As mentioned earlier, prior work in the innovation
field lays the foundation for several theoretical expla-
nations accounting for the propensity of certain inno-
vations to exhibit a pronounced assimilation gap. Since
an assimilation gap is a phenomenon that occurs at the
level of a technology, we look primarily to distinctive
characteristics of the technology itself—and of the in-
stitutional environmental supporting it—for plausible
explanations. This is in keeping with other prominent
theories about what drives the overall pattern of in-
novation diffusion (Tornatzky and Fleischer 1990,
Attewell 1992, Rogers 1995).

We have previously argued that technologies used
in the software development process—what we refer
to as soffware process innovations (SPls)*—possess two
characteristics that predispose them to significant as-
similation gaps: strongly increasing refurns to adoption,
and substantial knowledge barriers impeding adoption
(Fichman and Kemerer 1993a). These arguments, sum-
marized below, Jead us to choose prominent SPIs for
the empirical portion of this study. This is not to imply

*We refer to these technologies as software process innovations be-
cause; when acqiited and deployed, they change an organization’s
process for developing software applications. In Swanson’s typology
of information systems innovations, an SPI would be classified as a
Type Ia or Ib “IS process” innovation (1994).

259

Copyright © 1999. All rights reserved.



FICHMAN AND KEMERER
The Hlusory Diffusion of Innovation

that other factors (e.g., structural, managerial, political,
social) have no effect on the acquisition and deploy-
ment of IT innovations within particular firms—they
certainly do (Kwon and Zmud 1987, Fichman 1992,
Prescott 1995, Prescott and Conger 1995). However it
must be remembered that we are not attempting to
explain why a particular firm has experienced rapid
acquisition followed by slow deployment, but rather,
why a population of firms has exhibited this pattern,
and more to the point, why there are substantial dif-
ferences in this pattern across technologies. It is pos-
sible that other factors beyond increasing returns and
knowledge barriers might (a) be systematically present
among some population of potential adopters, (b) be
more salient for some kinds of innovations than for
others, and (c) have a strongly differential effect on
acquisition versus deployment. In this case, an assim-
ilation gap should also result. In the discussion section,
we touch on some other candidate factors that appear
less salient in the case of SPIs, but may well apply in
other situations.

3.1. Increasing Returns to Adoption

Some technologies become much more valuable to a
given adopter to the extent that others also adopt. Such
technologies are said to be subject to increasing returns
to adoption (Arthur 1988, Arthur 1996). Increasing re-
turns arise from the incremental contribution addi-
tional adopters make to the accumulated benefits of:
(1) positive network externalities among adopters
(Katz and Shapiro 1986, Markus 1987), (2) learning-by-
using among adopters (Rosenberg 1982), (3) economies
of scale in production and learning-by-doing among
producers (Arrow 1962), (4) general industry knowl-
edge about the innovation (Arthur 1988), and (5) a
more rapidly maturing technology infrastructure
(Arthur 1988, Van de Ven 1993).> Many information
technologies are subject to increasing returns
(Brynjolfsson and Kemerer 1997, Schilling 1998) and
this is particularly true of the innovations used in the
software development process. In the case of RDBs, for
example, a large adoption base means that suppliers
will have a greater base of customers over which to
spread R&D costs, thus accelerating improvement of

SArthur (1988) provides an extended discussion of each of these
sources of increasing returns.
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the technology. A large base of RDB users can also be
expected to attract the attention of third-party devel-
opers, including those that specialize in integrating
databases with other technologies (such as languages
and tools). More widespread adoption also implies
more and larger RDB users groups to share knowledge
about the technology. Finally, a large base of RDB
adopters means greater availability of experienced
staff and training and consulting services.*

The presence of substantial increasing returns means
that, by definition, a wide discrepancy will exist be-
tween a technology’s initial performance (which can be
thought of as the performance an average adopter is
likely to achieve with a technology during its first few
years of commercial availability, including not only
productivity or quality improvements or decrements,
but also amortized learning and disruption costs), and
its network potential (which can be thought of as the
hypothetical future performance that could be
achieved if a technology were to become universally
adopted by the network of users, suppliers, and me-
diating institutions). This discrepancy lays the foun-
dation for two theoretical explanations for the assimi-
lation gap, one normatively rational, and one less so.

The normatively rational argument follows from the
work of Cohen and Levinthal on the role of absorptive
capacity in R&D and innovation (Cohen and Levinthal
1990). They argue that absorptive capacity—the ability
to assimilate an innovation and apply it to productive
ends—is cumulative and path dependent. Because or-
ganizations cannot instantaneously assimilate an in-
novation at the exact point that its benefits have be-
come certain and obvious, they may choose to begin
the assimilation process even when the ultimate bene-
fits of using the technology are unclear. This explana-
tion suggests that the assimilation gap flows from con-
scious attempts by managers to hedge their
technological bets in the face of a dynamic and uncer-
tain technology. In other words, managerial decision
making is being driven by a real options perspective
on adoption (McGraith 1997).

The less normatively rational argument is based on

See Fichman and Kemerer (1993a), (1993b) for more detailed de-
velopment of the theoretical linkage between SPIs and increasing
returns.
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the concept of “signaling” (Attewell 1992). In the case
of some commercial technologies, vendors and other
stakeholders may communicate a vision of an emerg-
ing technology’s main features and benefits based on
what it would be like to use the technology at its net-
work potential, rather than its likely initial perfor-
mance level. Claims about productivity or quality im-
provements may fail to incorporate the adverse impact
of technological immaturity, the absence of comple-
mentary tools, and the difficulty of hiring and train-
ing—and thus fail to communicate to potential adopt-
ers that these can be pertinent considerations.
Organizations may decide to initiate the assimilation
process based on the positive vision of what the tech-
nology could become, only to subsequently learn that
the current state of the technology is not as mature or
robust as claimed. One of the more frequent comments
we encountered in our recent study on the adoption of
object technology was surprise and displeasure at the
inadequacies of supporting processes and tools
(Fichman and Kemerer 1997b). Similar unpleasant sux-
prises have also been reported for CASE tools
(McComb 1994, Martin 1995, Senn and Wynekoop
1995). Unexpected immaturity and related problems
can discourage deployment directly by impeding the
implementation process, or indirectly by persuading
adopters to scale back or terminate efforts to imple-
ment what they have come to believe is an “over sold”
technology (Senn and Wynekoop 1995).

3.2, Knowledge Barriers

For some kinds of technologies, adoption and use is
hindered by the effort of organizational learning re-
quired to obtain necessary knowledge and skills.
When this occurs, the technology is said to be subject
to knowledge barriers (Attewell 1992). Knowledge bar-
riers arise because the technological and managerial
knowledge required to successfully deploy complex
technologies typically goes far beyond simple aware-
ness of the innovation and its potential benefits. Such
knowledge tends to be “sticky” (von Hippel 1994), and
is usually acquired only over time, and with consid-
erable difficulty (Cohen and Levinthal 1990, Kogut and
Zander 1992). As a class, SPIs certainly qualify as the
sort of “complex organizational technologies”
Attewell (1992) had in mind when developing his

INFORMATION SYSTEMS RESEARCH
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knowledge barrier theory of diffusion. According to
recent reports, this is especially true of CASE (Rai 1995,
Martin 1995, Senn and Wynekoop 1995). The assimi-
lation of CASE tools requires organizational learning
on a number of separate fronts, including: learning
about the complex underlying methodologies auto-
mated by the CASE tools (Fichman and Kemerer
1993b); learning about the CASE philosophy, which
advocates an enterprise model-based approach to sys-
tems development (Stone 1993); learning how to use
the actual software products that provide CASE func-
tionality (Kemerer 1992); and finally, learning how to
structure project teams and incentives in light of the
potentially radically different approaches to develop-
ment that often accompany CASE (Orlikowski 1993).°

When knowledge barriers are present, many of the
organizations that choose to acquire the innovation
may be unable or unwilling to deploy it. This is be-
cause the organizational knowledge needed to gener-
alize, scale up, and institutionalize a technology differs
not only in magnitude but in kind from the knowledge
needed to acquire it (Leonard-Barton 1989). As was the
case with increasing returns, the existence of knowl-
edge barriers may create a kind of discrepancy that
ultimately leads to an assimilation gap. In this case, the
discrepancy is the differential (i.e., larger) impact of
knowledge barriers on deployment versus acquisition.

A reasonable question one might ask at this point is
why most organizations would not anticipate the dif-
ficulties flowing from knowledge barriers, and, as
Attewell (1992) has found often occurs, simply defer
acquisition until knowledge barriers have been suffi-
ciently lowered. There are two possible explanations.
First, organizations may choose to knowingly take on
risky ventures, as argued above, because this may be
necessary to create the option of being in a position to
immediately use the technology when the appropriate
time has arrived. Second, the inherent nature of knowl-
edge barriers themselves precludes the perfect fore-
sight needed to anticipate the magnitude of the chal-
lenges associated with deployment. The fact that the
organization is not knowledgeable about the innova-
tion in general means they are also lacking in specific

Gee Fichman and Kemerer (19934, 1997a, 1997b) for a more detailed
development of the linkage between SPls and knowledge barriers.
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knowledge about how to best implement it. Either
way, the assimilation gap ultimately results from the
differentially adverse impact of knowledge barriers on
deployment versus acquisition.

4. Modeling Assimilation Gaps for
Software Process Innovations

We now present an examination of assimilation gaps
for three of the more prominent information technol-
ogies to emerge in the 1980s: relational database man-
agement systems (RDBs), general purpose fourth gen-
eration languages (4GLs), and Computer Aided
Software Engineering tools—tools that support sys-
tems analysis and design (CASE). These three software
process innovations were selected to support the anal-
ysis of assimilation gaps because of our a priori expec-
tation that they would exhibit significant assimilation
gaps (Fichman and Kemerer 1993b), and because of the
expectations that there would be contrasts among
them in the size of measured gaps. In particular, we
expected CASE would have an especially large gap,
based on reports at the time of implementation diffi-
culties and under-utilization (Howard and Rai 1993).

4.1. Study Methods

Data were gathered through a large scale cross-
sectional survey of 1,500 medium to large organiza-
tions, with over 500 total employees (Fichman 1995).
The sampling unit was the IT department at individual
sites. Informants were instructed to consider just their
own site in answering questions. A probability sample
of 1,500 sites was extracted from a list, maintained by
International Data Corporation, of 40,000 US sites with
computers installed.® The ideal informants were set out
in advance to be middle-level IT managers with a good
knowledge of applications development activities and

SThe goal of this list is to provide advertisers in Computer World mag-
azine—the flagship trade publication for the IT industry—with good
prospects for their sales efforts. The target informants are IT profes-
sionals with buying authority for hardware, software or telecom-
munications products. All results reported here are based on un-
weighted data. Case weighting (to counter the effects of probability
sampling) was found to have a negligible effect on initial descriptive
results, and hence, was viewed as an unnecessary complication for
the full analysis.
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technologies at their respective sites. Actual respon-
dents overwhelmingly met these criteria.” To qualify
for the sampling frame, the site had to: 1) be part of a
larger enterprise with at least 500 employees; 2) have
previously reported at least some tools for software
development installed at the site; 3) have an informant
with an IT management-related title; and 4) have at
least some Microsoft DOS or Windows-based comput-
ers on site. The first two criteria increase the likelihood
of custom applications development at the site. The
third criterion helps ensure a well-informed respon-
dent. The last criterion—that only excluded an incre-
mental 5% of the sample—increases the likelihood that
respondents have the means to take the survey (a DOS
based computer).

The survey was administered via computer disk, a
novel approach whereby respondents insert the survey
software into their PCs and are automatically led
through the questionnaire items (Saltzman 1993). Nu-
merous strategies, including most of those recom-
mended by Dillman (1983), were employed to boost
response rates and eliminate bias.® A total of 679 sur-
veys were returned, for a raw response rate of 45%.

To help ensure that informants were operating from
a common understanding of what was meant by the
terms “relational database management systems,”
“fourth-generation language,” and “computer-aided
software engineering,” the questionnaire provided a
list of several prominent, commercially available in-
stances of each SPI. To promote further consistency in
the minds of respondents, the questionnaire narrowed

"Nine of ten reported holding IT “manager” or “director” level titles.
Three-fourths reported responsibility for at least half of applications
development activities at the site. Eighty-four percent reported being
“very” or “extremely” knowledgeable about applications develop-
ment at the site.

®These included use of an individually addressed and signed cover
letter assuring confidentiality and emphasizing the survey’s univer-
sity affiliation; provision of incentives, including a chance to receive
one of five $100 lottery prizes, an executive summary of the results
and some related technical reports; use of a reminder card and
follow-up letter; use of other techniques to communicate our com-
mitment and investment in the survey, including provision of an 800
number for questions and a postage paid, pre-addressed mailer for
returning the disks.
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the scope to SPIs appropriate for use on medium to
large multiuser applications.’

An analysis of the descriptive characteristics of re-
sponding sites was performed based on 608 usable re-
sponses out of a total of 679 returned disks." The vast
majority of responding sites were typical corporate in-
formation systems organizations, with mainframe or
midrange computers as their primary host environ-
ment (81%). Smaller departments (16% reported fewer
than 5 total staff members) and larger departments
(13% reported over 100 IT staff members) were in-
cluded. The median reported size of the total on-site
IT staff (including development, technical support and
operations) was 16. A wide range of business sectors
was represented, including public and quasi-public
sectors (i.e., government, education, and health care)

4.2. Cumulative Adoption Calculations

In modeling the cumulative adoption of an innovation
for a population over time, three measurement-related
decisions are required: (1) how to define the popula-
tion; (2) how to define the time of the adoption event
for each member of the population; and (3) how to
define the total time period to be covered. The popu-
lation for this study was defined as those respondents
to the disk-based survey who report more than five
full-time application developers on staff. Since the or-
ganizations were randomly selected from a high-
quality list, they are believed to be broadly represen-
tative of U.S. enterprises. The requirement of more
than five developers is intended to confine analysis to
organizations that have the application development
scale needed to be prima facie strong candidates for

’For example, prior to the block of questions related to CASE tools,
respondents were instructed as follows: “In the questions that fol-
low, we are interested only in traditional (nonobject oriented) CASE
tools appropriate for developing medium to large multiuser appli-
cations, e.g., Texas Instruments [EF, KnowledgeWare ADW, Exce-
lerator, CADRE TeamWork, LDBMS.”

1°0f the 71 unusable responses, 20 were received after the agreed
upon cut-off employed by a sui:ic:ontractor assisting with data col-
lection, 39 did not meet the originél criteria for inclusion (either be-
cause no applications development was performed at the site or be-
cause the manager reported being ill-informed about software
development at the site), 7 contained inconsistent responses to key
questions (suggesting misunderstanding of those questions), and 5
were incomplete. :
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adoption of the technologies under study (Fichman
and Kemerer 1997a)."" Eliminating cases with five or
fewer developers reduced the sample size from 608 to
395; elimination of 11 additional unusable cases further
reduced sample size to 384."> Among the retained 384
cases, the levels of acquisition for RDBs, 4GLs, and
CASE were 83%, 63%, and 42% respectively, as of the
end of 1993, (In the full sample, these percentages were
68%, 51%, and 29%, respectively.)

Two alternative definitions of the adoption event are
employed: acquisition and deployment. The time of
acquisition is defined as the reported year that an ac-
tual instance of the technology was first purchased by
the site. The time of deployment is defined as the year
that use of the technology first reached 25% of all new
development. The first measure is intended to parallel
a definition of adoption frequently used in traditional
diffusion modeling studies, including all of those
based on first-purchase data (see, for example, Bass
1969). The second measure is intended to capture
whether the site has gotten beyond a limited level of
deployment.”® The resulting time series for the three
technologies are the cumulative number of acquisi-
tions and deployments by the end of each year.

The time periods to be covered by the analysis were
defined in order to achieve a consistent base of com-
parison for the three technologies. The end year was

"The main reasons for confining analysis in this way are to improve
the face validity of descriptive results (e.g., reported levels of acqui-
sition), and to counter a concern that statistical conclusions might be
affected by the inclusion of a large number of potentially inappro-
priate adopters, As a check, analysis of data including firms with
five or fewer developers does not change the results reported.

YGix cases reported deployment prior to acquisition. Five cases re-
ported acquiisition in years prior to the commercial availability of the
technology.

BThe 25% level of use is considered to be a reasonable cut-off for

‘these SPIs; as near:100% deployment can be seen as the goal state

for all three SPIs; RDBs were promoted as replacement for prior
database' models, and there are few business applications for which,
in principle, databases are not the most appropriate data manage-
ment tool.’ Production 4GLs were promoted as a replacement for
Cobol, a language: that'had accounted for 90% of the installed base
for business applications: when 4GLs were introduced. CASE, which
‘was designed to supporta philosophy of model-based development,
should, once adopted, be used on every new development project,
regardless of implementation environment, lest an incomplete
model result.
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defined to be 1993 for all three technologies, as this was
the last full year for which data were available. To es-
tablish the start year for each series, a two-step pro-
cedure was followed. First, the year in which cumu-
lative acquisitions first reached at least 10% of the
sample was calculated for each, and assigned to be the
“anchor year” for that technology. The start year for
each series was then assigned to be three years prior
to the anchor year. This resulted in start years of 1982,
1981, and 1986 for RDBs, 4GLs, and CASE, respectively
for this data set." The resulting camulative acquisition
and deployment series are provided in Table 1. Cu-
mulative adoptions are reported as percentages of the
sample population. As Table 1 shows, there are 12 ob-
servation periods for RDBs (1982-1993), 13 periods for
4GLs (1981-1993), and 8 periods for CASE (1986-1993).

5. Results

This section presents the results of several interrelated
analyses. It begins with a descriptive examination of
assimilation gaps based on visual inspections of the
cumulative acquisition and deployment curves for the
three technologies. This is followed by presentation of
a quantitative approach to computing and presenting
assimilation gap estimates. Finally, survival analysis
techniques are used to determine whether the assimi-
lation gaps associated with the technologies are signifi-
cantly different, and whether each gap—taken by it-
self—is absolutely large enough to be of substantive
interest.

5.1. Descriptive Results

The cumulative acquisition and deployment series for
RDBs, 4GLs, and CASE are plotted in Figures 5
through 7. To facilitate visual comparisons, the same

MThe three year rule was designed to include enough prior time
periods so that the distinctive “take-off” pattern common to inno-
vation diffusion would be evident, but not so many time periods
that chance variation in reported acquisitions would be an over-
whelming concern. This represents a more useful method for an-
choring a series, than, for example, taking the first year in which any
acquisitions occurred. This is because the start year under such a
rule could be strongly subject to outliers and/or chance variation.
However, it should be pointed out that using a different number of
years prior to the anchor year, two or four, had a negligible effect
on results.
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scales have been used for all three figures, and a ver-
tical line is provided to highlight the eighth year of
each series. RDBs appear to have a moderate assimi-
lation gap. By 1993, about 83% (N = 317) of sites had
acquired an RDB, although only about 42% (N = 161)
had yet deployed RDBs on at least 25% of new devel-
opment projects. But, both the acquisition and deploy-
ment curves show robust increasing trends, and there
is no reason to conclude, based on an inspection of
these series, that deployment will not eventually be
achieved by a large majority of acquirers.

In visually comparing Figure 5 to Figure 6, produc-
tion 4GLs appear to have a slightly larger assimilation
gap than RDBs.'> By 1993, about 63% (N = 241) had
acquired 4GLs, but only 26% (N = 99) had deployed.
One must go back 6.5 years, to mid-1986, to find the
year where cumulative acquisitions equals the number
of cumulative deployments in 1993. For RDBs, by com-
parison, one must go back only 4 years, to 1989, to find
the year where cumulative acquisitions equals cumu-
lative deployments in 1993.

For CASE, however, the apparent assimilation gap
is striking. By 1993, 42% (N = 160) have acquired a
CAGSE tool, but only 7% (N = 26) have deployed. Of
course, one possible explanation is that this larger ap-
parent gap is an artifact of the shorter observation pe-
riod. To examine this concern, the acquirer/deployer
ratio as of the end of 8 years was computed for all three
technologies. This ratio was 6.2 to 1 for CASE, but only
2.2to1and 2.5 to 1, respectively, for RDBs and 4GLs.
Therefore, the difference is not believed to result from
the shorter observation period for CASE.

To summarize, the descriptive results suggest mod-
erate assimilation gaps for RDBs and 4GLs, and a pro-
nounced gap for CASE.

5.2. Quantitative Estimation of Assimilation Gaps
The descriptive analysis presented above provides an
intuitive feel for the magnitude of assimilation gaps,
and the results appear sensible when compared with
prior expectations and recent research results. In this
section we present a quantitative analysis of assimila-
tion gaps.

As described previously, the proposed definition of

A statistical comparison provided later in this section, and sum-
marized in Table 3, confirms this difference.
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Tabie 1 Gumulative Acquisition and Deployment Percents for Three Technologies (N = 384}
RBDs 4GLs CASE
Calendar Year Period Acquisition Deployment Period Acquisition Deployment Period Acquisition Deployment
1981 1 3.1 0.8
1982 1 29 1.6 2 4.7 1.0
1983 2 3.1 1.6 3 8.1 13
1984 3 6.0 2.6 4 10.4 1.8
1985 4 128 5.2 5 19.0 5.5
1986 5 174 76 6 22.7 7.0 1 1.0 03
1987 6 250 9.6 7 28.4 9.6 2 3.1 08
1988 7 33.1 14.0 8 31.8 125 3 5.5 1.0
1989 8 400 18.2 9 37.2 143 4 9.9 1.0
1990 9 50.0 23.7 10 42.7 17.2 5 16.7 1.5
1991 10 576 26.8 11 474 19.2 6 25.0 3.1
1992 1 703 33.1 12 55.7 21.6 7 33.1 49
1993 12 826 41.9 13 62.8 25.8 8 a7 6.8
Figure 5  Cumulative Acquisitions and Deployments of RDBs and t — 1, and D(f) is the mean of cumulative deploy-
1 : ments at times ¢ and t — 1.
0.9 . . The resulting assimilation gaps for the three tech-
Acguire . . . -
0.8 | nologies are plotted, as a function of time, in Figure 8.
0.7 . To support a more useful comparison across technol-
06 | ogies, time is defined as elapsed time since the start
0.5 | Deploy year for each, rather than calendar time. The curves
0.4 are plotted through years 12, 13, and 8, for RDBs, 4GLs,
03 and CASE, respectively; this is the number of years
02 since the start year for each.
01 The patterns evident in Figure 8 are broadly consis-
' 0 _/ tent with the results of the descriptive analysis pre-

82 83 84 85 86 87 88 82 90 91 92 93 94

the assimilation gap is the area between the cumulative
acquisition and cumulative deployment curves at time
T, as a proportion of the area under the cumulative
acquisition curve at time T. Assuming data are cap-
tured at discrete intervals, the formula for computing
this quantity is: ’

T .
G(T) = 2 (Al — DitY/(AD 1
f=1 ‘

where G(T) is the estimated assimilation gap at time T,
A(t) is the mean of cumulative acquisitions at times ¢
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sented in the previous section. RDBs show the smallest
gap, with 54% of the area under the cumulative ac-
quisition curve in year 12 (the last observation year)
being accounted for by the area between the acquisi-
tion and deployment curves. The estimated RDB as-
similation gap is stable over time, ranging only from
0.53 to 0.58 over the last ten observation periods. The
gaps for 4GLs and CASE are similar for the first three
years after their respective start years, and then they
diverge.

5.3. Survival Analysis View of the Assimilation
Gap

The previous section provides a quantitative measure
of the assimilation gap construct according to our pri-
mary diffusion modeling concept. In this section we
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Figure 6
1
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Cumulative Acquisitions and Deployments of 4GLs
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0 T T / T T T T T

81 82 83 84 85 86 87 88 89 90 91 92 93 94

employ survival analysis techniques to further exam-
ine the assimilation gaps for these three SPIs. As men-
tioned earlier, survival analysis techniques not only
provide additional insights into the composition of an
assimilation gap, but also can be used to support de-
sirable statistical inferences, such as that an assimila-
tion gap is significantly larger (or smaller) than some
other gap, or that a particular gap is large enough in
absolute terms to be of practical significance taken by
itself.

The first step in applying survival analysis is to es-
timate the population survivor function for each of our
three technologies. The population survivor function
is defined as the probability that a randomly selected
experimental unit from the theoretical population will
not have experienced the event of interest by elapsed
time T. Alternatively, the survivor function can be
viewed as showing the proportion of the population
that will have event time exceeding T. The sample sur-
vivor function is estimated based on the observed
event data from a particular sample; if this sample is
representative, then the sample survivor function at
time T provides an estimate of the probability that a
randomly selected unit from the original population
will have a event time greater than T.

Modeling a survivor function for a particular dataset
requires the creation of two variables: an event time
variable, and a dummy variable identifying whether a
given event time is censored or not. (In this study, a
case is censored if the organization has acquired but
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Figure 7
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Figure 8 Assimilation Gaps
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not yet deployed during the observation period.) The
time variable contains the reported deployment year
minus the reported acquisition year for noncensored
cases, and the total observation time for censored cases
(calculated as 1993 minus the year of acquisition). With
the exception of the first interval, all intervals were de-
fined to be 12 months."® The product limit approach,
as described by Lawless (1982), was used to estimate

15The first interval was defined to be six months because acquisition
happens halfway through the reported year of acquisition, on av-
erage (assuming a uniform distribution of acquisition times through
the year).
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the survivor function for each technology.” The re-
sulting survivor probabilities at the end of each inter-
val are provided for RDBs, 4GLs, and CASE in Table
2. The survivor functions are plotted in Figure 9.

The survivor functions in Figure 9 provide a view of
the assimilation gap that complements the graphically-
based measures computed earlier. The more rapidly
the survivor function decreases, the smaller the asso-
clated assimilation gap will be. While the estimated

7This nonparametric approach is preferred here over parametric
methods because it requires no assumptions about the functional
form for uncensored lifetimes. The Lifetest procedure provided by
SAS was used to perform all computations.

Estimated Survival Probailities for the Acguisition to

Tahle 2
Deployment Process
Time {months) RDBs 4GLs CASE
0 1.0 1.0 1.0
6 0.87 0.87 0.95
18 0.6_9 0.75 0.88
30 0.53 0.62 0.84
42 045 : 0.60 0.82
54 041 0.55 0.76
86 0.37 0.54
78 0.36 0.50
90 0.34 0.46
102 0.27
Figure 9 Survivor Funetions for Time to Deployment Since Acquisition
1
0.9
0.8 CASE
Survival 7
Probability 0.5 ]
4GLs
(Probability 05 1
not Deployed) 0.4 4
ployed) 0.3 RDBs
0.2 4
0.1 4
0 T A T
0 2.5 5 7.5 10

Years Since Acquisition
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survivor functions are based on different lengths of ob-
servation windows, the estimation procedure is not
sensitive to the length of the data collection period. For
example, the survivor estimates produced when only
eight time periods were used for RDBs and 4GLs dif-
fered by only a few percentage points, on average,
compared with those produced when all available data
were used (Fichman 1995).

Consistent with the diffusion modeling results, these
plots suggest that RDBs have the smallest assimilation
gap, with a slightly larger gap for 4GLs, and very pro-
nounced gap for CASE. The survival probabilities
(computed using linear interpolation) for RDBs, 4GLs,
and CASE at four years are 0.43, 0.57, and 0.79, re-
spectively. The estimated median time to deploy (i.e.,
the time associated with a survival probability of 0.50)
is 3 years for RDBs, 6.5 years for 4GLs, and cannot be
determined for CASE, although it appears likely that
it will be considerably longer than the value for 4GLs.

The survivor function can also be used to determine
a bound for the estimated maximum number of ac-
quirers expected never to deploy. For RDBs, the sur-
vival estimate of 0.27 at 8.5 years suggests that a max-
imum of 27% will never deploy. The survival estimate
of 0.46 for 4GLs at 7.5 years likewise suggests that, at
most, 46% will never deploy. Since survival estimates
could only be calculated through 4.5 years for CASE,
the survivor function value at this time (0.76) provides
little insight on what the ultimate proportion of CASE
nondeployers might be, although a value greater than
50% seems likely. This would mean more than half of
CAGSE tools acquirers will never fully assimilate the
tool.

~ The next step in comparing assimilation gaps is to
test whether the observed event times for different
technology pairs were likely to have been produced by
identical population survivor functions. If not, this
suggests that the associated assimilation gaps are sig-
nificantly different in size. To perform this step, the
three individual datasets were concatenated into a sin-
gle dataset, and a new variable was created to distin-
guish which cases corresponded to which technology.

In Table 3, the survivor function for each technology
is compared with the two other technologies. Two dif-
ferent homogeneity tests were performed for each
comparison: the Log Rank test, and the Wilcoxon test
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Table 3 Tests for Homogeneity of Survival Processes
Log Rank Wilcoxon
Comparison X p-value X p-value
RDB vs. 4GL 76 0.006 36 0.058
RDB vs. CASE 353 0.000 28.3 0.000
4GL vs, CASE 16.4 0.000 15.2 0.000

(see Cox and Oakes 1984)." The Log Rank test is more
sensitive to differences at larger survival times, while
the Wilcoxon is more sensitive to differences at shorter
survival times. Five of the six tests reject the hypothesis
of homogeneous population survivor functions at p =
0.05, and the sixth test, the Wilcoxon test for homo-
geneity between RDBs and 4GLs, rejects at p < 0.1.

The results of Table 3 give a high degree of confi-
dence that the assimilation gap for CASE is signifi-
cantly larger than the ones for both 4GLs and RDBs,
and that the one for 4GLs is significantly larger than
the one for RDBs. These results are consistent with the
conclusions reached earlier, based on visual inspec-
tions of cumulative acquisition and deployment curves
(Figures 5-7) and based on formalized assimilation
gap estimates (Figure 8).

5.4. Comparing an Observed Assimilation Gap to a
Baseline Gap

By comparing the survivor functions for two or more
technologies, we are able to draw conclusions about
the relative sizes of their assimilation gaps. Although
this is quite useful on both practical and theoretical
grounds, we would also like to be able to compare ob-
served assimilation gaps to some estimated absolute
baseline. This can be accomplished by comparing the
survivor function for the technology of interest to the
survivor function for the baseline. If the two survivor
functions are found fo be significantly different, and
the baseline survivor function lies predominantly be-
low the estimated survivor functions, then this can

18A third test, the Log Likelihood Test, is not used here because it
assumes an underlying exponential function for uncensored survival
times, an assumption not borne out by the data. If an exponential
function were appropriate, then the negative log of survival proba-
bilities versus time should produce a linear curve through the ori-
gin—but such a pattern does not exist for any of the three SPls.
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serve as a heuristic for concluding that the assimilation
gap for the observed process is large enough to be of
practical significance. That is, if the observed survivor
function can be shown to be significantly “slower”
than the baseline function, this would be considered
evidence that the assimilation gap is large in an abso-
lute sense.

One way to define the baseline survivor function
would be to select some observed technology, i.e., the
one with the smallest assimilation gap, and to treat the
survivor function for this technology as the baseline.
This would suggest using the survivor function for
RDBs as the baseline in this study—a conservative ap-
proach, since there may be reason to think that the as-
similation gap for RDBs is not insignificant. For ex-
ample, we question whether it seems reasonable that
34% of the acquiring population—the proportion es-
timated to require more than eight years to deploy
RDBs (on just one quarter of new development!)—ac-
tually planned to take nearly this long to deploy at the
time of acquisition. However, using RDBs as a very
conservative baseline would support the conclusion
that the assimilation gaps for 4GLs and CASE are large
in an absolute sense, owing to the rejection of homo-
geneity in the statistical tests reported above.

Another approach would be to define the baseline
survivor function on normative grounds. For a nor-
mative standard for the survivor function, we propose
a Weibull"? distribution in which 75% of acquirers de-
ploy within four years. We believe four years is a gen-
erous time for a skilled and appropriate adopter to
reach the point of nontrivial deployment for the tech-
nologies in this study, and in addition, this allows for
25% of acquirers to be exceptions to this rule. To put
this suggested normative baseline in some perspective,
Tyre and Orlikowski (1993) report 25 months as the
average duration to achieve “full integration” of new

1 Among the commonly employed distributions for survivor func-
tions, the Weibull is among the most flexible, and is frequently found
to be a good fit to observed data (Cox and Oakes 1984). In addition,
the log of the negative log of the observed survivor functions were
all close to linear, which suggests that the Weijbull function is ap-
propriate. The choice of this distribution was further confirmed
when the actual fit to the Weibull distribution for all three SPIs was
R?=097.
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capital production equipment among 41 implementa-
tion projects. In a study of early adopters of object tech-
nology, three of four case study sites achieved a 25%
use on new development within four years, despite
reporting substantial adoption barriers (Fichman and
Kemerer 1997b). It is worth noting that the four year
standard was actually achieved by an estimated 57%
of the RDBs acquirers in this study (see Table 2). In
future research, more well-grounded estimates for the
baseline might be obtained by surveying recent ac-
quirers about their deployment plans, by soliciting the
opinions of experts (e.g., via Delphi techniques), or by
tracking the deployment experiences of a representa-
tive set of acquirers.

A five step procedure was used to construct and as-
sess a baseline survivor process conforming to the
above definition. Appendix A provides a detailed ex-
planation of this procedure, briefly summarized as
follows:

Step 1: Specify the parameters (ie., the “shape” and
“rate”) of the Weibull survivor function associated
with the hypothetical baseline process.

Step 2: Use the specified Weibull function to calculate
the expected survival probabilities through time T for
the baseline process.

Step 3: Use Monte Carlo simulation techniques to
randomly generate 30 data sets, each containing sur-
vival data conforming to the survival probabilities for
the baseline process, as well as the actual survival data
for the observed process.

Step 4: For each generated data set, perform homo-
geneity tests to check whether it can be concluded that
the baseline series was generated by the same process
that generated the observed survivor data.

Step 5: Determine whether, in a clear majority of the
tests, the conclusion of homogeneity is rejected.

If it turns out that the conclusion of homogeneity is
rejected in a clear majority of instances, then this im-
plies that the observed process is significantly different
from the hypothetical baseline, and in turn that the
assimilation gap for the observed process is large
enough to be of practical significance.” In Figure 10,

WAn alternative procedure for comparing an observed survivor
function to a baseline is described in Klein and Moeschberger (1997,
6.3). According to this procedure, the analyst computes the differ-
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Figure 10 Survivor Funetions for RDBs, Actual and Baseline
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the survivor function associated with the hypothetical
baseline process (i.e., one composed predominantly of
ordinary lags) is plotted next to the actual estimated
RDB survivor function. In a series of 30 trials, it was
concluded in all cases that the hypothetical baseline
data came from a different process than the observed
survival data. This implies that the RDB assimilation
gap is significantly larger than the assimilation gap as-
sociated with the baseline process. As would be ex-
pected, the results were the same for 4GLs and CASE.
All 30 trials for each technology supported the conclu-
sion of significant differences from the baseline
process.

To determine the sensitivity of these results to the
criteria used to define the baseline, a set of three anal-
yses, each containing 30 trials, was performed for each
of the three technologies. In the first analysis, the rule
for ordinary lags was increased from four to five years.
In the second analysis, the rule for the percentage of
cases experiencing only ordinary lags was decreased
from 75% to 70%. In the third analysis, both of the more

ences between the estimated cumulative hazard functions for the
observed technology and for the baseline at time T, and then com-
pares these estimated differences to the estimated standard errors
for those differences. If the 95% confidence interval around these
estimate differences does not include zero, then this provides a in-
direct test of whether the survivor functions are different at time T.
We followed this procedure and found it produced the same infer-
ences as for our more direct simulation approach. These results are
available upon request from the authors.

269

Copyright © 1999. All rights reserved.



FICHMAN AND KEMERER
The Husory Diffusion of Innovation

generous values (i.e., 5 years, 70%) were employed si-
multaneously. Of the 270 total trials, only 5 (all for
RDBs using the 5 year, 70% assumption) failed to reject
the homogeneity conclusion. These results suggest that
while there are significant variations in the size of the
gaps among the three technologies, all have gaps that
are large enough to be of substantive interest.

6. Discussion

In this study, we have developed definitions, mea-
sures, and techniques for the study of assimilation
gaps, and have demonstrated them in an analysis of
three innovations in software process technology. We
have shown that substantial assimilation gaps exist,
can be sensibly measured, and that their measured size
is largely consistent with a priori expectations. All
three SPIs exhibited a significant gap, with an espe-
cially pronounced gap for CASE. The latter result is
consistent with a survey by Howard and Rai that
found that among those organizations having acquired
any CASE tools, only a negligible number had “sub-
stantially replaced conventional systems development
techniques with CASE” (Howard and Rai 1993, p. 66).

We have previously argued that the combination of
increasing returns and knowledge barriers should es-
pecially predispose a technology to exhibit a pro-
nounced assimilation gap (Fichman and Kemerer
1993a). The crux of our argument was that unrealistic
expectations—arising from the promise of increasing
returns—drive rapid acquisition, but knowledge bar-
riers systematically impede deployment. Therefore, we
find it quite interesting that recent reports of CASE tool
implementation highlight the role of disappointed ex-
pectations and knowledge barriers in discouraging de-
ployment and use. Regarding expectations, Martin
notes that “there is a marked gap between CASE prom-
ises and actual CASE experiences” (Martin 1995, p. 54).
Senn and Wynekoop found that “expectations play a
much greater role in the success and failure of CASE
implementation than is publicly disclosed. It was re-
peatedly evident in each study that overly optimistic
developer expectations about the tool’s relative advan-
tage, even with the top ranked tools used by the or-
ganizations studied, increased the likelihood of fail-
ure” (Senn and Wynekoop 1995, p. 12). In describing
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the implementation of CASE at Amtrak, McComb ob-
served: “Our vendors were quick to tell us how simple
it is to learn the new tools. They were quick to tell us
we could run the tools on the equipment we had. They
promised us they would give us all the support we
needed. It wasn’t, we couldn’t, and they didn't”
(McComb 1994, p. 17). Regarding knowledge barriers,
Senn and Wynekoop found the complexity of CASE
tools to be the number one factor impeding implemen-
tation (Senn and Wynekoop 1995). The difficulty of or-
ganizational learning surrounding CASE is also em-
phasized in other recent studies (McComb 1994,
Martin 1995, Rai 1995, Guinan et al. 1997).

6.1. Immediate Implications

Knowing that a substantial assimilation gap exists—
regardless of the precise reason why—can be impor-
tant information in its own right. When a technology
is subject to increasing returns, the rate of arrival of
benefits flowing from prior adopters will be an impor-
tant determinant of whether that technology ever
reaches critical mass. Most researchers studying the ef-
fects of increasing returns have assumed that adoption
is a binary proposition. However, not all kinds of
adoption are equal in terms of their contributions to
increasing returns. In particular, deployers of an in-
novation can be expected to contribute to increasing
returns in a number of ways that acquirers do not. De-
ployers buy additional licenses, upgrades, and add-on
products and services (thus sustaining economies of
scale and learning by doing for producers). They con-
sume complementary products and services that sup-
port the core innovation’s infrastructure. They often
have a useful story to tell other adopters about how to
make the innovation work, and contribute to the
emerging network of trained employees, user groups,
and other network-related resources. Organizations
that acquire but do not deploy a technology, by com-
parison, are likely to make few contributions to in-
creasing returns beyond a one-time addition to pro-
ducer economies of scale resulting from the initial
purchase. Therefore, a pronounced assimilation gap
suggests that the benefits of increasing returns—which
play a crucial role in sustaining the diffusion of many
innovations—may be delayed or even deferred
altogether.

INFORMATION SYSTEMS RESEARCH
Vol. 10, No. 3, September 1999

Copyright © 1999. All rights reserved.



FICHMAN AND KEMERER
The Iusory Diffusion of Innovation

As a result, this study suggests that when assimila-
tion gaps are apt to be present, diffusion researchers
should use deployment, either instead of, or in addi-
tion to, acquisition. In addition, the assimilation gap
concept provides a new way to assess the prospects of
a technology comparatively early in the overall diffu-
sion cycle. Certain fields, with the information tech-
nology field prominently among them, have produced
innovations that had extraordinary promise, and ini-
tially appeared to be diffusing quite rapidly, but never
did approach expected levels of impact and use. This
research has shown that it is possible to identify, before
the sales peak, that such a pattern may be in evidence.
CASE would ordinarily be viewed as quite robust,
having been acquired by nearly 50% of the population
in only eight years. Yet, as the analysis of assimilation
gaps suggests, CASE has barely begun to make its
mark in changing the actual practice of software de-
velopment, and given its slow assimilation, may now
may be in danger of being superseded by later soft-
ware process innovations. Technology vendors and
mediating institutions can incorporate these insights
into their internal studies of the current state and fu-
ture prospects of emerging technologies. End user or-
ganizations can profit from a more sophisticated un-
derstanding of what a report of a strongly growing
pattern of sales for an innovation says—and does not
say—about its future prospects.

6.2. Avenues for Theory Testing

The question of why assimilation gaps exist and where
they will be most pronounced is itself worthy of fur-
ther study. Classical notions of diffusion hold that in-
novation attributes—such as relative advantage, com-
plexity, and compatibility—are relatively fixed, and
largely determine the rate and level of diffusion. What,
then, is a researcher operating within the confines of
classical theory to make of an innovation observed to
have diffused rapidly and widely according to one
commonly employed definition of the adoption event,
but slowly and narrowly according to another com-
mon definition? The general explanation articulated
here is that the spread of acquisitions and the spread
of deployments are, in a sense, different (though re-
lated) processes, and are unequally affected by some
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important factors. Specifically, we argue that the po-
tential for substantial future benefits created by in-
creasing returns has a stronger positive effect on ac-
quisition than on deployment, while knowledge
barriers have a stronger negative effect on deployment
than acquisition. When increasing returns and knowl-
edge barriers are both present, as in the case of SPIs,
we believe the potential for assimilation gaps becomes
very pronounced. These explanations emphasize the
dynamic nature of the characteristics of both the in-
novation and the potential adopter population over
time. Although the results of this research are consis-
tent with these explanations, further work would be
useful in order to provide systematic confirmation.

A number of avenues are available for such confir-
mation. One approach would be to capture data on
managerial perceptions and intentions at the time of
acquisition for a representative sample of firms. Such
data could be used, for example, to support or counter
the argument that organizations are acquiring an in-
novation mainly to preserve the option to be able to
use it as soon as possible after its benefits have become
clear. Alternatively, data could be gathered on the rela-
tive prevalence of different adopter level outcomes (ex-
cessive delay, implementation failure, stalling, discon-
tinuance, etc) and managerial perceptions of the
factors leading to those outcomes. These kinds of data
could be used to confirm or deny arguments that at-
tribute the gap to deployment difficulties or disap-
pointed expectations arising from knowledge barriers
and/or immaturity of the technological network. A
third approach would be to gather data on adopter
characteristics, such as those related to innovative ca-
pabilities or the competitiveness of the external busi-
ness environment. These data could then be used to
stratify the sample and statistically test whether some
adopter groups have larger assimilation gaps than oth-
ers. Larger assimilation gaps among those with lesser
innovative capabilities would support theories based
on knowledge barriers. Larger gaps for adopters resid-
ing in firms with stronger competition would point to-
wards options-based arguments. A fourth approach
would be to gather, for several innovations, data on
perceived innovation characteristics (such as imple-
mentation complexity, technical potential, extent of
signaling) at the point when the technologies are first
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introduced, and to assess the extent to which these
variables correlate with measured assimilation gaps
for those innovations.

6.3. Other Explanations for the Assimilation Gap
While we have focused on the role of increasing re-
turns and knowledge barriers in producing an assim-
ilation gap, two other classes of explanations are worth
mentioning, both predicated on the notion that for
some technologies adoption involves two separate de-
cision processes, one to acquire the innovation and one
to deploy it (Leonard-Barton 1988).

The first argument is that the existence of multiple
decisions opens the possibility of different decision
makers, with correspondingly different motivations
and decision criteria. Under this scenario, more senior
decision makers might systematically favor acquisition
of a technology based on its expected benefits at the
level of the business unit, or because of the symbolic
benefits of being viewed as an innovator (Feldman and
March 1981), or because of institutional pressures
(Rowan 1977, Abrahamson 1996)—only to subse-
quently encounter pervasive resistance among those
that must actually deploy or use innovation. This re-
sistance might arise because the innovation is viewed
by most secondary adopters as too risky (Cooper and
Zmud 1990), deskilling (Attewell and Rule 1984), com-
petence destroying (Tushman and Anderson 1986), in-
compatible (Ramiller 1994), or in some other way un-
desirable. Under this argument, then, the assimilation
gap arises from a discrepancy between the knowledge
and motivations of those responsible for acquisition
versus those responsible for deployment and use.

The second argument is that even if the same deci-
sion makers are involved in both the acquisition and
deployment decisions, different considerations might
be salient for each decision. Abrahamson (1996) has
argued, for example, that many innovative manage-
ment ideas are subject to the same forces that drive fad
and fashion, and that managers may be compelled to
adopt simply owing to popularity of the ideas among
members of their institutional network. While
Abrahamson does not make a distinction between ac-
quisition and deployment, it seems possible that fad
and fashion might compel the outward appearance of
adoption created by acquisition, but not similarly com-
pel actual use.
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6.4. Potential Limitations

Like most studies, this one is subject to some limita-
tions. In terms of data collection, managers were asked
to provide retrospective reports on the timing of events
that, in some cases, occurred many years in the past.
This can be expected to introduce noise into the mea-
surement process. However, we are unaware of any
reason to think it introduces systematic bias. Second,
the definitions for nontrivial deployment (25% use on
new applications), the duration for ordinary lags (4
years), and the baseline assimilation gap (75% experi-
encing only ordinary lags), while designed to be gen-
erous standards for the technologies included in this
research, are somewhat arbitrary and might be too
strict (or not strict enough) for other technologies.
However, a sensitivity analysis using different values
for the latter two rules had no effect on the results.
Finally, for CASE, the portion of the diffusion process
encompassed by the observation period was less than
might ideally be desired, but unavoidable given the
relative newness of the technology. For all three in-
novations, only the portion of the innovation process
for which both acquisitions and deployments were still
experiencing steady growth was observed, thus ac-
counting for the relative stability of measured gaps
over time. Nevertheless, these potential limitations are
not believed sufficient to bring into serious question
the broad empirical conclusions of the study, namely
that assimilation gaps exist, are measurable, and are
large enough, especially for CASE, to merit practical
attention.

7. Conclusions

This research makes several contributions to the study
of innovation diffusion. It introduces the assimilation
gap concept, and develops a general operational mea-
sure derived from the difference between the patterns
of cumulative acquisitions and deployments. It pres-
ents several theoretical explanations for why some
technologies may be especially predisposed to a pro-
nounced gap. It develops novel techniques for mea-
suring assimilation gaps, for establishing whether two
gaps are significantly different from each other, and
for establishing whether a particular gap is absolutely
large enough to be of substantive interest. Finally, it
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demonstrates these techniques in an analysis of adop-
tion data for three prominent innovations in software
process technology—RDBs, 4GLs, and CASE. The
analysis confirmed that assimilation gaps can be sen-
sibly measured, and that their measured size is largely
consistent with a priori expectations. As expected, all
three SPIs exhibited significant assimilation gaps. The
gap for CASE was especially pronounced, a result con-
sistent with the growing chorus of studies noting
marked CASE implementation challenges.

Assimilation gaps imply a distinctive pattern of dif-
fusion, one that has important implications for man-
agers and researchers. An innovation that enjoys ro-
bust sales—yet is only sparsely deployed—is not
genuinely diffusing in the sense of having a significant
impact on the operational processes of acquiring firms.
This suggests that based on impressive sales data
alone, observers should be guarded about concluding
that an innovation is necessarily destined to become
widely used. For diffusion researchers, this study has
the immediate implication that cumulative deploy-
ments should be modeled instead of, or in addition to,
cumulative acquisitions when assimilation gaps are
likely to be present. In addition, this work lays a foun-
dation of concepts and techniques researchers can use
in future theory-driven investigations of why assimi-
lation gaps exist, and what can be done to predictand/
or counter them.
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three anonymous reviewers, and the associate editor for their helpful
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Appendix A: Using the Weibull Distribution to
Construct and Analyze Data for a Hypothetical
Baseline Survivor Process

Step 1. Determine the “shape” and “rate” parameters for the baseline
survivor function.

The Weibull survivor distribution (see Equation (2) below), has
two parameters, k and . The x parameter has the greatest influence
on the shape of the curve, while p has the most influence on the rate
at which it declines

S = e™¥” @
“To define the baseline survivor process, both the shape and the

rate parameter for the associated Weibull distribution must be de-
termined. This was be done by assigning the shape parameter based
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on the shape of the observed survivor process to which the baseline
will be compared, and then assigning the rate parameter to ensure
that the baseline process behaves as intended, i.e., it passes through
the point of 75% deployment at 48 months.

To obtain a value for x for each baseline process, least squares
regression (after appropriate transformations) was used to fit a Wei-
bull distribution to the actual survivor function estimates for the
associated technology. « for the baseline (k') was then assigned to
be the same as the estimated x parameter for the associated observed
technology. p for the baseline (p') was determined by simply con-
straining the baseline curve to pass through 0.25 at 48 months. That
is, the equation S(t) = 0.25 = ¢~ ™" was solved for .

Step 2. Use the specified Weibull function to calculate the expected
survival probabilities through time T for the baseline process.

This was accomplished by simply solving the survivor function
equation for each technology repeatedly for T = 6, 18, 30 and so on
until the maximum possible observed duration was reached.

Step 3. Use Monte Carlo simulation techniques to randomly gen-
erate multiple data sets, each containing survival data conforming
to the survival probabilities for thé baseline process and the observed
process.

Once survival probabilities have been calculated, a random num-
ber generator can be used to generate survival times consistent with
these assumed probabilities. (The probability of a survival time fall-
ing within any particular interval is equal to survival probability at
the end of the interval less the survival probability at the beginning
of the interval.) The specific procedure employed was to randomly
assign, for every case where the acquisition of a particular technol-
ogy had been reported, a random time until deployment for that
case. For every deployment time that resulted in a deployment year
later than 1993, the case was designated as being censored.

Step 4. For each generated dataset, perform tests to check whether
the hypothesis that the series was generated by the same process
that generated the observed survivor data can be rejected.

Homogeneity tests were performed comparing the actual process
to the associated baseline just as they were to compare two actual
survival processes,

Step 5. Determine whether, in the clear majority of the trials, the
conclusion of homogeneity is rejected.

This was accomplished by running 30 simulations for each tech-
nology and recording the results of the homogeneity tests for each.
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