DPOBUCLIVINY ..o

Trade-offs between
Productivity and Quality
in Selecting Software
Development Practices

Alan MacGormack, Harvard University
Chris F. Kemerer, Uxniversity of Pittsburgh

Michael Gusumano, Muassachusetts Institute of Technology

Bill Grandall, Hewlett-Packard

iven software’s important role in business, the design of effective
development processes has received great attention. Early at-
tempts at standardizing a formal software development model
culminated in what’s now known as the waterfall model. Over

time, this view of software development as a process that could be managed

proactively led to the development of other models, each proposing im-

provements. However, although some of the practices in these newer models

complement the waterfall model, others ap-
pear to contradict its main principles. Further-
more, the performance dimensions that each
practice seeks to optimize often differ. Unfor-
tunately, these potential conflicts are difficult

Ghoosing appropriate practices for a project can be hard, given the
various dimensions of performance each claims to optimize. Using
data from 29 projects, this study examines the impact of eight

development practices on both productivity and quality. Resuits
suggest managers should choose a coherent system of practices
on the basis of the specific objectives the software must meet.

78 IEEE SOFTWARE

Published by the IEEE Computer Society

to resolve because the data presented to sup-
port most models is anecdotal and biased to-
ward reporting only successful projects.

Our objective here is to look at how certain
practices, proposed by various development
models, affect performance. By exploring dif-
ferent practices’ associations with multiple di-
mensions of performance across a number of
projects, we examine the trade-offs involved in
designing a process to optimize specific per-
formance criteria. We carefully selected the
practices for investigation to explore some of
the potential conflicts that arise between dif-
ferent development models.

0740-7459/03/$17.00 © 2003 IEEE

Software development models
and practices

Once upon a time, software development was
seen mainly as an art. Stories of legendary devel-
opers abounded, describing how fast they could
write code and how “cool” the resulting func-
tionality was. The development process most
prevalent in the early days was an implicit one:
the “code and fix” model. This model reflected
more the absence of a formal development
process than any predetermined thought as to
how to manage the process. In essence, devel-
opers built systems with minimal input as to
what they were supposed to do, put them in
front of clients, then tried to remedy the defects
that were found. The process relied on the
“star power” of the programmers involved
and, for any system of significant complexity,
almost guaranteed poor results.

The waterfall development model was intro-
duced in the late 1960s in response to the prob-
lems of managing large custom software devel-
opment projects. Its aim was to bring control
and discipline to what had previously been a
rather unstructured and chaotic process. The
waterfall model involves completing a series of
stages, including requirements definition, speci-
fication, planning, design, implementation, and
integration. It emphasizes the need to develop
comprehensive and detailed specifications up
front and thereafter to execute efficiently ac-
cording to these specifications.

The waterfall model proved to be a some-
what successful response to the early problems
that had plagued software development, so
people began trying to improve on it. These ef-
forts included both examining other practices
that were complementary to the waterfall model
(for example, formal design and code reviews)
and exploring new model types that might be
better suited to environments where the wa-
terfall model proved ineffective. Many of these
newer models focused on markets where cus-
tomer needs were uncertain or rapidly chang-
ing. The processes they advocated were there-
fore based more on the need for speed and
responsiveness than on the traditional objec-
tives of control and discipline. At the heart of
these more flexible models was the notion that
a prototype or an actual working version of
the software should be released to customers
at an extremely early stage of development.’-?
To facilitate this process, development was of-
ten broken into several subcycles, each geared

to producing a subset of the final product’s
functionality.3*

So, a large number of software development
practices have been proposed over the past 40
years, many as part of more comprehensive
development models. The problem is not so
much that we lack “silver bullets” for a proj-
ect manager’s arsenal but that we have such an
extensive array of differently colored bullets
that choosing among them has become impos-
sible. How should managers make these
choices? Is it possible to find a set of practices
that will improve performance on all dimen-
sions? Or must managers tailor the design of
their processes to each project’s specific re-
quirements? The fact that different practices
often bring similar benefits further compli-
cates the problem. For example, conducting
formal code inspections helps identify defects
at an early stage, as does conducting daily
builds and integration tests on a design.’8
Should managers use all these practices, or
would one suffice? Finally, and perhaps most
important, there are instances where the prin-
ciples of one model appear to contradict those
of another. Take, for example, the waterfall
model, which stresses the need to complete a
product’s specifications before beginning its
development. Many of the more flexible mod-
els, which let product specifications evolve as
a project proceeds, violate this principle. So,
do flexible models incur a performance
penalty as a consequence? Or do they over-
come this potential trade-off through the use
of other mechanisms? These were the ques-
tions we set out to answer.

Empirical setting

Our results are based on a sample of
Hewlett-Packard software development proj-
ects. (During this study, HP spun off Agilent as
a separate firm, so this article reports data
from both HP and Agilent.) HP is a large high-
technology firm with operations in various
businesses (for example, personal computers
and peripherals, workstations and servers,
measuring instruments and medical devices)
across multiple geographic locations. The di-
versity of businesses and locations ensured
wide variation in the practices we observed,
while the use of a single firm helped control
for extraneous factors that might have influ-
enced development performance. This setting
also helped facilitate data collection.

September/October 2003

The probiem Is

silver bullets

but that we

array of
differentiy

colored ones.

IEEE SOFTWARE

79

80

In most
projects,

before the
documents

were
complete.

IEEE SOFTWARE

We gathered data using a survey instrument
hosted on an MIT Web server from the sum-
mer of 2000 through the winter of 2001. A
company contact published the project’s aims
using HP’s regular internal communication
systems and asked project managers to com-
plete the survey. We asked managers to use
reference materials such as project data sheets,
schedules, progress presentations, and re-
source plans. Although 35 managers re-
sponded, only 32 provided enough data to
consider their project for analysis. After re-
viewing responses, we omitted three more
projects due to their small size (they involved
developing fewer than 1,000 new lines of
code). So, the final sample for analysis con-
sisted of 29 projects.

We collected data on two performance
measures:

B Productivity: the number of lines of new
code developed per person-day (an imper-
fect measure of productivity but one that
could be measured consistently)

B Quality (also referred to as from here on
as defect rate): the number of customer-re-
ported defects per month per million LOC
averaged over the first 12 months after
launch

Software development practices

We collected data on eight software devel-
opment practices. The first two measures cap-
tured the degree to which specifications were
complete (as a percentage) before coding be-
gan in each project. We report data on two
types of specification:

B Functional (or requirements) specification:
a document that describes how features
work but not the underlying structure of
code or modules

B Detailed design specification: a document
that describes the modules’ structure and
an outline of the algorithms where needed

Our next two measures captured whether
formal design reviews and formal code re-
views were used during development, as indi-
cated by a binary variable. For example, the
code review variable was set to 1 if one or
more people typically reviewed another per-
son’s code before it could be checked into the
system build.

http://computer.org/software

The third pair of measures (as we defined
them) related to the use of more flexible
processes:

m Subcycles: Whether development was di-
vided into separate subcycles, in which a
subset of the final product’s functionality
was built and tested

m Early prototype: The extent to which an
early prototype was shown to customers,
as measured by the percentage of the prod-
uct’s final functionality that was complete
when the first prototype was released

The final two measures captured the use of
practices that provide rapid feedback on a de-
sign’s performance: whether daily system builds
were used during development and whether
any type of integration or regression test was
conducted at code check-in (binary variables
were used in each case).

Descriptive statistics

Table 1 reports descriptive statistics for the
sample. The median project involved develop-
ing 70,000 new LOC for a product totaling
170,000 LOC. The median project team size
was nine people, with a median duration of 14
months. In terms of the type of software being
developed, 59 percent of projects involved ap-
plication software, 38 percent involved systems
software, and 28 percent involved embedded
software. (These numbers add up to more than
100 percent because some projects reported
developing software of multiple types.)

In terms of performance, the mean defect
rate of products was 18.8 defects per month per
million LOC. The mean productivity achieved
was 26 LOC per person-day. In terms of devel-
opment practices, several points deserve com-
ment. First, in most projects, coding began be-
fore the specification documents were
complete; this was particularly notable for the
detailed design specification, which was on av-
erage only 20 percent complete when coding
began. Thus, in this sample, there were few
pure waterfall models. Second, clear differences
emerge in the penetration of different develop-
ment practices: Around 30 percent of projects
used daily builds throughout development,
around half the projects used code reviews and
integration or regression tests at check-in, and
almost 80 percent of projects used design re-
views. Finally, although 76 percent of projects

Descriptive statistics for the sample’s 29 projects

Variable Description Mean Median Standard deviation Minimum Maximum

Defect rate Average no. of customer-reported defects per month 18.8 71 23.1 0.0 80.0
per million lines of new code over first 12 months

Productivity New LOC developed per person-day 26.4 17.6 24.0 0.7 85.0

Functional Percentage of functional specification that was 55% 55% 32% 0% 100%

specification complete before team started coding

Design Percentage of detailed design specification 20% 10% 26% 0% 80%

specification complete before team started coding

Design review Binary: 1 if design reviews were performed 0.79 1 0.41 0 1
during development, 0 if not

Code review Binary: 1 if the number of people who typically 0.52 1 0.51 0 1
reviewed another person’s code was one or more,
0if none

Subcycles Binary: 1 if development was divided into 0.76 1 0.43 0 1
separate subcycles, 0 if not

Early prototypet Percentage of final product’s functionality 38% 40% 24% 0% 90%
contained in the first prototype

Daily builds Binary: 1 if design changes were integrated into 0.32 0 0.48 0 1
code base and compiled daily; 0 if not

Regression Binary: 1 if someone ran an integration or regression 0.55 1 0.51 0 1

test test when checking code into the build; 0 if not

Defect rate Productivity Model Defectrate Productivity

Control variables Constant 16.36 34.9%***
Systems projects 0.436** 0.030 Systems 14.87**
Applications -0.058 -0.018 Early prototype’ 0.48** —0.42**>
Embedded 0.014 0.066 Daily builds 16.89**
Size (Ln{LOC}) -0.562*** 0.514*** Regression test -12.64**

Design review -19.65**

R-squared (adjusted) 74.6% 52.8%
Process variables F-ratio 15 11
Functional specification 0.035 0.473** Df 15 16
Design specification -0.403* -0.014 I ——
Early prototype! 0.742**** -0.624*** o A 4
Subcycles -0.418" 0.021
Daily builds -0.026 0.316
Regression test —0.383* 0.180
Design review 05457 0227 Results .
Code Teview 0755 508 Our approach was first to assess the per-

|
t: Implies less functionality in the first prototype
“p<10%, **p<5% **p<1% ***p<0.1%
Correlations in bold are significant (p < 0.05)

divided development into subcycles, they varied
greatly in how early they showed a prototype to
customers. In some projects, coding had not be-
gun at this point, whereas in others, the prod-
uct’s functionality was 90 percent developed.

formance impact of each development practice,
as well as control variables for the type of soft-
ware and the size of the product, using simple
correlations (see Table 2). For each performance
dimension, we then developed a best-fit multi-
variate model using stepwise backward regres-
sion (see Table 3). To ensure that the results
were robust, we removed from the analysis proj-
ects that were outliers on each performance di-
mension on a case-by-case basis.

September/October 2003 1EEE SOFTWARE

_ Simple correlations with defect rate

to the degree

82

Developers
are more
productive

that a more
complete
functional

specification

exists prior
to coding.

IEEE SOFTWARE

and productivity

We found a significant relationship between
systems software projects and defect rate, im-
plying that these types of projects result in
higher levels of customer-reported defects (per
LOC) than application or embedded software
projects. (All references to statistical signifi-
cance in this article indicate relationships that
are significant at the usual confidence levels
(p < 0.05).) We also found a significant rela-
tionship between software size and both pro-
ductivity and defect rate, implying that larger
projects are more productive and have lower
levels of customer-reported defects (per LOC).

Regarding the use of specifications, there was
a significant relationship between the complete-
ness of the functional specification and produc-
tivity. There was a weak relationship between
the completeness of the detailed design specifi-
cation and defect rate (p = 0.078). The former
result suggests that developers are more produc-
tive to the degree that a complete functional
specification exists prior to coding. This is intu-
itive, given that the functional specification out-
lines the features that developers must complete.
To the degree that these are stated up front, de-
velopers can focus solely on “executing” these
features in code. The latter result suggests that
the existence of a more complete design specifi-
cation up front contributes to a product with
fewer defects. Again, this is an intuitive finding.
Having a detailed description of each feature’s
design presupposes that some thought has gone
into selecting which among the available alter-
natives are most robust.

With regard to using formal reviews, the re-
lationship between design reviews and a lower
defect rate was significant, but code reviews
were not significant in predicting either out-
come. The former result is intuitive, given that
design reviews are likely to uncover errors in
the overall development approach that might
otherwise remain hidden until a product is op-
erating in the field. An association between
code reviews and lower defect rates might also
be expected. However, our measure of defect
rate captures only the bugs that customers re-
port—meaning bugs that might otherwise be
found through code reviews may be discov-
ered through other development practices (for
example, integration or regression tests) prior
to product launch.

With regard to measuring flexible

http://computer.org/software

processes, we found a significant relationship
between early prototyping and both a lower
defect rate and higher productivity. We found
a weak relationship (p = 0.060) between split-
ting development into subcycles and a lower
defect rate. The former result suggests that
getting early feedback from customers con-
tributes to multiple dimensions of perform-
ance, mirroring the findings of previous em-
pirical studies of product development in the
software industry.” The latter result suggests
that breaking a project into subcycles might
contribute to a lower defect rate but has little
effect on productivity. These results are intu-
itive: breaking development into subcycles and
releasing an early prototype enable developers
to identify and correct defects at an earlier
stage in a project. Furthermore, early proto-
typing brings the promise that subsequent
work will continue only on the features cus-
tomers value most, with a subsequent positive
impact on productivity.

Regarding practices that provide rapid
feedback on design performance, there was a
weak relationship (p = 0.087) between inte-
gration or regression testing at code check-in
and a lower defect rate. The use of daily builds
was not significant in predicting either per-
formance measure, although it does appear in
multivariate models, as we’ll see later. These re-
sults suggest that a project’s defect rate doesn’t
depend on whether it compiles daily builds of
the evolving design but rather on whether the
code that is checked goes through integration
or regression tests that examine its perform-
ance. This makes intuitive sense, given that the
tests themselves, not the mere submission of
code, generate feedback on the design. With
regard to daily builds, however, many man-
agers reported varying build frequency ac-
cording to project stage and integration
level—for example, module versus system
builds. Our measure, which reflects only the
projects that conducted daily system builds
throughout development, does not capture the
subtleties of these approaches.

Multivariate models of defect rate
and productivity

Table 3 shows the final multivariate regres-
sion models for both defect rate and produc-
tivity. We obtained these through a stepwise
backward procedure that progressively elimi-
nated variables that were not significant in

predicting the outcome. In the final model pre-
dicting defect rate, three development process
measures and one control variable (for sys-
tems software projects) were significant. To-
gether, these measures explain over 74 percent
of the variation in defect rate. The significant
development process measures are the use of

B An early prototype
B Design reviews
B Integration or regression testing at check-in

When we compare theses results to those of
simple correlations, we can make several ob-
servations. First, controlling for size is no
longer a significant predictor. Similarly, the
weak relationships observed between defect
rate and both the completeness of the detailed
design specification and breaking develop-
ment into subcycles are no longer present. By
contrast, the measure of integration or regres-
sion testing is a stronger predictor in this
model than when considered alone.

To illustrate the magnitude of the effects we
observe in this model, consider the example of
an applications software project that releases a
prototype to customers when 40 percent of the
functionality is complete (the sample median).
The model suggests that such a project typically
has a defect rate of 35.6 defects per million
LOC per month. (We get this figure by substi-
tuting appropriate numbers into the equation
implied by the model.) Now, releasing a proto-
type when only 20 percent of the functionality
is complete is associated with a 27 percent re-
duction in the defect rate, to 26.0. Adopting the
practice of integration or regression testing at
code check-in is associated with a 36 percent re-
duction in the defect rate, to 22.92. Finally,
adopting the practice of design reviews is asso-
ciated with a 55 percent reduction in the defect
rate, to 15.9. We conclude that the benefits from
adopting such practices are significant.

In the final model predicting productivity,
two development process measures are signifi-
cant. Together, these measures explain over half
the variation in productivity. The significant de-
velopment process measures are the use of

B An early prototype
® Daily builds

Comparing these results to the results using sim-
ple correlations, we note first that the measure

of functional-specification completeness is no
longer a significant predictor in this model. It
appears that the observed trade-off between
specifying less of a product’s requirements up
front and productivity disappears in the pres-
ence of other process variables. Second, the
use of daily builds is a significant predictor in
this model, although it was not when consid-
ered alone. This suggests that this practice in-
teracts with others in the model in a way that
explains the remaining variance left only after
more powerful predictors have taken effect.

To illustrate the magnitudes of the effects
we observe in this model, we again consider
an applications software project in which a
prototype is released to customers when 40
percent of the functionality is complete. The
model suggests that such a project typically
has a productivity of 18.1 LOC per person-
day. Now, releasing a prototype when only 20
percent of the functionality is complete is as-
sociated with a 35 percent productivity in-
crease, to 26.5. Adopting the practice of daily
builds is associated with a 93 percent produc-
tivity increase, to 35.0. Again, we conclude
that the benefits from adopting such practices
are significant.

Our findings shed light both on the rela-
tionships between specific practices and per-
formance and on the nature of the interactions
among the various practices that form part of
a development model.

Practices and performance

The results illustrate that different software
development practices are often associated
with different dimensions of performance.
For example, the use of integration or regres-
sion tests as code is checked in appears in our
final model predicting defect rate but not in
the model predicting productivity. Conversely,
the use of daily builds appears in our final
model predicting productivity but not in the
model predicting defect rate. For practitioners,
this result implies that the choice of develop-
ment model for a particular project—and
hence the set of practices used—should differ
according to the specific performance dimen-
sions that must be optimized. Projects opti-
mized for productivity will use different com-
binations of practices than projects optimized
for quality. This conclusion is particularly rel-

September/October 2003

Different
software
development
practices
are often
associated

with different
dimensions of

performance

IEEE SOFTWARE

83

_ evant for practices that incur significant costs

models should
be considered

84

das coherent
systems of
practices.

IEEE SOFTWARE

(in terms of time, money, or resources).

Our results also indicate that some soft-
ware development practices are in fact associ-
ated with multiple dimensions of perform-
ance. For example, releasing a prototype
earlier in development appears to contribute
to both a lower defect rate and higher produc-
tivity. This finding complements other studies,
which have shown that an evolving product
design’s early release to customers is associ-
ated with a final product that is better
matched to customer requirements.” Given
that this measure consistently predicts several
dimensions of performance in different sam-
ples of projects, it represents a uniformly good
software development practice.

Finally, some practices that are not corre-
lated with performance when considered in
isolation appear as significant predictors in our
multivariate models. The use of daily builds
follows this pattern, appearing in the final
model predicting productivity despite not be-
ing correlated with this performance dimen-
sion on an individual basis. This suggests there
is a “pecking order” in terms of the relative
importance of various development practices.
Some appear to explain the residual variance
left unexplained only after more dominant
process parameters (for example, early proto-
typing) have taken effect.

Coherent systems of practices

Some practices that are correlated with per-
formance when considered in isolation do not
appear as significant predictors in multivariate
models. For example, we initially found that
having a less complete functional specification
when coding begins is associated with lower
productivity, lending support to the waterfall
model of development. When we accounted
for the variance explained by releasing early
prototypes and using daily builds, however,
this relationship disappeared. (A similar pat-
tern exists for the relationship between a more
complete detailed design specification and a
lower defect rate.) In a sense, these other prac-
tices appear to “make up” for the potential
trade-offs arising from an incomplete specifi-
cation. This suggests that development models
should be considered as coherent systems of
practices, some of which are required to over-
come the potential trade-offs arising from the
use (or absence) of others.

http://computer.org/software

To illustrate our argument, consider that
without a complete functional specification when
coding begins, a development team would have to
evaluate what features should be in the prod-
uct as they went along. As a result, they would
likely be less productive than in projects hav-
ing a complete specification. However, to
overcome this trade-off, they might organize
development tasks so they could release a pro-
totype early in the project. The aim would be
to solicit feedback on the features that should
be in the final product, providing a surrogate
for the information that a specification would
normally contain. In essence, early prototyp-
ing provides an alternative mechanism for ob-
taining the benefits that a complete specifica-
tion would normally bring.

Importantly, these dynamics help shed light
on the debate about whether more flexible de-
velopment models are likely to suffer along
traditional performance dimensions such as
productivity and quality. These doubts arise in
part from the fact that many of these models
appear to lack the control mechanisms that
are built into the waterfall model. Our results
suggest, however, that more flexible models
compensate for such problems by using alter-
native practices geared to overcoming the po-
tential trade-offs. This finding highlights the
danger in assuming that you can implement a
more flexible process piecemeal by “picking
and choosing” among the many practices
claimed to support greater flexibility. To the
degree that such a process relies on a coherent
system of practices, a piecemeal approach is
likely to lead to disappointment.

verall, our results suggest that at the
beginning of each project, practition-
ers should establish the primary per-
formance objectives for the software deliver-
able, given that these will largely drive the
type of development model and mix of prac-
tices they should use. In our sample of proj-
ects, only one practice—releasing an early pro-
totype during development—was associated
with both higher productivity and a lower de-
fect rate.

At a higher level, our results shed light on

potential conflicts between traditional and
more flexible development models. Indeed,
they provide a way to reconcile the seemingly
opposite viewpoints that these approaches are
founded on. More flexible processes do not
have to incur a performance penalty vis-a-vis
models such as the waterfall model, even
though they appear to violate the principles of
such models. This is because they are based on
coherent systems of practices, in which some
practices are geared to overcoming the poten-
tial performance trade-offs from the use of a
more flexible process. Our findings highlight
why future researchers should gather data on
multiple dimensions of performance as well as
on alternative sets of practices that might pro-
vide similar benefits to the ones they are in-
vestigating. Only with such an approach will
the subtleties we observed in this study be-
come more apparent. &

References

1. J.L. Connell and L. Shafer, Structured Rapid Prototyp-
ing: An Evolutionary Approach to Software Develop-
ment, Yourdon Press, 1989.

2. B.Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer, vol. 21, no. 5, May
1988, pp. 61-72.

3. C. Wong, “A Successful Software Development,” IEEE
Trans. Software Eng., vol. 10, no. 6, Nov. 1984, pp.
714-727.

4. T. Gilb, Principles of Software Engineering Manage-
ment, Addison-Wesley, 1988.

5. A. Porter et al., “An Experiment to Assess the Cost-
Benefits of Code Inspections in Large Scale Software
Development,” IEEE Trans. Software Eng., vol. 23, no.
6, June 1997, pp. 329-346.

6. M. Cusumano and C.F. Kemerer, “A Quantitative
Analysis of US and Japanese Practice and Performance
in Software Development,” Management Science, vol.
36, no. 11, Nov. 1990, pp. 1384-1406.

7. M.A. Cusumano and R.W. Selby, Microsoft Secrets, Si-
mon & Schuster, 1998.

8. S. McConnell, Rapid Development, Microsoft Press,
1996.

9. A. MacCormack, “Product-Development Processes that
Work: How Internet Companies Build Software,” Sloan
Management Rev., vol. 42, no. 2, Winter 2001, pp.
75-84.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

About the Authors

Alan MacCormack is an associate professor of business administration at the Harvard
Business School. His research explores the management of technology and product develop-
ment in high-tech industries, particularly the software industry. He received his doctorate in
business administration from the Harvard Business School, where he received the George S.
Dively award for distinguished research. Contact him at Morgan Hall 39, Harvard Business
School, Soldiers Field Park, Boston, MA 02163; amaccormack@hbs.edu.

Chris F. Kemerer is the David M. Roderick Professor of Information Systems at the
Katz Graduate School of Business, University of Pitisburgh. His research inferests include soft-
ware engineering measurement and modeling, economic issues in information systems, and
technology adoption and diffusion. He received his PhD in systems sciences from Carnegie
Mellon University. Contact him at 278A Mervis Hall, KGSB, Univ. of Pitishurgh, Pittshurgh, PA
15260; ckemerer@katz.pitt.edu.

Michael Cusumano is the Sloan Management Review Distinguished Professor at MIT's
Sloan School of Management. He specializes in strategy, product development, and entrepre-
neurship in the software business. He received his PhD in Japanese studies from Harvard Uni-
versity and a postdoctoral fellowship in production and operations management at the Harvard
Business School. His most recent book, The Software Business: What Every Manager, Program-
mer, and Entrepreneur Must Know, in Good Times and Bad, is forthcoming in 2004. Contact
him at the MIT Sloan School of Management, 50 Memorial Dr,, Rm. E52-538, Cambridge, MA
02142-1347; cusumano@mit.edu.

Bill Grandall is director of product generation services at Hewlett-Packard. His team is

responsible for developing and disseminating new and better ways of developing products,

services, and solutions across HP and for delivering shared engineering services across HP.

He holds an MS in computer science and an MS in management from MIT, where he was a fel-

low in the Leaders for Manufacturing program. He is a member of the ACM. Contact him at

Eewleﬂ-Putkurd, 1501 Page Mill Rd., MS 1229, Palo Alto, CA 94304-1126; bill.crandall@
p.com.

SOFTWARE
ENGINEERING

GLOSSARY

Peer reviews

peer review: A semiformal to formal evaluation technique in
which a person or group other than the originator examines
software requirements, design, or code in detail to detect
faults, violations of development standards, and other problems;
sometimes called walkthrough or inspection.

inspection: A type of peer review in which a group of the devel-
oper's peers checks product documents at specific points in the
development process to find errors in the product.

author: The person responsible for the software product meeting
its inspection criteria, contributing to the inspection based on
special understanding of the software product, and for per-
forming any rework required. [IEEE Std. 1028-1997]

moderator: The person responsible for planning and preparing
for an inspection, ensuring that it is conducted in an orderly
way and meets its objectives, collecting inspection data (if
appropriate), and issuing a report. [IEEE Std. 1028-1997]

B California State University, Sacramento M thayer@csus.edu

Richard H. Thayer

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

