
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Does Software Process Improvement Reduce
the Severity of Defects?

A Longitudinal Field Study
Harter, Donald E., Kemerer, Chris F., Member, IEEE Computer Society and Slaughter, Sandra A.

Abstract— As firms increasingly rely on information systems to perform critical functions the consequences of software defects

can be catastrophic. Although the software engineering literature suggests that software process improvement can help to

reduce software defects, the actual evidence is equivocal. For example, improved development processes may only remove

the “easier” syntactical defects, while the more critical defects remain. Rigorous empirical analyses of these relationships have

been very difficult to conduct due to the difficulties in collecting the appropriate data on real systems from industrial

organizations. This field study analyzes a detailed data set consisting of 7,545 software defects that were collected on software

projects completed at a major software firm. Our analyses reveal that higher levels of software process improvement

significantly reduce the likelihood of high severity defects. In addition, we find that higher levels of process improvement are

even more beneficial in reducing severe defects when the system developed is large or complex, but are less beneficial when

requirements are ambiguous, unclear or incomplete. Our findings reveal the benefits and limitations of software process

improvement for the removal of severe defects and suggest where investments in improving development processes may have

their greatest effects.

Index Terms— software complexity, defect severity, requirements ambiguity, software process, CMM.

——————————  ——————————

1 INTRODUCTION

oftware defects have historically plagued the
software industry. The National Institute of Stan-
dards and Technology (NIST) estimates that poor

software quality costs U.S. businesses $59.5 billion per
year, split between software developers ($21.2 billion)
and users ($38.3 billion) [1]. Further, the consequences of
software defects are growing as individuals, organiza-
tions and society increasingly rely on software systems
for critical functions. As noted by Mann, ―in the last 15
years alone, software defects have wrecked a European
satellite launch, delayed the opening of the hugely expen-
sive Denver airport for a year, destroyed a NASA Mars
mission, killed four marines in a helicopter crash, induced
a U.S. Navy ship to destroy a civilian airliner, and shut
down ambulance systems in London, leading to as many
as 30 deaths.‖ [2]

How can software engineers improve this situation?
There is some research suggesting that software process
improvement efforts, such as the Capability Maturity
Model (CMM) can help reduce defect rates. For example,
respondents to a survey conducted by Herbsleb et al. re-

ported that improvements in processes, as measured by
the CMM, led to significant reductions in defects [3].
Subsequent studies [4], [5] found that investments in
CMM process improvements resulted in significant im-
provements in both software quality and costs.

However, this prior work has not had the opportunity
to examine whether and/or how software process im-
provement affects the severity of defects. Severity is a
measure of the impact a defect has on a system and its
users. Crosby identified the importance of defect severity
as early as 1979 [6]. More recently, Jones re-emphasized
the importance of measuring severity levels rather than
simply identifying the number of defects [7]. An exami-
nation of defect severity has the potential to contribute to
the research on software quality because not all software
errors are equal. While some defects are merely cosmetic,
others can be catastrophic with potentially tragic conse-
quences. Two recently documented examples are:
 A software flaw in GE’s energy management system

contributed to the devastating scope of the Aug. 14,
2003, northeastern U.S. blackout and caused the fail-
ure of an alarm system at First Energy’s Akron, Ohio
control center, slowing the response and allowing the
blackout to cascade [8],

 Jaguar recalled 68,000 cars due to a software glitch
that would automatically shift the car into reverse if it
detected a significant change in fluid pressure [9].

Understanding the effects of software process im-
provements on these most severe error types is highly
beneficial in making the case for investments in process

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Donald Harter is with the Whitman School of Management, Syracuse
University, Syracuse, NY 13244. E-mail: dharter@syr.edu.

 Chris F. Kemerer is with the Katz Graduate School of Business, University
of Pittsburgh, Pittsburgh, PA 15260. E-mail: ckemerer@katz.pitt.edu.

 Sandra Slaughter is with the College of Management, Georgia Institute of
Technology, Atlanta, GA 30308. E-mail: San-
dra.slaughter@mgt.gatech.edu.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

S

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

improvement.
In addition to the severity of the defect, the timing of

defect detection also affects software costs. A number of
researchers have noted that it is significantly cheaper to
fix defects detected earlier in the process, i.e., in devel-
opment rather than in production [10], [11]. Develop-
ment defects are those discovered prior to implementa-
tion of the system, while production defects are bugs
found during systems operations after system implemen-
tation. Since production defects are believed to be the
most expensive to repair, investments in process im-
provement early in the life cycle have the greatest poten-
tial to reduce costs.

Finally, not all projects are equal – some systems are
large, others small, some complex, others less so. Some
projects have requirements that are ambiguous, unclear
or incomplete, or that may change frequently; other
projects have requirements that are more straightforward
and clearly defined. The software engineering literature
has identified software complexity, size and requirements
ambiguity as key factors influencing software quality [50].
Building on this we ask whether software process im-
provement has differential quality impacts for systems
with different levels of these factors? To the degree that
resources are limited where should improvements in
software processes be prioritized: for larger systems, for
more complex systems, or for systems with ambiguous
requirements? An understanding of when software
process improvement is most beneficial in terms of severe
defect reduction can assist software managers in evaluat-
ing investment decisions by employing scarce resources
where they provide the most benefit [12]. These research
questions are summarized in Table 1.

<Table 1>
To answer these questions we analyzed an extensive

dataset including detailed, longitudinal data collected
over a period of twenty years on more than 7,545 devel-
opment and production defects from a major software
organization. The data were collected for an effort to de-
velop a large software system at this organization. The
software constitutes 7.7 million lines of code developed as
part of an inventory management information system.
The system development effort comprised a set of soft-
ware projects which varied in size, complexity and ambi-
guity of requirements, with an average size of 175,000
lines of code and an average duration of 9.6 months. A
unique feature of this setting is that it reflects a quasi-
experimental design, in which the organization improved
its software processes over time while working on vari-
ous projects to develop the system, advancing from CMM
level 1 through level 5 during the time period examined.
By investigating projects conducted at different levels of
CMM maturity for one system in one organization over
time, the possible effects of many other extraneous factors
are minimized. The longitudinal defect data thus consti-
tute repeated measures of the quality of the processes
used to develop this system, while controlling for the dif-
ferences in software size, complexity and requirements
ambiguity for each project, thus strengthening the inter-
nal validity of our findings. In addition, each defect was

assigned a level of severity, allowing us to relate im-
provements in software development processes to defect
severity. To the best of our knowledge this research is the
first study that explores the effects of software process
improvement as measured by the CMM level on the se-
verity of software defects. Exploration of the interaction
of CMM level with software size, complexity and re-
quirements ambiguity also has the potential to lend more
nuanced insights into what types of software projects are
likely to experience the greatest benefits from improve-
ments in software development processes.

In section 2 we review relevant prior literature on
software quality and software process improvement.
Section 3 proposes a research model and methodology to
analyze the effects of software process improvement,
software size, complexity, and requirements ambiguity
on software defect severity. Section 4 describes the re-
search site, research design and the unique data set. In
section 5 we present the analyses and results. Section 6
discusses the implications and insights of the study for
software engineering research and for managers in the
software industry, and section 7 reviews the conclusions
and opportunities for future research.
1 Previous Relevant Literature
2.1 Defect Severity
Although a significant volume of research has been pub-
lished on software quality, much of the research has fo-
cused on cross-sectional studies and fault prediction
models [13], [14], [15], [16], [17]. With few exceptions
most of the research has not had access to data on defect
severity, nor an opportunity to examine longitudinal data
relating to an organization’s evolution through all five
CMM levels. In contrast to these fault prediction studies,
the purpose of our current study is to empirically eva-
luate the effect of software process improvement, and
software size, complexity and requirements ambiguity on
defect severity.

Similar to prior researchers we define defects as flaws
in the specification, design, or implementation of soft-
ware [18] that cause the systems to fail to perform its
function [19]. Defects can appear throughout the software
life cycle [20]. Defect counts alone, while useful, may not
provide a complete picture of the quality of software sys-
tems. A more thorough approach to categorizing errors is
to examine the severity of a defect, as a system with even
many cosmetic defects would be much more desirable to
users than one with even a few catastrophic functional
failures. Humphrey defines defect severity as the impact
of a defect on the user’s operational environment [21]. A
number of software researchers specify a categorization
of defects of up to four severity levels [18], [22], [23], [24].
The IEEE 729 standard defines the most important defects
as either Critical (defect results in a systems or subsystem
failure, usually crashing) or Major (functional failure of
the system, e.g., incorrect calculations, data loss, etc.). A
less important set of defects are either Average (system
provides inconsistent or incomplete results) or Minor (de-
fect does not cause failure or impair usability). This cate-
gorization is mirrored throughout the literature, with a
slight variation in labeling, but relatively consistent inter-

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 3

pretations, by Jones [24], Poulin [26], Gao [27], UKSMA
[28] and Tsui [29].

This prior literature on defect severity tends to be fo-
cused on standards or taxonomies, rather than on quan-
titative analysis of empirical severity data; such studies
are rare, no doubt due to the reasons identified by Zhou
and Leung that make severity data difficult to collect [30].
First, severity data is expensive and time-consuming to
collect [30], [31]. Second, development or testing person-
nel must have sufficient training and background to accu-
rately assess severity levels [32]. The difficulty in acquir-
ing accurate severity data on software projects is likely
the key reason that more empirical research has not been
performed in this area.

Perhaps as a consequence of these difficulties, prior re-
search has tended to aggregate the two top category de-
fects into a single ―functional/business-critical errors‖
category, and to aggregate the two bottom category de-
fects into a ―non-business-critical/inconveniences‖ cate-
gory. Tsui further supports this two level view of defect
severity by recommending that the top category defects
should be fixed before production, but fixes for the bot-
tom category defects can be deferred [29].

However, even with this two-level view there is very
limited empirical research concerning the effect of process
improvement on the severity of defects. Perhaps the most
well known work is some anecdotal evidence from Hew-
lett-Packard (HP) suggesting that process improvements
affect the frequency of high versus low severity defects.
Their ―10X‖ improvement program found a differential
effect of process improvements on defect density for vari-
ous severity levels [33]. In evaluating the effect of process
improvement on defect severity HP aggregated critical
and serious defects (category 1 and 2) as high severity
defects and minor and cosmetic defects (category 3 and 4)
as low severity defects. HP’s five-year goals were to re-
duce post-release defect density by a factor of 10 (hence,
the ―10X‖ program) and to reduce the number of critical
and serious defects by 10X. After nine years HP expe-
rienced a 6X reduction in defect density, but only a 2.5X
reduction in critical and serious errors [33].
2.2 Software Process Improvement
For the last decade, software process improvement has
been a primary approach to improving software quality
[34]. Software process improvement refers to a defined
framework of software procedures that define the steps
and methods of a software process, define measures to
assess and benchmark the process, and implement the
defined procedures while looking for continuous im-
provement opportunities. Juran [35], [36], Deming [37]
and Crosby [6] have long advocated process improve-
ment as a means to improve quality in product develop-
ment, manufacturing and services. Humphrey’s early
research in software engineering highlighted the need for
process improvement in the software industry [38]. He
drew on principles from manufacturing in developing
quality oriented process guidelines for software devel-
opment, which evolved into the Capability Maturity
Model [39]. As the adoption and acceptance of the CMM
model have spread, the research literature has become

populated with numerous studies establishing a positive
relationship between software process improvement and
software quality [3], [40], [41], [42] and the relationships
among process, quality and cost [4], [5], [43], [44], [45].

Our study extends this prior research by testing the re-
lationship between software process improvement and
defect severity, while controlling for other factors that
may influence the results (the relationships are defined by
and illustrated in our conceptual model in Figure 1 which
is described in the next section).
3 Research Model, Design and Methodology
3.1 Conceptual Model

Prior research has tended to examine software quality
using the project as the unit of analysis, most likely be-
cause the majority of organizations maintain quality sta-
tistics at this aggregate level. However, our study had
access to uniquely detailed data about each defect. By
moving the unit of analysis down to the defect level, we
can explore the relationships between software size, com-
plexity, requirements ambiguity and software process
improvement on the severity level of each defect. Using
these data we formulate a model with the defect as the
unit of analysis and severity level as the dependent varia-
ble.

The conceptual framework for this analysis provides a
model to estimate the probability of a detected defect be-
ing a high severity defect, given a set of conditions con-
cerning software process improvement, software size,
complexity, and requirements ambiguity. Intuitively,
larger, more complex and more ambiguous systems are
expected to experience worse problems, all else being
equal, and we start by including those variables and test-
ing them in our model. Then, with those controls in-
cluded, we test for the effect of software process im-
provement on the potential for severe defects to occur.

Figure 1 outlines our two related models for (1) devel-
opment defects (solid boxes and arrows) and (2) produc-
tion defects (solid boxes and arrows plus dashed boxes
and arrows). Development defects are those detected dur-
ing the software development process but before custom-
er acceptance. The strength of the relationship between
software characteristics (size, complexity and ambiguity)
and the severity of a defect is expected to be influenced
by software process improvement. Process improvement
is said to have a moderating effect on software characte-
ristics and is depicted by the intersecting lines in Figure 1
[46]. A moderated model measures the effect that one
variable has on the relationship between two other va-
riables [47]. This interaction can strengthen or weaken
the relationship between the system characteristics and
the severe defects. In particular, in our study we use a
moderated model to test whether the benefits of software
process improvement are enhanced for systems that are
larger, more complex or have more ambiguous require-
ments. From a practical perspective this can lend insight
into what types of systems benefit the most from process
improvements.

<Figure 1>
We propose that software process improvement, size,

complexity and requirements ambiguity all directly affect

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

the likelihood that a defect will be classified as high sever-
ity. In Figure 1 these main effects are represented by the
arrows from Software and Process to High Severity Defects.
However, we argue that process improvement may have
a differential impact on the probability of a high severity
defect for software projects of different sizes, complexity
levels, and levels of requirements ambiguity. These inte-
ractions are represented by the intersecting arrow in Fig-
ure 1.

Our research site maintained records for both devel-
opment defects and production defects. The develop-
ment defect model described above includes variables for
process, size, complexity, ambiguity and their interac-
tions. However, prior researchers have found that quality
in one life cycle stage tends to influence quality in later
stages [48], [49]. Because of this persistence of quality
from development through production we include the
proportion of high severity development defects as an addi-
tional variable in the production defect version of the
model outlined in Figure 1 as represented by the dashed
box and arrow. We separately examine models for devel-
opment and production defect severity consistent with
Figure 1 to determine whether the impacts on severity
levels differ by life cycle phase.
3.2 Hypotheses
Using the models specified in Figure 1 we will examine
both the direct effect of process improvement on the like-
lihood of development and production defects and
whether process improvement interacts with the project
level variables when determining the likelihood of high
severity errors. The following sections specify our hypo-
theses for these effects.
3.2.1 Process Improvement Effect on Development De-
fect Severity
The CMM process maturity model encompasses
processes to ensure quality throughout the development
life cycle by monitoring the requirements, design, coding
and testing process via functional requirement reviews,
design reviews, code reviews and testing. One strength
of this high level process is the ability to ensure that the
final software matches the functional requirements from
the start of the life cycle. For example, Jones found that
severity level 1 errors were generally requirements errors,
design errors dominated severity level 2, and coding er-
rors and documentation errors were the primary source
of errors for severity levels 3 and 4 [24]. The CMM focus
on functional requirements and design would seem to be
well-suited to reducing category 1 and 2 errors through
the use of design walkthroughs, perhaps somewhat effec-
tive in reducing coding errors with code walkthroughs,
but likely to be less focused on typographical and other
cosmetic defects [41]. For this reason we propose that
improvements in software processes will be more likely
to reduce the likelihood of high severity defects in the
development phase.

H1: Software process improvement will decrease the like-
lihood of high severity development defects more than low
severity development defects, all else being equal.

3.2.2 Process Improvement Effect on Production Defect
Severity
Earlier research has found that quality is persistent, i.e., it
tends to ―cascade‖ through the software life cycle [48],
[49]. This means that if quality is built into software early
in the life cycle, then similar levels of quality will tend to
manifest through later life cycle phases – e.g., higher
quality designs lead to better code, fewer bugs in devel-
opment testing, and fewer problems in production. All
else being equal the quality of the input from one life cycle
stage influences the quality of the output of subsequent
stages. Building on this premise we predict that the bene-
fits of process improvement during development will
cascade to the production life cycle phase, reducing the
likelihood of high severity production defects.

H2: Software process improvement will decrease the like-
lihood of high severity production defects more than low
severity production defects, all else being equal.

3.2.3 Process Improvement, Complexity and Defect Se-
verity
Research has found that software complexity has a signif-
icant effect on software development quality [50], [51],
[52]. Highly complex software is more prone to have de-
fects of all kinds, including the more severe defects [50].
Complexity also influences the software projects that are
being enhanced in development [53] or maintained in
production [54], [55]. And, it is possible that process im-
provement affects projects of varying levels of complexity
in different ways. For example, the discipline of the
CMM processes should ensure that complex projects suc-
cessfully move through requirements definition, design,
coding and testing. A less disciplined approach would
potentially lose control of complex projects, resulting in a
higher number and higher severity of defects. However,
disciplined processes might accrue fewer benefits when
building very simple systems, where the additional
process structure is not required in order for developers
to do a good job. Therefore, we propose that process im-
provement will moderate the relationship between com-
plex software and high severity defects, such that:

H3: Software process improvement will have a greater
benefit for more complex software in reducing the likelih-
ood of high severity defects, all else being equal.

3.2.4 Process Improvement, Software Size and Defect
Severity
A positive correlation between software size and the
number of defects found in a software project is well-
validated in the research literature [45], [48], [56], [57],
[58], [59]. Software size influences the size of the software
team, the level of integration necessary among compo-
nents, and the increase in communication channels re-
quired among team members [60]. Larger projects thus
impose what can be considered another dimension of
complexity, i.e., management complexity. Management
complexity comes from the fact that larger software
projects require increased team size, necessitating strong-
er internal team coordination processes. Increased soft-
ware size also leads to decomposition into components
with sub-teams, requiring component integration and
inter-team coordination. Thus, given the additional activ-

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 5

ities required to integrate, coordinate and communicate in
larger projects, it is quite likely that such projects would
experience more defects, especially more severe defects.
Indeed, the software development literature suggests that
larger projects are significantly more prone to failure [57].
However, improved software development processes
should be especially helpful for larger projects. Software
process improvement includes the key processes for
greater management discipline. Some examples of CMM
key process areas which enhance management’s ability to
coordinate larger projects include configuration manage-
ment, integrated project management, product integra-
tion, and project monitoring and control. Wang et al. re-
ported that management controls lead to higher levels of
project performance [61]. These disciplined management
processes should improve the quality and reduce the se-
verity of errors occurring in larger projects, hence:

H4: Software process improvement will have a greater
benefit for larger software projects in reducing the likelih-
ood of high severity defects, all else being equal.

3.2.5 Process Improvement, Requirements Ambiguity,
and Defect Severity
The clarity of a functional requirement at the beginning of
a software development effort has the potential to signifi-
cantly determine if a software project is successful and
thereby influence the resulting software quality [62]. The
question is then how the effects of process improvement
vary by projects with different levels of requirements clar-
ity or lack thereof (ambiguity). One could argue that if a
software project has very ambiguous requirements, then
no process will guarantee a manager to successfully de-
liver high quality software, as high levels of ambiguity
will result in misunderstandings of the requirements, mi-
sinterpretation, incorrect designs, and ultimately, more
defects. Even a disciplined process will have difficulty
interpreting a poorly written requirement. However, if a
software requirement is clearly defined, the discipline of
the CMM process could be expected to help to ensure that
the software will be built to satisfy the requirement.
Therefore:

H5: Software process improvement will have a greater
benefit for software with less ambiguous requirements in
reducing the likelihood of high severity defects, all else be-
ing equal.

4 Research Site, Design and Methodology
4.1 Research Setting
The analysis examines data collected on 6,190 develop-
ment defects and 1,355 production defects in software
developed over a twenty year period by the systems inte-
gration division of a large information technology corpo-
ration for a major customer. The software constitutes 7.7
million lines of code developed as part of an inventory
management information system. During the time period
of the development effort, the company implemented
various software process improvement initiatives such as
creation of life-cycle development standards, definition of
detailed style guides for documentation, institutionaliza-
tion of design review processes and program manage-
ment status reviews, definition of schedule and perfor-
mance metrics, use of Pareto analysis and the implemen-

tation of an automated cost estimation methodology,
among others.

The research setting provides a quasi-controlled field
environment to evaluate the effects of software process
improvement on defect rates, and the severity of defects.
During the development effort for this system the organi-
zation improved from CMM process maturity level one to
level five. The defect data thus constitute repeated meas-
ures of the quality of this system at different levels of
CMM process maturity, while controlling for differences
in software size, complexity and requirements ambiguity.
4.2 Data Collection Methods
The software developer, the customer, and several inde-
pendent outside organizations collected components of
the detailed defect data used in this study. Independent
assessors from other divisions of the software developer,
customer personnel, and auditors used the SEI’s CMM to
evaluate the level of software process improvement to devel-
opment and supporting activities.

Product measures including size, complexity, and re-
quirements ambiguity were collected by the software de-
veloper and audited by the customer. The Configuration
Management department at the software developer col-
lected software size information using automated tools to
ensure consistency in measurement. The customer con-
firmed software size through an independent count of
lines of code. The Engineering department at the soft-
ware developer determined ex ante complexity and re-
quirements ambiguity ratings based on the customer’s
functional requirement specification using the criteria
identified by Jones [24]. Prior to the start of any software
development, the customer performed an independent
analysis of complexity and requirements ambiguity. If
there were any discrepancies between the software de-
veloper’s analysis and the customer’s analysis, the two
parties met prior to the start of a project to review and
resolve any differences.

Defects were discovered in testing either prior to cus-
tomer acceptance (development defects), or after a system
was implemented in production (production defects). Test-
ing during the development phase was first performed by
the software developer, then by the customer in their ac-
ceptance testing. The software developer’s test depart-
ment used a customer-approved test plan to test the soft-
ware against the design specification. The description
and severity of errors found in this testing were recorded
by the developer’s test team. The customer performed a
functional systems test of each software project with a
similar plan, first using a sample database for functional
testing, and then using a full-scale database for stress test-
ing. All of the defects found by the developer or custom-
er during these development and acceptance tests were
included in the development defect database. After sys-
tem acceptance by the customer all further defects were
identified as production defects. Users in the customer
firm identified errors in production and recorded the de-
scription and severity of these production defects.

The customer audited defects identified by the devel-
oper; likewise, the developer reviewed and authenticated
errors identified by the customer. Assignment of severity

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

levels received similar scrutiny by both parties and fol-
lowed a documented procedure to ensure consistency of
assignment over time. Similar to how Hewlett-Packard
implemented its Defect Tracking and Software Metrics
Data Base, the configuration management department at
the development firm maintained all software problem
reports in an electronic database [32]. The data examined
in this study were extracted from these electronic files
and some additional hardcopy files maintained by the
engineering and configuration management departments
at the software development firm.
4.3 Construct Measurement
As noted earlier, in prior studies that have analyzed em-
pirical defect data by severity, the researchers have ag-
gregated their data into two levels, e.g., HP’s Grady ag-
gregates his severity levels into two levels: major and mi-
nor [33]. Major defects are those which result in a func-
tional failure of the system (a category 1 ―crash‖ or cate-
gory 2 ―functional failure‖). Minor defects may create an
inconvenience (category 3 ―minor errors‖ or category 4
―cosmetic errors‖), but do not interfere with business-
critical activities [63]. Jones also found this grouping in
empirical data, where category 1 and 2 defects were often
resolved before software acceptance, but category 3 and 4
defects were deferred [24]. He found that category 1 and 2
defects constituted 3% and 47% of his sample1.

Similarly, in our current work we believe that high and
low severity are determined by whether a defect is busi-
ness critical or non-business critical. Therefore, we have
followed the approach taken by other researchers and
aggregated the four severity levels into two, labeling se-
verity categories 1 and 2 as ―high severity‖, and catego-
ries 3 and 4 as ―low severity‖ [24]. Using this categoriza-
tion of business-critical and non-business critical errors,
high-severity development defects are identified prior to
customer acceptance and categorized as critical or se-
rious. Low-severity development defects are defects that are
identified in development prior to customer acceptance,
but categorized as minor or cosmetic errors. Similarly,
high-severity production defects are identified by users in a
production environment and categorized as critical or
serious. Low-severity production defects are identified by
users in production and categorized as minor or cosmetic
errors. For production defects the software developer
was contractually required to fix high severity defects
quickly, while low severity defects could be deferred to
subsequent version releases. After submission of a pro-
duction defect to the defect tracking system, the develop-
er, customer, and users reviewed each defect and its clas-
sification to ensure that the severity assigned conformed
to the standards established within the contract. This
process also ensured that submissions were defects and
not requests for new software features or enhancements.

1
 The lone exception to this approach is the work of Zhou and Leung who

chose to separate major and minor defects by declaring only category 1 defects

as major; minor defects included categories 2, 3, and 4. This may be because in

their dataset of 549 defects, only 34 were category 1 defects (6% of the sample),

but category 2 defects comprised 77% of their data. Combining these would
mean that 83% of their sample would have been considered “high severity”. By

contrast, in our data about 60% are categories 1 and 2 and 40% categories 3 and

4, a distribution similar to Jones’s.

Table 2 summarizes the description of the key meas-
ures of variables in our study.

<Table 2>
From Table 2 we have six software measures. As

noted above, High severity defects are defined as business
critical functional failures or program termination. Low
severity defects are defined as non-business critical minor
disruptions and cosmetic errors [24]. Of the 6,190 total
development defects, 57.89% were high severity (averag-
ing 50 high severity development defects per product).
Similarly, of the 1,355 total production defects, 61.1%
were high severity (averaging 11 high severity production
defects per product).

Software process improvement is the level of discipline
and process control in the software development process
[39]. We measure process improvement using the SEI
CMM level of maturity. Each software project has a ma-
turity level defined at the start of design adjusted com-
mensurately for process improvements during the devel-
opment life-cycle of that software. The CMM evaluation
process involves the examination of Key Process Areas
(KPA) relevant to each of the five CMM levels. Ad-
vancement from one CMM level to the next requires ad-
herence to a preponderance of the KPAs for the level.
This process improvement measurement approach has
been employed successfully in prior research [3, 4, 5].
CMM level 1 implies that processes are ad hoc; processes
might exist but are not used uniformly through the or-
ganization. At CMM level 2, processes are repeatable;
processes are used consistently throughout the organiza-
tion, but there is limited training and documented stan-
dards. CMM level 3 includes defined standards and
mandatory training. CMM levels 4 and 5 introduce mea-
surement and continuous process improvement respec-
tively. The CMM process maturity model provides a con-
sistent measure of process improvement that can be used
in longitudinal studies. The CMM was replaced by the
CMMI in 2002 and post-2002 process maturity levels were
measured using the updated approach2. The CMM ma-
turity level of a software project is pro-rated based on the
fraction of development performed at each level [49],
[64].3 In the first twelve years of the effort CMM assess-
ments were performed approximately every two years,
and the company’s CMM maturity level increased from
level 1 to level 3 during that period. In the thirteenth year
the CMM level fell to level 2, but then returned to level 3
in year fourteen, and in the final years of data collection
was assessed at level 5. All CMM and CMMI appraisals
were performed by teams external to the research site.

Software size is a measure of the magnitude of the soft-
ware in thousands of lines of code (KLOC). LOC has a
long tradition of use as a measure for size in software
research [41], [45], [56], [59]. Although LOC has some-
times been challenged as a potentially inconsistent meas-

2
 For more on CMMI (Capability Maturity Model Integration), see CMMI Dis-

tilled (2nd Ed.): A Practical Introduction to Integrated Process Improvement by

Dennis M. Ahern, Aaron Clouse, and Richard Turner; Addison-Wesley 2004,

305 pages.
3
 For example, a software product which spanned twelve months, six months

under CMM level 2 practices and six months under CMM level 3 practices,

would have a weighted process maturity score of 2.5.

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 7

ure, the use of a single programming language at our re-
search site and the automated counting of lines of code
make its use appropriate in this context.

Software complexity reflects three dimensions of com-
plexity: domain, data and decision complexity [5], [24].
Domain complexity measures functional and algorithmic
sophistication (Table 3). Data complexity quantifies the
number of data variables and the complexity of data rela-
tionships (Table 4). Decision complexity reflects the struc-
tural and procedural complexity within a program (Table
5). The three complexity measures are based on tech-
niques developed by Jones and implemented in a number
of software cost, schedule and quality models [24]. The
measures use a Likert scale from 1 to 5 as described in
Tables 3, 4, and 5, with higher values indicating higher
complexity. Since the three measures tend to be highly
correlated, software complexity is the calculated as the av-
erage of these three measures [5].

<Table 3>
<Table 4>
<Table 5>
Requirements ambiguity is an assessment of the clarity

and specificity of the users’ requirements as documented
in a functional specification. Requirements engineering
and clarification is a crucial step in the software engineer-
ing life cycle [62]. Requirements ambiguity is measured
on a scale of 1 to 5 (Table 6), with higher values indicating
greater ambiguity [24].

<Table 6>
4.4 Data Validity
A particular and unique strength of the data collected for
this study concerns the level of rigor with which the data
were measured. All data collected for this study were
audited for correctness and completeness by various in-
dividuals and organizations. A summary of audit re-
views and reviewers is shown in Table 7.

<Table 7>
4.5 Data Collection Summary
External executives from other divisions of the company
and client auditors ensured the accuracy of ex ante soft-
ware process improvement ratings. The chief engineer
and client technical reviewers audited ex ante product
characteristics, i.e., complexity and requirements ambigui-
ty. Quality assurance and client personnel reviewed
software size and quality measurements.

Descriptive statistics for development and production
defect data are displayed in Tables 8 and Table 9.

<Table 8>
<Table 9>
Tables 10 and 11 present the correlation matrices for

the development and production variables. As might be
expected, higher design complexity is associated with
greater product size. Products with higher complexity
also appear to be more ambiguously defined, also as
might be expected. Perhaps less intuitive, however, is
the negative correlation between size and requirements
ambiguity. However, in reviewing the data from the re-
search site, it turned out that online updates and batch
reports tended to be the larger programs. As the custom-
er tended to provide clearer requirements for update and

report software, this is manifested as a negative correla-
tion in the data.

<Table 10>
<Table 11>

5 Data Analysis and Results
The model in Figure 1 identified the relationships among
process improvement, size, complexity, and requirements
ambiguity and the likelihood of a high severity defect
occurring. We earlier categorized defects as either high or
low severity and our model has a binary dependent vari-
able where severity is coded as a 1 for high severity and 0
for low severity.

Ordinary least squares regression is not appropriate
when the dependent variable is categorical as is the case
here. Since we are interested in the likelihood of encoun-
tering a high severity error when a defect is detected, it is
appropriate to use probit or logit to estimate the model
coefficients. Probit and logit models often find similar
results, although probit is more sensitive to values near
the mean and logit is more sensitive to extreme values
[65]. Greene [66] suggests that there are no clear criteria
for the selection of probit versus logit, and therefore we
estimate a probit model, with a logit analysis as a robust-
ness check on our results.

In each of the equations below the dependent variable
is the binary variable identifying if a defect is classified as
high severity or low severity. This model will allow us to
predict the probability of encountering a high severity
defect. The intercept term in each equation reflects the
probability of a high severity error when size, complexity,
ambiguity and process improvement are at their respec-
tive mean values. Note that, for ease of interpretation, we
followed common practice and centered the independent
variables in our analysis, i.e., we subtracted each value for
a variable from its respective mean value4. The error term
is represented by epsilon.
P(Development high-severity=1) = 01 + 11*Size

+ 21*Complexity + 31*Ambiguity + 41*CMM
+ 51*CMM*Size+ 61*CMM*Complexity+

71*CMM*Ambiguity + ε1

P(Production high-severity=1) = 02 + 12*Percent
High Severity Development Defects

+ 22*Size + 32*Complexity + 42*Ambiguity + 52*CMM
+ 62*CMM*Size + 72*CMM*Complexity+

82*Ambiguity+ ε2

Probit regression uses the normal distribution to esti-

mate the coefficients of the equation:

P(Development high-severity=1) = (i1Xi)

P(Production high-severity=1) = (i2Xi)

Prior research has shown that defect rates decrease as

4
 For further details on this statistical procedure see Aiken, L. S., & West, S. G.

(1991). Multiple Regression: Testing and interpreting interactions. Newbury

Park, CA: Sage.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

process improvement increases [4], [5]. The probit ana-
lyses will project whether the proportion of high-severity
errors or low-severity errors is expected to decrease more
quickly. If the coefficient on process improvement is pos-
itive, then the proportion of high-severity errors is pre-
dicted to increase with improved processes, i.e., low-
severity errors are declining faster. However, if the coef-
ficient is negative, then increases in process improvement
are associated with faster declines in high-severity errors.
Since we predict that process improvement will have a
greater impact on high-severity errors and a lesser impact
on low-severity errors, for our hypothesis to hold, the
coefficient on process-improvement is expected to be
negative. Table 12 shows the parameter estimates for the
probit analysis of development errors. A similar analysis
is performed for production errors and is shown in Table
13. The models were examined hierarchically, first with
controls only, then controls and CMM, and finally includ-
ing interactions

<Table 12>
<Table 13>
The results for the probit analyses of both the devel-

opment and production defect severity indicate that each
of the models is statistically significant (see Wald statistics
in Table 12 and Table 13). The following sections address
each of the hypotheses.
5.1 Main Effect: Process Improvement and Defect Sever-
ity
Hypothesis 1 predicted that increases in process im-
provement would reduce the likelihood of development
errors. The process improvement coefficient in Table 12
is negative and significant at the α =.05 level (41=-0.069,
p=0.03), suggesting support for the hypothesis.5 Marginal
effects analysis of the process improvement coefficient
supports this conclusion (dF/dx= -0.027, p=0.03). Earlier
studies have shown that overall defect rates decrease with
improvements in process improvement [5]. These results
further indicate that as the organization improved its
processes, the likelihood of a defect being a high severity
defect also decreased.

Hypothesis 2 similarly predicted that process im-
provements would lead to reduced likelihood of high
severity production defects due to the persistence of qual-
ity throughout the life cycle [48]. The coefficient for
process improvement in the production equation in Table
13 is also negative and significant (52=-0.370, p<0.01).

5
 In a model with interaction effects it is important to evaluate main effects in

the complete model. Otherwise the evaluation would suffer from an omitted
variables bias [66]. Mathematically, when one evaluates the main effect of a
variable in the complete model (including interactions), one must differentiate
the model with respect to that particular variable in order to obtain the relevant
coefficients and standard errors for the main effect. For example, differentiating
the Development Defects model with respect to the CMM variable yields: β41 +
β51*size + β61*complexity + β71*ambiguity. By convention one substitutes the
mean values of size, complexity and ambiguity to determine the overall coeffi-
cient on the CMM. Since we have centered our independent variables, centered
size, complexity and ambiguity all have means of 0. Given that, the coefficients
on β51, β61 and β71 will drop out; this leaves β41 (with a value of -0.069) for the
main effect of the CMM in the development model. To interpret the coefficient
on β41 we need to estimate the change in the probability of a severe defect occur-
ring given an “infinitesimal” change in the CMM variable. This is the marginal
effect (dF/dx) and is estimated using the DPROBIT command in the Stata statis-
tical software. We use a similar process to evaluate the main effect of the CMM
in the production model.

Marginal effects analysis of the process improvement
coefficient supports this conclusion (dF/dx= -0.140,
p<0.01). Hypothesis 2 is supported; the quality effects of
process improvement improvements cascade from devel-
opment through the production phase of the software
development life cycle. As hypothesized, building quali-
ty into the product in early life cycle stages appears to
influence the quality at later stages.

Figure 2 graphically illustrates how process improve-
ments relate to defect severity in software development
and production over the time period of the development
effort at our research site. As can be seen in Figure 2, le-
vels of process improvement, as measured by CMM le-
vels, are inversely related to the likelihood of high severi-
ty development defects and high severity production de-
fects. When the CMM level is higher, the proportion of
high severity development and production defects is low-
er, and when the CMM level is lower, the proportion of
high severity development and production defects is
higher.

<Figure 2>
5.2 Interaction Effect: Process Improvement and Com-
plexity
Hypothesis 3 proposed that process improvement mod-
erated the effect of complexity on the probability of en-
countering a high severity defect. Although we would
intuitively expect that increases in complexity might in-
crease the likelihood of high severity errors, we proposed
that process improvements would reduce the likelihood
for highly complex systems due to the disciplined
processes involved at higher levels of process improve-
ment. A test of the interaction effect proposed by Ai and
Norton [67] and Norton et al. [68] for probit models con-
firms that the interaction term is significant for both de-
velopment and production (one-sided zD=-3.752, p<0.01;
zP=-3.478, p<0.01).

In order to provide a stronger understanding of the in-
teraction effects, the results are also illustrated graphically
in Figure 3. The lines in the figure represent the propor-
tion of high severity development defects at different le-
vels of complexity for CMM levels 1 through 5. One line
(the dashed line) is graphed at the mean level of complex-
ity, another line (the dotted line) is graphed at a low level
of complexity (mean – one-half standard deviation), and
the third line (the solid line) is graphed at a high level of
complexity (mean + one-half standard deviation).

<Figure 3>
As can be seen in Figure 3 at low levels of complexity

the proportion of high severity development defects does
not differ significantly at CMM level 1 (61.33%) versus at
the highest levels of CMM process maturity (60.19% at
CMM level 5). This is shown graphically in Figure 3 as
the dotted line for low complexity is essentially flat from
CMM level 1 to CMM level 5. However, at high levels of
complexity, the proportion of high severity development
defects is higher when the organization is operating at
CMM level 1 (65.84%) than at CMM level 5 (45.38%), as
seen in Figure 3. The downward sloping line for high
levels of complexity from CMM level 1 to CMM level 5
suggests that, at high levels of complexity, there are in-

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 9

creasing benefits from higher levels of process improve-
ment in terms of a reduced likelihood of severe develop-
ment defects. This implies that the disciplined approach-
es of CMM have a magnified benefit for highly complex
projects, but make less difference for simple projects.
Therefore, Hypothesis 3 is supported for development
defects.

This pattern is also apparent for production defects in
Figure 4. As in development, higher levels of process
improvement reduce the likelihood of high severity de-
fects in production even more for more complex projects.
The cascading effect of quality, or the persistence of quali-
ty, is magnified at later life cycle stages. Similar to devel-
opment, higher levels of process improvement have a
greater impact on more complex systems in reducing the
probability of high severity production defects. Hypothe-
sis 3 is thus supported for production defects.

<Figure 4>
5.3 Interaction Effect: Process Improvement and Size
In Hypothesis 4 we posited that the size of a project
would have a similar effect on high severity defects as
complexity. Complexity measures the internal complexi-
ty of the product design, but the size of the software de-
veloped imposes management complexity on a project.
We proposed that process improvement would have a
more significant effect in reducing high severity errors for
larger projects, since a more disciplined management ap-
proach would be well-suited to large scale software
projects. The probit model interaction test of process im-
provement and size for development defects finds the
coefficient negative and significant (one-sided zD=-4.595,
p<0.01) [67], [68].

Figure 5 graphs the interaction between project size,
software process improvement and development defect
severity. As shown in Figure 5 there is little difference in
the proportion of high severity development defects for
small projects at CMM Level 1 versus small projects at
CMM Level 5. However, for large projects, the proportion
of high severity development defects is significantly low-
er at CMM level 5 (44.26%) than at CMM Level 1
(68.85%). Thus, higher levels of process improvement
appear to have a greater benefit for larger projects than
smaller ones, supporting Hypothesis 4.

<Figure 5>
The pattern is similar for production defects. The pro-

bit interaction test confirms that the interaction is nega-
tive and significant (one-sided zP=-1.739, p<0.05) [67],
[68]. The dominance of process improvement over any
interaction with size is apparent in Figure 6, where higher
levels of process improvement significantly reduce the
likelihood of high severity production errors for all size
levels. The downward sloping line (lower, solid line) in-
dicates that higher levels of process improvement are es-
pecially beneficial for large software projects in terms of
reducing the likelihood of severe production defects.
Therefore, Hypothesis 4 is also supported for production
defects.

<Figure 6>

5.4 Interaction Effect: Process Improvement and Re-
quirements Ambiguity
Hypothesis 5 predicted that process improvement would
have a greater benefit for clearly defined software prod-
ucts. We reasoned that when requirements ambiguity is
high the selection of a development process will make
little difference since the goal for the project is not clearly
defined. The coefficient for the main effect of process
improvement on development severity was marginally
negative, as discussed before. However, the interaction
test by Norton et al. finds that the interaction coefficient is
positive and significant (zD=3.039, p<0.01) [67], [68]. The
sign of this coefficient means that when the requirement
is clearly defined, process improvement has the benefit of
reducing high severity likelihood. At higher levels of
requirements ambiguity there are offsetting effects (a re-
duction in severity due to the main effect of process im-
provement, but an increase in severity due to the interac-
tion with ambiguity), which indicate that process im-
provement has a limited effect at higher levels of re-
quirements ambiguity. This is evident from Figure 7 - at
low levels of requirements ambiguity there is much more
benefit from improvements in process maturity, in terms
of a reduction in the proportion of high severity devel-
opment defects, than at high levels of requirements ambi-
guity. As indicated in Figure 7, at low levels of require-
ments ambiguity, the proportion of high severity devel-
opment defects is 64% at CMM level 1, but drops to
46.62% at CMM level 5. However, at high levels of re-
quirements ambiguity there is little difference in the pro-
portion of high severity development defects at CMM
level 1 versus at CMM level 5. This statistical result is
reminiscent of the management adage, ―If you don’t
know where you’re going, any road will get you there‖.
Hypothesis 5 is thus supported for high severity devel-
opment defects.

<Figure 7>
We find a somewhat different pattern for production

defects. The main effect of process improvement is nega-
tive and significant as previously discussed, but the coef-
ficient for the interaction of process improvement and
ambiguity is not significant at usual levels using the pro-
bit interaction test (one-sided zP=0.359, p=0.36) [67], [68].
This is reflected in the lines in Figure 8 which are all
downward sloping and are almost parallel, indicating a
main effect due to process improvement, but little or no
interaction with ambiguity. Thus, Hypothesis 5 is not
statistically supported for production defects at the same
level that it was supported for development defects. This
pattern may be evidence that the cascading or persistent
effect of quality overwhelms the interaction effect with
requirements ambiguity for later software development
life cycle stages.

<Figure 8>
6 Discussion
6.1 Summary of Results
The results of our hypotheses for both the development
and production models are summarized in Table 14 be-
low.

<Table 14>

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

6.2 Discussion of results
The results of this study lend insight into how to gain the
greatest benefit from CMM process improvements in
terms of reducing the likelihood of severe errors. Overall,
simply advancing in levels of process improvement re-
duces the likelihood of high severity defects and therefore
decreases the incidence of catastrophic or major function-
al failure. The greater effect on production vs. develop-
ment defects highlights the importance of process im-
provement to the operational environment of production
systems. Production defects are the most costly and their
removal can have significant financial benefit to users and
day-to-day operations [1].

We further found that higher levels of process im-
provement have the greatest leverage (in terms of reduc-
ing severe defect occurrence) on large projects, complex
projects, and clearly defined projects. The management
discipline inherent in higher levels of improvement ap-
pears to solve management complexity issues of coordi-
nating large scale projects. It is likely that the strict de-
sign review processes, configuration management control
and quality assurance review ensure that sizeable projects
avoid coordination and integration issues that typically
plague larger software projects. The practice of reducing
software development risk by breaking large projects into
component projects has often been advocated as a solu-
tion to managing large projects. Software process im-
provement is an alternative management approach that
can improve the quality of large projects and reduce de-
fect severity.

Technical complexity has also been a risk factor in
managing software development. As expected, we find
that complexity increases the likelihood of high severity
defects. However, process improvement appears to be a
very effective means for countering the risks of increa-
singly complex systems. Since complexity is often inhe-
rent in the application and therefore not under the direct
control of the software project manager, applying process
improvement may be the most effective recourse the
manager has.

The ambiguity of a customer’s requirements can clear-
ly affect the ultimate quality of the product, as seen in our
results. Since process improvement has a greater impact
when the requirement is clearly defined, managers
should ensure that sufficient efforts are undertaken to
clarify requirements when needed. Investments in re-
viewing ambiguous requirements with a client, clarifying
issues and features, can have a significant effect on the
quality of the system. Our findings suggest that invest-
ments in requirements clarification and process im-
provement are not substitutes for each other, but instead
tend to be complementary.

The payoff of process improvement is the reduction of
high severity defects which result in operational failures.
These defects are more costly to repair, result in organiza-
tional downtime, and have greater impact on the users.
The reduction in these expensive defects is more dramatic
for larger and more complex products, which inherently
have more risk. Executives can use CMM-based process
improvement to simultaneously manage development

risk while reducing the impact to the organization.
6.3 Sensitivity Analysis, Strengths and Limitations
As in any empirical study there are potential alternative
factors that could influence the likelihood of high severity
defects. Team experience, team turnover, team size,
number of software release versions, code reuse and
software language all have the potential to affect the fre-
quency of high severity defects. A sensitivity analysis
found that team experience was not statistically signifi-
cant in either the development model (p=0.298) or the
production model (p=0.163). Team turnover was also not
significant in either model (development p=0.284; pro-
duction p=0.318). Similarly, neither team size (develop-
ment p=0.139; production p=0.476) nor number of soft-
ware release versions was significant (development
p=0.810; production p=0.125). With respect to potential
code reuse all data used during the estimation process of
each of the software products were available from the
corporate archives. In the estimation model input para-
meters all teams had set the percent of code reuse to zero.
Subsequent conversations with management at the re-
search site confirmed that there was no code reuse during
the period of the study. Management also confirmed that
the same programming language was used for all of the
projects on the system.

Of course, the research reported in this paper has cer-
tain strengths as well as limitations, as do all such empiri-
cal studies. The major limitation of this study is that it
relies on data from a single organization, and may not
generalize to others. However, the use of a single firm
allowed us to control for factors that might have skewed
the results, such as development methodology, hiring
policies, or management structure, as each of these factors
were consistent throughout the life of the study, but
might vary if data from multiple organizations had been
combined. By focusing on a single organization and
studying its processes and data in depth we approximate
a quasi-experimental study where variables not of interest
are held constant. Overall, given the nature of the soft-
ware processes studied we believe that the broad results
represent sound underlying principles of process im-
provement and are likely to be able to be generalized
across other software development organizations.

The costs of defects are often difficult to quantify when
the operational impacts are included. Operational down-
time, lost organizational productivity, and financial im-
pact to the day-to-day operations of a company should be
included for an exhaustive list of costs per defect. Since
only high severity defects have operational impacts, it is
clear that the return on investment for preventing high
severity defects is understated. Better quantification of
the cost prevention benefits would allow managers to
make more informed decisions when evaluating software
process improvements.
7 Conclusions
This research addresses an issue of practical importance,
i.e., the relationship between software process improve-
ment and the severity of defects in the produced soft-
ware-based systems. A significant amount of data that
stems from many projects performed during a long time

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 11

span was analyzed in order to better understand this rela-
tionship and derive guidance for process improvement.
Specifically, we examined an extensive dataset over a
twenty year period from a CMM level 5 organization in-
cluding software projects averaging 175,000 lines of code
with varying levels of process improvement, size, com-
plexity and requirements ambiguity. Over 7,500 defects
were recorded and analyzed. Having data collected over
such a long period is an unusual opportunity, and analyz-
ing this data has important implications for process im-
provement. This unique research opportunity allowed us
to evaluate the effect of each of key design parameters on
defect severity during software development and later in
production and operations. The results are supportive of
the hypotheses in our model and lend insight into when
process improvements are most beneficial.

In general, our findings indicate that process im-
provement reduces defect severity for both the develop-
ment and production life cycle phases. The effect of
process improvement on defect severity in production
tends to be stronger than the effect in development, and
we suggest that this might be evidence of the persistence
or cascading effect of quality throughout the software
development life cycle.

Our results also reveal that process improvement has
differential effects on reducing defect severity for each of
our design variables of interest. Although process im-
provement reduces the likelihood of defects for all levels
of complexity, it has a greater effect on the reduction of
high severity defects for more complex products. We find
that the highly structured, disciplined processes of the
CMM have a greater payoff when a software system is
above average in complexity.

The effect of the CMM on severity for larger projects
mirrors the results found for complexity. Increasing the
size of a project introduces management complexity. We
find that higher levels of process improvement have
greater benefits in reducing defect severity for large scale
projects. The disciplined management processes at higher
levels of the CMM provide the ability to manage projects
with more integration and staff coordination require-
ments.

In contrast, higher levels of the CMM are less effective
in reducing defect severity when requirements are ill de-
fined. Requirements ambiguity dampens the benefits of
process improvement when considering the severity of
errors. As we have noted, disciplined processes are not as
useful when it is not clear what the software should do.
Instead, for clearly defined software products higher le-
vels of CMM processes appear to effectively reduce defect
severity.

Our findings provide a detailed analysis of the benefits
and limitations of software process improvement for the
removal of severe development and production defects
and suggest where investments in improving develop-
ment processes may have their greatest effects.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

REFERENCES

[1] The Economic Impacts of Inadequate Infrastructure for Software

Testing, U.S. Department of Commerce, National Institute of

Standards and Technology, 2002

[2] C. Mann, ―Why software is so bad … and what’s being done to

fix it,‖ MIT Technology Review, 2002

[3] J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, M. Paulk,

―Software quality and the Capability Maturity Model,‖ Comm.

of ACM, vol. 40, no. 6, 1997

[4] M.S. Krishnan, C.H. Kriebel, S. Kekre, T. Mukhopadhyay, ―An

Empirical Analysis of Productivity and Quality in Software

Products,‖ Management Science, vol. 46, no. 6, 2000.

[5] D.E. Harter, M.S. Krishnan, and S.A. Slaughter, ―Effects of

Process Maturity on Quality, Cycle Time and Effort in Software

Product Development,‖ Management Science, vol. 46, pp. 451-

466, 2000.

[6] P.B. Crosby, Quality is Free, McGraw-Hill, 1979.

[7] C. Jones, ―Measuring Defect Potentials and Defect Removal

Efficiency,‖CrossTalk, June2008,

http://www.stsc.hill.af.mil/crosstalk/2008/06/0806Jones.html

[8] K. Belson and M.L. Wald, ―’03 Blackout is Recalled, Amid Les-

sons Learned,‖ New York Times, August 13, 2008.

[9] G. Prophet, ―A hard look at software reliability,‖ Global EDN

Report, June23,2005.

http://www.edn.com/article/CA608882.html?industryid=234

39

[10] B.W. Boehm, Software Engineering Economics, Prentice Hall, 1981

[11] M. Lipow, ―Prediction of Software Failures,‖ The Journal of Sys-

tems and Software, vol. 1, no. 1; pg. 71, 1979.

[12] J.A. Hager, ―Software Cost Reduction Methods in Practice,‖

IEEE Trans. Software Eng., vol. 15, no. 12; pp. 1638-1644, 1989.

[13] T. Gyimothy, R. Ference, and L. Siket, ―Empirical Validation of

Object-Oriented Metrics on Open Source Software for Fault

Predictions,‖ IEEE Trans. Software Eng., vol. 31, no. 10, pp. 897-

910, 2005.

[14] M. Alshayeb and L. Wei, ―An Empirical Validation of Object-

Oriented Metrics in Two Different Iterative Software

Processes,‖ IEEE Trans. Software Eng., vol. 29, no. 11, pp. 1043-

1049, 2003.

[15] K. El Emam, S. Benlarbi, N. Goel, and S.N. Raj, ―The Confound-

ing Effect of Class Size on the Validity of Object-Oriented Me-

trics,‖ IEEE Trans. Software Eng., vol. 27, pp. 630-650, 2001.

[16] J. Lo, C. Huang, ―An integration of fault detection and correc-

tion processes in software reliability analysis,‖ The Journal of

Systems and Software, vol. 79, no. 9; pg. 1312, 2006.

[17] K.-Y. Cai, ―On estimating the number of defects remaining in

software,‖ The Journal of Systems and Software, vol. 40, no. 2; pp.

93-114, 1998.

[18] R.B. Grady, Practical Software Metrics for Project Management and

Process Improvement, Prentice Hall, Englewood Cliffs, New Jer-

sey, 1992.

[19] S. Zahran, Software Process Improvement: Practical Guidelines for

Business Success, Essex, England: Addison Wesley Longman

Ltd., 1998.

[20] R. Chillarege, Orthogonal Defect Classification, Handbook of

Software Reliability Engineering, IEEE Computer Society Press,

pp. 359-400, 1995.

[21] W.S. Humphrey, Managing the Software Process, Addison-

Wesley Publishing, Reading, Massachusetts, 1989.

[22] M. Donnelly, B. Everett, J. Musa and G. Wilson, Best Current

Practice of Software Reliability Engineering (SRE), Handbook of

Software Reliability Engineering, IEEE Computer Society Press,

pp. 219-254, 1995.

[23] L.H. Putnam and W. Myers, Industrial Strength Software: Effec-

tive management Using Measurement, IEEE Computer Society

Press, pp. 44, 1997.

[24] C. Jones, Applied Software Measurement: Assuring Productivity and

Quality, McGraw-Hill, New York, 1996.

[25] ANSI/IEEE Std 729-1983 Glossary of Software Engineering Termi-

nology, Institute of Electrical and Electronics Engineers. New

York; IEEE. 1987.

[26] J.S. Poulin, Measuring Software Reuse, Principles, Practices, and

Economic Models, Addison-Wesley, 1997.

[27] J. Gao, H.J. Tsao, Y. Wu, Testing and Quality Assurance for Com-

ponent-based Software, 2003.

[28] Quality Standards Defect Measurement Manual, United Kingdom

Software Metrics Association (UKSMA), October 2000.

[29] F. Tsui, Managing Software Projects, Jones & Bartlett Publishing,

2004.

[30] Y. Zhou and H. Leung, ―Empirical Analysis of Object-Oriented

Design Metrics for Predicting High and Low Severity Faults,‖

IEEE Trans. Software Eng., vol. 32, no. 10, pp. 771-789, 2006.

[31] T.J. Ostrand and E.J. Weyuker, ―The Distribution of Faults in a

Large Industrial Software System,‖ Proc. Int’l Symp. Software

Testing and Analysis, pp. 55-64, 2002.

[32] T.J. Ostrand, E.J. Weyuker, R.M. Bell, ―Predicting the Location

and Number of Faults in Large Software Systems, IEEE Trans.

Software Eng., vol. 31, no. 4, pp. 340-355, 2005.

[33] R.B. Grady, Successful Software Process Improvement, Prentice

Hall, Englewood Cliffs, New Jersey, 1997.

[34] T. Dyba, ―An Empirical Investigation of the Key Factors for

Success in Software Process Improvement,‖ IEEE Trans. Soft-

ware Eng., vol. 31, no. 5, pp. 410-424, 2005.

[35] J.M. Juran, ―A Note on Economics of Quality,‖ Industrial Quality

Control, pp. 20-23, 1959.

[36] J.M. Juran, Juran on Quality by Design: The New Steps for Planning

Quality into Goods and Services, Free Press, 1992.

[37] W.E. Deming, Out of Crisis, MIT Center for Advanced Engineer-

ing Study, 1992.

[38] W.S. Humphrey, ―Characterizing the Software Process: A Ma-

turity Framework,‖ IEEE Software, vol. 5, no. 3, pp. 73-79, 1988.

[39] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber. ―Capabili-

ty Maturity Model, Version 1.1,‖ IEEE Software, vol. 10, no. 4,

pp, 18-27, 1993.

[40] G. Li and S. Rajagopalan, ―Process Improvement, Quality and

Learning Effects,‖ Management Science, vol. 44, pp. 1517-1532,

1998.

[41] M.S. Krishnan and M.I. Kellner, ―Measuring Process Consisten-

cy: Implications for Reducing Software Defects,‖ Management

Science, vol. 25, pp. 800-815, 1999.

[42] N. Ramasubbu, S. Mithas, M. S. Krishnan, and C. F. Kemerer

―Work Dispersion, Process-Based Learning and Offshore Soft-

ware Development Performance‖, MIS Quarterly, v. 32, n. 2, pp.

437-458, June 2008.

[43] H. Wohlwend and S. Rosenbaum, ―Schlumberger’s Software

Improvement Program,‖ IEEE Trans. Software Eng., vol. 20, no.

11, pp. 833-839, 1994.

[44] M. Diaz and J. Sligo, ―How Software Process Improvement

Helped Motorola,‖ IEEE Software, vol. 14, no. 5, pp. 75-81, 1997.

[45] M. Agrawal and K. Chari, ―Software Effort, Quality and Cycle

http://www.stsc.hill.af.mil/crosstalk/2008/06/0806Jones.html
http://www.edn.com/article/CA608882.html?industryid=23439
http://www.edn.com/article/CA608882.html?industryid=23439
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
javascript:void(0);
file:///M:/pqdweb
file:///M:/pqdweb

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 13

Time: A Study of CMM Level 5 Projects,‖ IEEE Trans. Software

Eng., vol. 33, no. 3, pp. 145-156, 2007.

[46] M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, The Capability

Maturity Model: Guidelines for Improving the Software Process,

Addison-Wesley Publishing Company, Reading, MA, 1994.

[47] E. Barry, C. F. Kemerer, and S. Slaughter ―How Software

Process Automation Affects Software Evolution: A Longitudin-

al Empirical Analysis", Journal of Software Maintenance and Evo-

lution, v. 19, n. 1, pp. 1-31, January-February 2007.

[48] C. Andersson, P. Runeson, ―A Replicated Quantitative Analysis

of Fault Distributions in Complex Software Systems,‖ IEEE

Trans. Software Eng., vol. 33, no. 5, pp. 273-286, 2007.

[49] D.E. Harter, S.A. Slaughter, ―The Cascading Effect of Process

Maturity on Software Quality,‖ ICIS Proceedings, 2000.

[50] C.F. Kemerer, ―Software Complexity and Software Mainten-

ance: A Survey of Empirical Research‖, Annals of Software Engi-

neering, v. 1, n. 1, pp. 1-22, August 1995.

[51] J.W. Cangussu, R.A. DeCarlo, and A.P. Mathur, ―A Formal

Model of the Software Test Process,‖ IEEE Trans. Software Eng.,

vol. 28, no. 8, pp. 782-796, 2002.

[52] B.K. Clark, ―Quantifying the Effects of Process Improvement on

Effort,‖ IEEE Software, vol. 17, pp.65-70, 2000.

[53] R.D. Banker and S.A. Slaughter, ―The Moderating Effects of

Structure on Volatility and Complexity in Software Enhance-

ment,‖ Information Systems Research, vol. 11, no. 3, pp. 219-240,

2000.

[54] R.D. Banker, S.M. Datar, C.F. Kemerer, and D. Zweig, ―Soft-

ware Complexity and Software Maintenance Costs,‖ Comm.

ACM, vol. 36, no. 11, pp. 81-94, 1993.

[55] R.D. Banker, G.B. Davis, and S.A. Slaughter, ―Software Devel-

opment Practices, Software Complexity and Software Mainten-

ance Performance: A Field Study,‖ Management Science, vol. 44,

pp. 433-450, 1998.

[56] J.E. Gaffney, ―Estimating the Number of Faults in Code,‖ IEEE

Trans. Software Eng., vol. 10, no. 4, pp. 459-465, 1984.

[57] V.Y. Shen, T. Yu, and S.M. Thebut, ―Identifying Error-Prone

Software – An Empirical Study,‖ IEEE Trans. Software Eng., vol.

11, pp. 317-324, 1985.

[58] R.D. Banker and C.F. Kemerer, ―Scale Economies in New Soft-

ware Development,‖ IEEE Trans. Software Eng., pp. 1199-1205,

1989.

[59] R. Subramanyam, M.S. Krishnan, ―Empirical Analysis of CK

Metrics for Object-Oriented Design Complexity: Implications

for Software Defects,‖ IEEE Trans. Software Eng., vol. 29, no. 4,

pp. 297-310, 2003.

[60] F. Brooks, The Mythical Man Month, Anniversary Edition, 1995.

[61] E.T.G. Wang, P. Ju, J.J. Jiang, G. Klein, ―The Effects of Change

Control and Management Review on Software Flexibility and

Project Performance,‖ Information and Management, vol. 45,

no. 7, pp. 438, 2008.

[62] D. Damian, J. Chisan, ―An Empirical Study of the Complex

Relationships between Requirements Engineering Processes

and Other Processes that Lead to Payoffs in Productivity, Qual-

ity, and Risk Management,‖ IEEE Trans. Software Eng., vol. 32,

no. 7, pp. 433-453, 2006.

[63] K. El Emam, The ROI from Software Quality, Auerbach Publica-

tions, 2005.

[64] D.E. Harter, and S. Slaughter, ―Quality Improvement and Infra-

structure Activity Costs in Software Development: A Longitu-

dinal Analysis,‖ Management Science, vol. 49, no. 6. pp. 784-800,

2003.

[65] T.F. Liao, Interpreting Probability Models: Logit, Probit, and Other

Generalized Linear Models, Sage Publications, 1994.

[66] W.H. Greene, Econometric Analysis, 3rd Edition, MacMillan Pub-

lishing Company, New York, 1997.

[67] C. Ai, and E.C. Norton, ―Interaction Terms in Logit and Probit

Models,‖ Economics Letters, vol. 80 pp. 123-129, 2003.

[68] E.C. Norton, H. Wang, C. Ai, ―Computing Interaction Effects

and Standard Errors in Logit and Probit Models,‖ The Stata

Journal, vol. 4, no. 2, pp. 154-167.

First A. Author Biographies should be limited to one paragraph
consisting of the following: sequentially ordered list of degrees, in-
cluding years achieved; sequentially ordered places of employ con-
cluding with current employment; association with any official jour-
nals or conferences; major professional and/or academic achieve-
ments, i.e., best paper awards, research grants, etc.; any publication
information (number of papers and titles of books published); current
research interests; association with any professional associations.

Second B. Author Jr. biography appears here. Degrees achieved
followed by current employment are listed, plus any major academic
achievements.

Third C. Author is a member of the IEEE and the IEEE Computer
Society.

file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb
file:///M:/pqdweb

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Table 1: Summary of Research Questions
1 What effect do investments in CMM software process improvements have on the severity of

software defects? Does advancing to a higher CMM level have a differential impact on the like-

lihood of critical versus minor defects? What implications do these distinctions have for soft-

ware development?

2 How do higher levels of software process improvement differentially affect defect severity by

life cycle stage? Are the effects on development and production defects different, and, if so,

how should this knowledge affect investment rates and plans for software improvement?

3 What types of systems exhibit the highest benefits in terms of a reduced likelihood of severe de-

fects from improvements in software processes? Do the size, complexity and requirements am-

biguity of the system affect the improvement in defect severity, and, if so, how should this in-

fluence management decisions?

Figure 1. Development and Production Defect Severity Models

TABLE 2

Software Measures

Factor Description (Measure)

High Severity Defect Major functional failure or abnormal termination (1)

Low Severity Defect Minor or cosmetic error (0)

Software Process Im-

provement

The SEI Capability Maturity Model (CMM) level at which the

software was developed (ranging from 1 to 5)

Software Size Thousands of Lines of Code (KLOC) of the software

Software Complexity
Domain, data, and decision complexity of the software (rated on

scales of 1 to 5) [24]

Requirements Ambiguity
Level of ambiguity in the requirements specification for the

software (rated on a scale of 1 to 5) [24]

TABLE 3

Domain Complexity Measures [24]

Domain Complexity Description

1 Simple algorithms and simple calculations

2 Majority of simple algorithms and simple calculations

3 Algorithms and calculations of average complexity

4 Some difficult algorithms or complex calculations

5 Many difficult algorithms and complex calculations

High Severity
Defects

Process:
Process Improvement (-)

Software :
Size (+)
Complexity (+)
Require ments Ambiguity (+)

Proportion
High Severity

Prior Stage

+

-

-

+

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 15

TABLE 4

Data Complexity Measures [24]

Data Complexity Description

1 Simple data with few variables and low complexity

2 Several data elements, but simple data relationships

3 Multiple files, data interactions, and file updates

4 Complex file structures, data interactions, and updates

5 Very complex data elements, interactions, and updates

TABLE 5

Decision Complexity Measures [24]

Decision Complexity Description

1 Non-procedural (e.g., spreadsheet, query language)

2 Well-structured, plus standard reusable modules

3 Well-structured, with small modules and simple paths

4 Fair structure, but some complex modules and paths

5 Poor structure, with many complex modules and paths

TABLE 6

Requirements Ambiguity Measures [24]

Requirements Ambiguity Description

1 Program developers are also program users

2 Working model or prototype, plus clear requirements

3 Fairly clear user requirements

4 Ambiguous or incomplete user requirements

5 Ambiguous, incomplete, and rapidly changing user requirements

TABLE 7

Data Collection Summary

Data Collected by Audited by

Software Process

Improvement

(CMM Maturity Level)

 External divisions

 Client’s auditors

 External senior executives

 Client’s auditors

Software Size Configuration Management Quality Assurance

 Client technical reviewers

Software Complexity Software engineering man-

ager

 Chief Engineer

 Client technical reviewers

Requirements Ambiguity Software engineering man-

ager

 Chief Engineer

 Client technical reviewers

Development Defect Severity Configuration Management Quality Assurance

 Client technical reviewers

Production Defect Severity Configuration Management Quality Assurance

 Client technical reviewers

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

TABLE 8

Development Defect Severity Summary Statistics by Defect

Variable Mean
Standard

Deviation
Minimum Median Maximum

1. Process Im-

provement
 1.00 2.00 5.00

2. Software Size

(KLOC)
175.42 148.27 0.17 129.41 605.58

3. Complexity 2.23 3.15 4.00

4. Requirements

Ambiguity
 1.00 3.00 5.00

TABLE 9

Production Defect Severity Summary Statistics by Defect

Variable Mean
Standard

Deviation
Minimum Median Maximum

1. Process Im-

provement
 1.00 2.16 5.00

2. Software Size

(KLOC)
67.22 68.64 0.17 45.13 312.62

3. Complexity 2.23 3.15 4.00

4. Requirements

Ambiguity
 1.00 3.10 5.00

5. Percent of High

Severity in Devel-

opment

0.58 0.23 0.00 0.59 1.00

TABLE 10

Development Defect Severity Correlation Matrix by Defect
 (n=6,190; Pearson correlation coefficients with p-values in parentheses)

1. High

Severity

2. Process

Improvement

3. Software

Size

4. Design

Complexity

5. Requirements

Ambiguity

1. High Severity 1.0000

2. Process Improve-

ment

-0.0086

(0.4984)

 1.0000

3. Software Size -0.0070

(0.5824)

0.2589

(0.0000)

 1.0000

4. Complexity 0.0155

(0.2225)

0.5839

(0.0000)

0.2329

(0.0000)

 1.000

5. Requirements

Ambiguity

0.0493

(0.0001)

0.0378

(0.0029)

-0.1714

(0.0000)

0.2209

(0.0000)

1.0000

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 17

TABLE 11

Production Defect Severity Correlation Matrix by Defect
 (n=1,355; Pearson correlation coefficients with p values in parentheses)

1. High

Severity

2. Process

Improvement

3. Software

Size

4. Design

Complexity

5. Requirements

Ambiguity

6. Percent

Devel. High

Severity

1. High Severity 1.0000

2. Process Im-

provement

-0.1533

(0.0000)

 1.0000

3. Software Size 0.0445

(0.1042)

-0.4432

(0.0000)

 1.0000

4. Complexity -0.0601

(0.0281)

0.4939

(0.0000)

-0.1022

(0.0002)

 1.0000

5. Requirements

Ambiguity

0.0880

(0.0013)

0.1087

(0.0001)

-0.0160

(0.5591)

0.3413

(0.0000)

1.0000

6. Percent Devel-

opment

High Severity

0.0564

(0.0394)

0.0707

(0.0098)

-0.0308

(0.2610)

0.4075

(0.0000)

0.0946

(0.0005)

1.0000

TABLE 12

Development Severity Probit Parameter Estimates (n=6190) (one-tailed p-values)

Variable

Para-

meter

Controls

Controls +

CMM

Controls +

CMM + In-

teractions

Intercept 01

p

0.202

0.000
0.202

0.000
0.275

0.000

Size 11

p

0.000

0.497
0.000

0.413
0.001

0.000

Complexity 21

p

0.018

0.361
0.063

0.154
-0.033

0.304

Ambiguity 31

p

0.104

0.000
0.101

0.001
0.115

0.000

Process-

Improvement

(CMM)

41

p

 -0.046

0.097
-0.069

0.032

CMM * Size 51

p

 -0.001

0.000

CMM * Com-

plexity
61

p

 -0.370

0.000

CMM * Ambigu-

ity
71

p

 0.142

0.002

Wald Statistic 2

P

15.16

0.002
16.85

0.002
84.59

0.000

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

TABLE 13

Production Severity Probit Parameter Estimates (n=1336) (one-tailed p-values)

Variable

Para-

meter

Controls

Controls +

CMM

Controls +

CMM + In-

teractions

Intercept 02

p

0.309

0.000
0.313

0.000
0.348

0.000

Percent Devel.

High Severity
12

p

0.581

0.001

0.437

0.005

0.517

0.002

Size 22

p

0.001

0.111
-0.001

0.185

-0.001

0.041

Complexity 32

p

-0.437

0.000
-0.179

0.059
-0.122

0.150

Ambiguity 42

p

0.236

0.000
0.219

0.000
0.218

0.000

Process-

Improvement

(CMM)

52

p

 -0.299

0.000
-0.370

0.000

CMM * Size 62

p

 -0.002

0.047

CMM * Com-

plexity
72

p

 -0.492

0.001

CMM * Ambigu-

ity
82

p

 0.005

0.481

Wald Statistic
2

P
36.44

0.000
55.07

0.000
71.00

0.000

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 19

Figure 2. Process Improvements and Defect Severity Over Time

Figure 3. Interaction Effect of CMM and Complexity on Development Defects

0

1

2

3

4

5

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

C
M

M
 L

e
ve

l

Month

CMM Level

Proportion High Severity Development Defects

Proportion High Severity Production Defects

%

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Low 61.33% 61.05% 60.76% 60.48% 60.19%

Medium 63.61% 60.98% 58.30% 55.58% 52.83%

High 65.84% 60.91% 55.80% 50.59% 45.38%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s

(D
e

ve
lo

p
m

e
n

t)

Complexity

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Figure 4. Interaction Effect of CMM and Complexity on Production Defects

Figure 5. Interaction Effect of CMM and Size on Development Defects

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Low 76.69% 67.82% 57.80% 47.24% 36.87%

Medium 79.99% 68.14% 54.07% 39.45% 26.20%

High 82.99% 68.46% 50.30% 32.07% 17.39%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s

(P
ro

d
u

ct
io

n
)

Complexity

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Small 58.10% 58.90% 59.69% 60.49% 61.27%

Medium 63.61% 60.98% 58.30% 55.58% 52.83%

Large 68.85% 63.03% 56.89% 50.59% 44.26%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s

(D
e

ve
lo

p
m

e
n

t)

Size

HARTER, ET AL.: DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 21

Figure 6. Interaction Effect of CMM and Size on Production Defects

Figure 7. Interaction Effect of CMM and Ambiguity on Development Defects

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Small 78.69% 68.74% 57.18% 44.98% 33.23%

Medium 79.99% 68.14% 54.07% 39.45% 26.20%

Large 81.24% 67.54% 50.92% 34.14% 20.03%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s

(P
ro

d
u

ct
io

n
)

Size

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Low 64.00% 59.78% 55.44% 51.04% 46.62%

Medium 63.61% 60.98% 58.30% 55.58% 52.83%

High 63.21% 62.17% 61.11% 60.05% 58.98%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s

(D
e

ve
lo

p
m

e
n

t)

Reqts Ambiguity

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Figure 8. Interaction Effect of CMM and Ambiguity on Production Defects

TABLE 14

Empirical Support for Hypotheses by Model (α=.05)
Variable Development Model Production Model

Process (main effect) H1: Supported H2: Supported

Complexity (interaction effect) H3: Supported H3: Supported

Size (interaction effect) H4: Supported H4: Supported

Requirements Ambiguity (interaction effect) H5: Supported H5: Not Supported

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Low 77.84% 65.37% 50.96% 36.42% 23.63%

Medium 79.99% 68.14% 54.07% 39.45% 26.20%

High 82.01% 70.81% 57.15% 42.55% 28.92%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s

(P
ro

d
u

ct
io

n
)

Reqts Ambiguity

