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Does Software Process Improvement Reduce 
the Severity of Defects?  

A Longitudinal Field Study 
Harter, Donald E., Kemerer, Chris F., Member, IEEE Computer Society and Slaughter, Sandra A. 

Abstract— As firms increasingly rely on information systems to perform critical functions the consequences of software defects 

can be catastrophic. Although the software engineering literature suggests that software process improvement can help to 

reduce software defects, the actual evidence is equivocal.  For example, improved development processes may only remove 

the “easier” syntactical defects, while the more critical defects remain.  Rigorous empirical analyses of these relationships have 

been very difficult to conduct due to the difficulties in collecting the appropriate data on real systems from industrial 

organizations.  This field study analyzes a detailed data set consisting of 7,545 software defects that were collected on software 

projects completed at a major software firm.  Our analyses reveal that higher levels of software process improvement 

significantly reduce the likelihood of high severity defects.  In addition, we find that higher levels of process improvement are 

even more beneficial in reducing severe defects when the system developed is large or complex, but are less beneficial when 

requirements are ambiguous, unclear or incomplete.  Our findings reveal the benefits and limitations of software process 

improvement for the removal of severe defects and suggest where investments in improving development processes may have 

their greatest effects. 

Index Terms— software complexity, defect severity, requirements ambiguity, software process, CMM. 
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1 INTRODUCTION

oftware defects have historically plagued the      
software industry.  The National Institute of Stan-
dards and Technology (NIST) estimates that poor 

software quality costs U.S. businesses $59.5 billion per 
year, split between software developers ($21.2 billion) 
and users ($38.3 billion) [1].  Further, the consequences of 
software defects are growing as individuals, organiza-
tions and society increasingly rely on software systems 
for critical functions. As noted by Mann, ―in the last 15 
years alone, software defects have wrecked a European 
satellite launch, delayed the opening of the hugely expen-
sive Denver airport for a year, destroyed a NASA Mars 
mission, killed four marines in a helicopter crash, induced 
a U.S. Navy ship to destroy a civilian airliner, and shut 
down ambulance systems in London, leading to as many 
as 30 deaths.‖ [2] 

How can software engineers improve this situation?  
There is some research suggesting that software process 
improvement efforts, such as the Capability Maturity 
Model (CMM) can help reduce defect rates.  For example, 
respondents to a survey conducted by Herbsleb et al. re-

ported that improvements in processes, as measured by 
the CMM, led to significant reductions in defects [3].  
Subsequent studies [4], [5] found that investments in 
CMM process improvements resulted in significant im-
provements in both software quality and costs. 

However, this prior work has not had the opportunity 
to examine whether and/or how software process im-
provement affects the severity of defects.  Severity is a 
measure of the impact a defect has on a system and its 
users.  Crosby identified the importance of defect severity 
as early as 1979 [6].  More recently, Jones re-emphasized 
the importance of measuring severity levels rather than 
simply identifying the number of defects [7].  An exami-
nation of defect severity has the potential to contribute to 
the research on software quality because not all software 
errors are equal.  While some defects are merely cosmetic, 
others can be catastrophic with potentially tragic conse-
quences.  Two recently documented examples are: 
 A software flaw in GE’s energy management system 

contributed to the devastating scope of the Aug. 14, 
2003, northeastern U.S. blackout and caused the fail-
ure of an alarm system at First Energy’s Akron, Ohio 
control center, slowing the response and allowing the 
blackout to cascade [8],  

 Jaguar recalled 68,000 cars due to a software glitch 
that would automatically shift the car into reverse if it 
detected a significant change in fluid pressure [9]. 

Understanding the effects of software process im-
provements on these most severe error types is highly 
beneficial in making the case for investments in process 
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improvement.    
In addition to the severity of the defect, the timing of 

defect detection also affects software costs.  A number of 
researchers have noted that it is significantly cheaper to 
fix defects detected earlier in the process, i.e., in devel-
opment rather than in production [10], [11].  Develop-
ment defects are those discovered prior to implementa-
tion of the system, while production defects are bugs 
found during systems operations after system implemen-
tation.  Since production defects are believed to be the 
most expensive to repair, investments in process im-
provement early in the life cycle have the greatest poten-
tial to reduce costs.   

Finally, not all projects are equal – some systems are 
large, others small, some complex, others less so. Some 
projects have requirements that are ambiguous, unclear 
or incomplete, or that may change frequently; other 
projects have requirements that are more straightforward 
and clearly defined.  The software engineering literature 
has identified software complexity, size and requirements 
ambiguity as key factors influencing software quality [50].  
Building on this we ask whether software process im-
provement has differential quality impacts for systems 
with different levels of these factors?  To the degree that 
resources are limited where should improvements in 
software processes be prioritized:  for larger systems, for 
more complex systems, or for systems with ambiguous 
requirements?  An understanding of when software 
process improvement is most beneficial in terms of severe 
defect reduction can assist software managers in evaluat-
ing investment decisions by employing scarce resources 
where they provide the most benefit [12].  These research 
questions are summarized in Table 1. 

<Table 1> 
To answer these questions we analyzed an extensive 

dataset including detailed, longitudinal data collected 
over a period of twenty years on more than 7,545 devel-
opment and production defects from a major software 
organization.  The data were collected for an effort to de-
velop a large software system at this organization.  The 
software constitutes 7.7 million lines of code developed as 
part of an inventory management information system.  
The system development effort comprised a set of soft-
ware projects which varied in size, complexity and ambi-
guity of requirements, with an average size of 175,000 
lines of code and an average duration of 9.6 months.  A 
unique feature of this setting is that it reflects a quasi-
experimental design, in which the organization improved 
its software processes over time while working on vari-
ous projects to develop the system, advancing from CMM 
level 1 through level 5 during the time period examined.  
By investigating projects conducted at different levels of 
CMM maturity for one system in one organization over 
time, the possible effects of many other extraneous factors 
are minimized. The longitudinal defect data thus consti-
tute repeated measures of the quality of the processes 
used to develop this system, while controlling for the dif-
ferences in software size, complexity and requirements 
ambiguity for each project, thus strengthening the inter-
nal validity of our findings. In addition, each defect was 

assigned a level of severity, allowing us to relate im-
provements in software development processes to defect 
severity.  To the best of our knowledge this research is the 
first study that explores the effects of software process 
improvement as measured by the CMM level on the se-
verity of software defects.  Exploration of the interaction 
of CMM level with software size, complexity and re-
quirements ambiguity also has the potential to lend more 
nuanced insights into what types of software projects are 
likely to experience the greatest benefits from improve-
ments in software development processes.    

In section 2 we review relevant prior literature on 
software quality and software process improvement.  
Section 3 proposes a research model and methodology to 
analyze the effects of software process improvement, 
software size, complexity, and requirements ambiguity 
on software defect severity.  Section 4 describes the re-
search site, research design and the unique data set.  In 
section 5 we present the analyses and results.  Section 6 
discusses the implications and insights of the study for 
software engineering research and for managers in the 
software industry, and section 7 reviews the conclusions 
and opportunities for future research. 
1 Previous Relevant Literature 
2.1 Defect Severity 
Although a significant volume of research has been pub-
lished on software quality, much of the research has fo-
cused on cross-sectional studies and fault prediction 
models [13], [14], [15], [16], [17].  With few exceptions 
most of the research has not had access to data on defect 
severity, nor an opportunity to examine longitudinal data 
relating to an organization’s evolution through all five 
CMM levels.  In contrast to these fault prediction studies, 
the purpose of our current study is to empirically eva-
luate the effect of software process improvement, and 
software size, complexity and requirements ambiguity on 
defect severity. 

Similar to prior researchers we define defects as flaws 
in the specification, design, or implementation of soft-
ware [18] that cause the systems to fail to perform its 
function [19]. Defects can appear throughout the software 
life cycle [20].  Defect counts alone, while useful, may not 
provide a complete picture of the quality of software sys-
tems.  A more thorough approach to categorizing errors is 
to examine the severity of a defect, as a system with even 
many cosmetic defects would be much more desirable to 
users than one with even a few catastrophic functional 
failures.  Humphrey defines defect severity as the impact 
of a defect on the user’s operational environment [21].  A 
number of software researchers specify a categorization 
of defects of up to four severity levels [18], [22], [23], [24].  
The IEEE 729 standard defines the most important defects 
as either Critical (defect results in a systems or subsystem 
failure, usually crashing) or Major (functional failure of 
the system, e.g., incorrect calculations, data loss, etc.).  A 
less important set of defects are either Average (system 
provides inconsistent or incomplete results) or Minor (de-
fect does not cause failure or impair usability).  This cate-
gorization is mirrored throughout the literature, with a 
slight variation in labeling, but relatively consistent inter-
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pretations, by Jones [24], Poulin [26], Gao [27], UKSMA 
[28] and Tsui [29]. 

This prior literature on defect severity tends to be fo-
cused on standards or taxonomies, rather than on quan-
titative analysis of empirical severity data; such studies 
are rare, no doubt due to the reasons identified by Zhou 
and Leung that make severity data difficult to collect [30].  
First, severity data is expensive and time-consuming to 
collect [30], [31].  Second, development or testing person-
nel must have sufficient training and background to accu-
rately assess severity levels [32].  The difficulty in acquir-
ing accurate severity data on software projects is likely 
the key reason that more empirical research has not been 
performed in this area.   

Perhaps as a consequence of these difficulties, prior re-
search has tended to aggregate the two top category de-
fects into a single ―functional/business-critical errors‖ 
category, and to aggregate the two bottom category de-
fects into a ―non-business-critical/inconveniences‖ cate-
gory.  Tsui further supports this two level view of defect 
severity by recommending that the top category defects 
should be fixed before production, but fixes for the bot-
tom category defects can be deferred [29].   

However, even with this two-level view there is very 
limited empirical research concerning the effect of process 
improvement on the severity of defects.  Perhaps the most 
well known work is some anecdotal evidence from Hew-
lett-Packard (HP) suggesting that process improvements 
affect the frequency of high versus low severity defects.  
Their ―10X‖ improvement program found a differential 
effect of process improvements on defect density for vari-
ous severity levels [33].  In evaluating the effect of process 
improvement on defect severity HP aggregated critical 
and serious defects (category 1 and 2) as high severity 
defects and minor and cosmetic defects (category 3 and 4) 
as low severity defects.  HP’s five-year goals were to re-
duce post-release defect density by a factor of 10 (hence, 
the ―10X‖ program) and to reduce the number of critical 
and serious defects by 10X.  After nine years HP expe-
rienced a 6X reduction in defect density, but only a 2.5X 
reduction in critical and serious errors [33].   
2.2 Software Process Improvement 
For the last decade, software process improvement has 
been a primary approach to improving software quality 
[34].  Software process improvement refers to a defined 
framework of software procedures that define the steps 
and methods of a software process, define measures to 
assess and benchmark the process, and implement the 
defined procedures while looking for continuous im-
provement opportunities. Juran [35], [36], Deming [37] 
and Crosby [6] have long advocated process improve-
ment as a means to improve quality in product develop-
ment, manufacturing and services.  Humphrey’s early 
research in software engineering highlighted the need for 
process improvement in the software industry [38].  He 
drew on principles from manufacturing in developing 
quality oriented process guidelines for software devel-
opment, which evolved into the Capability Maturity 
Model [39].  As the adoption and acceptance of the CMM 
model have spread, the research literature has become 

populated with numerous studies establishing a positive 
relationship between software process improvement and 
software quality [3], [40], [41], [42] and the relationships 
among process, quality and cost [4], [5], [43], [44], [45].   

Our study extends this prior research by testing the re-
lationship between software process improvement and 
defect severity, while controlling for other factors that 
may influence the results (the relationships are defined by 
and illustrated in our conceptual model in Figure 1 which 
is described in the next section).   
3 Research Model, Design and Methodology 
3.1 Conceptual Model 

Prior research has tended to examine software quality 
using the project as the unit of analysis, most likely be-
cause the majority of organizations maintain quality sta-
tistics at this aggregate level.  However, our study had 
access to uniquely detailed data about each defect.  By 
moving the unit of analysis down to the defect level, we 
can explore the relationships between software size, com-
plexity, requirements ambiguity and software process 
improvement on the severity level of each defect.  Using 
these data we formulate a model with the defect as the 
unit of analysis and severity level as the dependent varia-
ble.   

The conceptual framework for this analysis provides a 
model to estimate the probability of a detected defect be-
ing a high severity defect, given a set of conditions con-
cerning software process improvement, software size, 
complexity, and requirements ambiguity.  Intuitively, 
larger, more complex and more ambiguous systems are 
expected to experience worse problems, all else being 
equal, and we start by including those variables and test-
ing them in our model.  Then, with those controls in-
cluded, we test for the effect of software process im-
provement on the potential for severe defects to occur.   

Figure 1 outlines our two related models for (1) devel-
opment defects (solid boxes and arrows) and (2) produc-
tion defects (solid boxes and arrows plus dashed boxes 
and arrows).  Development defects are those detected dur-
ing the software development process but before custom-
er acceptance.  The strength of the relationship between 
software characteristics (size, complexity and ambiguity) 
and the severity of a defect is expected to be influenced 
by software process improvement.  Process improvement 
is said to have a moderating effect on software characte-
ristics and is depicted by the intersecting lines in Figure 1 
[46].  A moderated model measures the effect that one 
variable has on the relationship between two other va-
riables [47].  This interaction can strengthen or weaken 
the relationship between the system characteristics and 
the severe defects.  In particular, in our study we use a 
moderated model to test whether the benefits of software 
process improvement are enhanced for systems that are 
larger, more complex or have more ambiguous require-
ments.  From a practical perspective this can lend insight 
into what types of systems benefit the most from process 
improvements. 

<Figure 1> 
We propose that software process improvement, size, 

complexity and requirements ambiguity all directly affect 
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the likelihood that a defect will be classified as high sever-
ity.  In Figure 1 these main effects are represented by the 
arrows from Software and Process to High Severity Defects.  
However, we argue that process improvement may have 
a differential impact on the probability of a high severity 
defect for software projects of different sizes, complexity 
levels, and levels of requirements ambiguity.  These inte-
ractions are represented by the intersecting arrow in Fig-
ure 1. 

Our research site maintained records for both devel-
opment defects and production defects.  The develop-
ment defect model described above includes variables for 
process, size, complexity, ambiguity and their interac-
tions. However, prior researchers have found that quality 
in one life cycle stage tends to influence quality in later 
stages [48], [49]. Because of this persistence of quality 
from development through production we include the 
proportion of high severity development defects as an addi-
tional variable in the production defect version of the 
model outlined in Figure 1 as represented by the dashed 
box and arrow. We separately examine models for devel-
opment and production defect severity consistent with 
Figure 1 to determine whether the impacts on severity 
levels differ by life cycle phase. 
3.2 Hypotheses 
Using the models specified in Figure 1 we will examine 
both the direct effect of process improvement on the like-
lihood of development and production defects and 
whether process improvement interacts with the project 
level variables when determining the likelihood of high 
severity errors. The following sections specify our hypo-
theses for these effects.   
3.2.1 Process Improvement Effect on Development De-
fect Severity 
The CMM process maturity model encompasses 
processes to ensure quality throughout the development 
life cycle by monitoring the requirements, design, coding 
and testing process via functional requirement reviews, 
design reviews, code reviews and testing.  One strength 
of this high level process is the ability to ensure that the 
final software matches the functional requirements from 
the start of the life cycle.  For example, Jones found that 
severity level 1 errors were generally requirements errors, 
design errors dominated severity level 2, and coding er-
rors and documentation errors were the primary source 
of errors for severity levels 3 and 4 [24].  The CMM focus 
on functional requirements and design would seem to be 
well-suited to reducing category 1 and 2 errors through 
the use of design walkthroughs, perhaps somewhat effec-
tive in reducing coding errors with code walkthroughs, 
but likely to be less focused on typographical and other 
cosmetic defects [41].  For this reason we propose that 
improvements in software processes will be more likely 
to reduce the likelihood of high severity defects in the 
development phase. 

H1: Software process improvement will decrease the like-
lihood of high severity development defects more than low 
severity development defects, all else being equal. 

3.2.2 Process Improvement Effect on Production Defect 
Severity 
Earlier research has found that quality is persistent, i.e., it 
tends to ―cascade‖ through the software life cycle [48], 
[49].  This means that if quality is built into software early 
in the life cycle, then similar levels of quality will tend to 
manifest through later life cycle phases – e.g., higher 
quality designs lead to better code, fewer bugs in devel-
opment testing, and fewer problems in production.  All 
else being equal the quality of the input from one life cycle 
stage influences the quality of the output of subsequent 
stages.  Building on this premise we predict that the bene-
fits of process improvement during development will 
cascade to the production life cycle phase, reducing the 
likelihood of high severity production defects. 

H2: Software process improvement will decrease the like-
lihood of high severity production defects more than low 
severity production defects, all else being equal. 

3.2.3 Process Improvement, Complexity and Defect Se-
verity 
Research has found that software complexity has a signif-
icant effect on software development quality [50], [51], 
[52].  Highly complex software is more prone to have de-
fects of all kinds, including the more severe defects [50].  
Complexity also influences the software projects that are 
being enhanced in development [53] or maintained in 
production [54], [55].  And, it is possible that process im-
provement affects projects of varying levels of complexity 
in different ways.  For example, the discipline of the 
CMM processes should ensure that complex projects suc-
cessfully move through requirements definition, design, 
coding and testing.  A less disciplined approach would 
potentially lose control of complex projects, resulting in a 
higher number and higher severity of defects.  However, 
disciplined processes might accrue fewer benefits when 
building very simple systems, where the additional 
process structure is not required in order for developers 
to do a good job.  Therefore, we propose that process im-
provement will moderate the relationship between com-
plex software and high severity defects, such that: 

H3: Software process improvement will have a greater 
benefit for more complex software in reducing the likelih-
ood of high severity defects, all else being equal.   

3.2.4 Process Improvement, Software Size and Defect 
Severity 
A positive correlation between software size and the 
number of defects found in a software project is well-
validated in the research literature [45], [48], [56], [57], 
[58], [59].  Software size influences the size of the software 
team, the level of integration necessary among compo-
nents, and the increase in communication channels re-
quired among team members [60].  Larger projects thus 
impose what can be considered another dimension of 
complexity, i.e., management complexity.  Management 
complexity comes from the fact that larger software 
projects require increased team size, necessitating strong-
er internal team coordination processes.  Increased soft-
ware size also leads to decomposition into components 
with sub-teams, requiring component integration and 
inter-team coordination.  Thus, given the additional activ-
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ities required to integrate, coordinate and communicate in 
larger projects, it is quite likely that such projects would 
experience more defects, especially more severe defects. 
Indeed, the software development literature suggests that 
larger projects are significantly more prone to failure [57]. 
However, improved software development processes 
should be especially helpful for larger projects.  Software 
process improvement includes the key processes for 
greater management discipline.  Some examples of CMM 
key process areas which enhance management’s ability to 
coordinate larger projects include configuration manage-
ment, integrated project management, product integra-
tion, and project monitoring and control.  Wang et al. re-
ported that management controls lead to higher levels of 
project performance [61].  These disciplined management 
processes should improve the quality and reduce the se-
verity of errors occurring in larger projects, hence: 

H4: Software process improvement will have a greater 
benefit for larger software projects in reducing the likelih-
ood of high severity defects, all else being equal. 

3.2.5 Process Improvement, Requirements Ambiguity, 
and Defect Severity 
The clarity of a functional requirement at the beginning of 
a software development effort has the potential to signifi-
cantly determine if a software project is successful and 
thereby influence the resulting software quality [62].  The 
question is then how the effects of process improvement 
vary by projects with different levels of requirements clar-
ity or lack thereof (ambiguity).  One could argue that if a 
software project has very ambiguous requirements, then 
no process will guarantee a manager to successfully de-
liver high quality software, as high levels of ambiguity 
will result in misunderstandings of the requirements, mi-
sinterpretation, incorrect designs, and ultimately, more 
defects.  Even a disciplined process will have difficulty 
interpreting a poorly written requirement.  However, if a 
software requirement is clearly defined, the discipline of 
the CMM process could be expected to help to ensure that 
the software will be built to satisfy the requirement.  
Therefore: 

H5: Software process improvement will have a greater 
benefit for software with less ambiguous requirements in 
reducing the likelihood of high severity defects, all else be-
ing equal. 

4 Research Site, Design and Methodology 
4.1 Research Setting   
The analysis examines data collected on 6,190 develop-
ment defects and 1,355 production defects in software 
developed over a twenty year period by the systems inte-
gration division of a large information technology corpo-
ration for a major customer.  The software constitutes 7.7 
million lines of code developed as part of an inventory 
management information system.  During the time period 
of the development effort, the company implemented 
various software process improvement initiatives such as 
creation of life-cycle development standards, definition of 
detailed style guides for documentation, institutionaliza-
tion of design review processes and program manage-
ment status reviews, definition of schedule and perfor-
mance metrics, use of Pareto analysis and the implemen-

tation of an automated cost estimation methodology, 
among others.  

The research setting provides a quasi-controlled field 
environment to evaluate the effects of software process 
improvement on defect rates, and the severity of defects.  
During the development effort for this system the organi-
zation improved from CMM process maturity level one to 
level five. The defect data thus constitute repeated meas-
ures of the quality of this system at different levels of 
CMM process maturity, while controlling for differences 
in software size, complexity and requirements ambiguity.   
4.2 Data Collection Methods   
The software developer, the customer, and several inde-
pendent outside organizations collected components of 
the detailed defect data used in this study.  Independent 
assessors from other divisions of the software developer, 
customer personnel, and auditors used the SEI’s CMM to 
evaluate the level of software process improvement to devel-
opment and supporting activities.   

Product measures including size, complexity, and re-
quirements ambiguity were collected by the software de-
veloper and audited by the customer.  The Configuration 
Management department at the software developer col-
lected software size information using automated tools to 
ensure consistency in measurement.  The customer con-
firmed software size through an independent count of 
lines of code.  The Engineering department at the soft-
ware developer determined ex ante complexity and re-
quirements ambiguity ratings based on the customer’s 
functional requirement specification using the criteria 
identified by Jones [24].  Prior to the start of any software 
development, the customer performed an independent 
analysis of complexity and requirements ambiguity.  If 
there were any discrepancies between the software de-
veloper’s analysis and the customer’s analysis, the two 
parties met prior to the start of a project to review and 
resolve any differences.   

Defects were discovered in testing either prior to cus-
tomer acceptance (development defects), or after a system 
was implemented in production (production defects).  Test-
ing during the development phase was first performed by 
the software developer, then by the customer in their ac-
ceptance testing.  The software developer’s test depart-
ment used a customer-approved test plan to test the soft-
ware against the design specification.  The description 
and severity of errors found in this testing were recorded 
by the developer’s test team.  The customer performed a 
functional systems test of each software project with a 
similar plan, first using a sample database for functional 
testing, and then using a full-scale database for stress test-
ing.  All of the defects found by the developer or custom-
er during these development and acceptance tests were 
included in the development defect database.  After sys-
tem acceptance by the customer all further defects were 
identified as production defects.  Users in the customer 
firm identified errors in production and recorded the de-
scription and severity of these production defects.   

The customer audited defects identified by the devel-
oper; likewise, the developer reviewed and authenticated 
errors identified by the customer.  Assignment of severity 
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levels received similar scrutiny by both parties and fol-
lowed a documented procedure to ensure consistency of 
assignment over time.  Similar to how Hewlett-Packard 
implemented its Defect Tracking and Software Metrics 
Data Base, the configuration management department at 
the development firm maintained all software problem 
reports in an electronic database [32].  The data examined 
in this study were extracted from these electronic files 
and some additional hardcopy files maintained by the 
engineering and configuration management departments 
at the software development firm.   
4.3 Construct Measurement 
As noted earlier, in prior studies that have analyzed em-
pirical defect data by severity, the researchers have ag-
gregated their data into two levels, e.g., HP’s Grady ag-
gregates his severity levels into two levels: major and mi-
nor [33].  Major defects are those which result in a func-
tional failure of the system (a category 1 ―crash‖ or cate-
gory 2 ―functional failure‖).  Minor defects may create an 
inconvenience (category 3 ―minor errors‖ or category 4 
―cosmetic errors‖), but do not interfere with business-
critical activities [63].  Jones also found this grouping in 
empirical data, where category 1 and 2 defects were often 
resolved before software acceptance, but category 3 and 4 
defects were deferred [24]. He found that category 1 and 2 
defects constituted 3% and 47% of his sample1.  

Similarly, in our current work we believe that high and 
low severity are determined by whether a defect is busi-
ness critical or non-business critical.  Therefore, we have 
followed the approach taken by other researchers and 
aggregated the four severity levels into two, labeling se-
verity categories 1 and 2 as ―high severity‖, and catego-
ries 3 and 4 as ―low severity‖ [24].  Using this categoriza-
tion of business-critical and non-business critical errors, 
high-severity development defects are identified prior to 
customer acceptance and categorized as critical or se-
rious.  Low-severity development defects are defects that are 
identified in development prior to customer acceptance, 
but categorized as minor or cosmetic errors. Similarly, 
high-severity production defects are identified by users in a 
production environment and categorized as critical or 
serious.  Low-severity production defects are identified by 
users in production and categorized as minor or cosmetic 
errors.  For production defects the software developer 
was contractually required to fix high severity defects 
quickly, while low severity defects could be deferred to 
subsequent version releases.  After submission of a pro-
duction defect to the defect tracking system, the develop-
er, customer, and users reviewed each defect and its clas-
sification to ensure that the severity assigned conformed 
to the standards established within the contract.  This 
process also ensured that submissions were defects and 
not requests for new software features or enhancements.   
 

1
 The lone exception to this approach is the work of Zhou and Leung who 

chose to separate major and minor defects by declaring only category 1 defects 

as major; minor defects included categories 2, 3, and 4.  This may be because in 

their dataset of 549 defects, only 34 were category 1 defects (6% of the sample), 

but category 2 defects comprised 77% of their data.  Combining these would 
mean that 83% of their sample would have been considered “high severity”.  By 

contrast, in our data about 60% are categories 1 and 2 and 40% categories 3 and 

4, a distribution similar to Jones’s.   

Table 2 summarizes the description of the key meas-
ures of variables in our study. 

<Table 2> 
From Table 2 we have six software measures.  As 

noted above, High severity defects are defined as business 
critical functional failures or program termination.  Low 
severity defects are defined as non-business critical minor 
disruptions and cosmetic errors [24].  Of the 6,190 total 
development defects, 57.89% were high severity (averag-
ing 50 high severity development defects per product).  
Similarly, of the 1,355 total production defects, 61.1% 
were high severity (averaging 11 high severity production 
defects per product).   

Software process improvement is the level of discipline 
and process control in the software development process 
[39].  We measure process improvement using the SEI 
CMM level of maturity.  Each software project has a ma-
turity level defined at the start of design adjusted com-
mensurately for process improvements during the devel-
opment life-cycle of that software.  The CMM evaluation 
process involves the examination of Key Process Areas 
(KPA) relevant to each of the five CMM levels.  Ad-
vancement from one CMM level to the next requires ad-
herence to a preponderance of the KPAs for the level.  
This process improvement measurement approach has 
been employed successfully in prior research [3, 4, 5].  
CMM level 1 implies that processes are ad hoc; processes 
might exist but are not used uniformly through the or-
ganization.  At CMM level 2, processes are repeatable; 
processes are used consistently throughout the organiza-
tion, but there is limited training and documented stan-
dards.  CMM level 3 includes defined standards and 
mandatory training.  CMM levels 4 and 5 introduce mea-
surement and continuous process improvement respec-
tively.  The CMM process maturity model provides a con-
sistent measure of process improvement that can be used 
in longitudinal studies.  The CMM was replaced by the 
CMMI in 2002 and post-2002 process maturity levels were 
measured using the updated approach2.  The CMM ma-
turity level of a software project is pro-rated based on the 
fraction of development performed at each level [49], 
[64].3  In the first twelve years of the effort CMM assess-
ments were performed approximately every two years, 
and the company’s CMM maturity level increased from 
level 1 to level 3 during that period.  In the thirteenth year 
the CMM level fell to level 2, but then returned to level 3 
in year fourteen, and in the final years of data collection 
was assessed at level 5.  All CMM and CMMI appraisals 
were performed by teams external to the research site. 

Software size is a measure of the magnitude of the soft-
ware in thousands of lines of code (KLOC).  LOC has a 
long tradition of use as a measure for size in software 
research [41], [45], [56], [59].  Although LOC has some-
times been challenged as a potentially inconsistent meas-
 

2
 For more on CMMI (Capability Maturity Model Integration), see CMMI Dis-

tilled (2nd Ed.): A Practical Introduction to Integrated Process Improvement by 

Dennis M. Ahern, Aaron Clouse, and Richard Turner; Addison-Wesley 2004, 

305 pages.  
3
 For example, a software product which spanned twelve months, six months 

under CMM level 2 practices and six months under CMM level 3 practices, 

would have a weighted process maturity score of 2.5.  
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ure, the use of a single programming language at our re-
search site and the automated counting of lines of code 
make its use appropriate in this context.   

Software complexity reflects three dimensions of com-
plexity: domain, data and decision complexity [5], [24].  
Domain complexity measures functional and algorithmic 
sophistication (Table 3).  Data complexity quantifies the 
number of data variables and the complexity of data rela-
tionships (Table 4).  Decision complexity reflects the struc-
tural and procedural complexity within a program (Table 
5).  The three complexity measures are based on tech-
niques developed by Jones and implemented in a number 
of software cost, schedule and quality models [24].  The 
measures use a Likert scale from 1 to 5 as described in 
Tables 3, 4, and 5, with higher values indicating higher 
complexity.  Since the three measures tend to be highly 
correlated, software complexity is the calculated as the av-
erage of these three measures [5].  

<Table 3> 
<Table 4> 
<Table 5> 
Requirements ambiguity is an assessment of the clarity 

and specificity of the users’ requirements as documented 
in a functional specification.  Requirements engineering 
and clarification is a crucial step in the software engineer-
ing life cycle [62].  Requirements ambiguity is measured 
on a scale of 1 to 5 (Table 6), with higher values indicating 
greater ambiguity [24]. 

<Table 6> 
4.4 Data Validity 
A particular and unique strength of the data collected for 
this study concerns the level of rigor with which the data 
were measured.  All data collected for this study were 
audited for correctness and completeness by various in-
dividuals and organizations.  A summary of audit re-
views and reviewers is shown in Table 7.   

<Table 7> 
4.5 Data Collection Summary 
External executives from other divisions of the company 
and client auditors ensured the accuracy of ex ante soft-
ware process improvement ratings.  The chief engineer 
and client technical reviewers audited ex ante product 
characteristics, i.e., complexity and requirements ambigui-
ty.  Quality assurance and client personnel reviewed 
software size and quality measurements.   

Descriptive statistics for development and production 
defect data are displayed in Tables 8 and Table 9.   

<Table 8> 
<Table 9> 
Tables 10 and 11 present the correlation matrices for 

the development and production variables.  As might be 
expected, higher design complexity is associated with 
greater product size.  Products with higher complexity 
also appear to be more ambiguously defined, also as 
might be expected.   Perhaps less intuitive, however, is 
the negative correlation between size and requirements 
ambiguity.  However, in reviewing the data from the re-
search site, it turned out that online updates and batch 
reports tended to be the larger programs.  As the custom-
er tended to provide clearer requirements for update and 

report software, this is manifested as a negative correla-
tion in the data.   

<Table 10> 
<Table 11> 

5 Data Analysis and Results   
The model in Figure 1 identified the relationships among 
process improvement, size, complexity, and requirements 
ambiguity and the likelihood of a high severity defect 
occurring.  We earlier categorized defects as either high or 
low severity and our model has a binary dependent vari-
able where severity is coded as a 1 for high severity and 0 
for low severity.   

Ordinary least squares regression is not appropriate 
when the dependent variable is categorical as is the case 
here.  Since we are interested in the likelihood of encoun-
tering a high severity error when a defect is detected, it is 
appropriate to use probit or logit to estimate the model 
coefficients.  Probit and logit models often find similar 
results, although probit is more sensitive to values near 
the mean and logit is more sensitive to extreme values 
[65].  Greene [66] suggests that there are no clear criteria 
for the selection of probit versus logit, and therefore we 
estimate a probit model, with a logit analysis as a robust-
ness check on our results. 

In each of the equations below the dependent variable 
is the binary variable identifying if a defect is classified as 
high severity or low severity.  This model will allow us to 
predict the probability of encountering a high severity 
defect.  The intercept term in each equation reflects the 
probability of a high severity error when size, complexity, 
ambiguity and process improvement are at their respec-
tive mean values.  Note that, for ease of interpretation, we 
followed common practice and centered the independent 
variables in our analysis, i.e., we subtracted each value for 
a variable from its respective mean value4. The error term 
is represented by epsilon. 
P(Development high-severity=1) = 01 + 11*Size  

+ 21*Complexity + 31*Ambiguity + 41*CMM 
+ 51*CMM*Size+ 61*CMM*Complexity+ 

71*CMM*Ambiguity + ε1 

 
P(Production high-severity=1) = 02 + 12*Percent  
High Severity Development Defects  

+ 22*Size + 32*Complexity + 42*Ambiguity + 52*CMM  
+ 62*CMM*Size + 72*CMM*Complexity+ 

82*Ambiguity+ ε2 
 
 
Probit regression uses the normal distribution to esti-

mate the coefficients of the equation: 
 
P(Development high-severity=1) = ( i1Xi) 
 
P(Production high-severity=1) = ( i2Xi) 
 

Prior research has shown that defect rates decrease as 
 

4
 For further details on this statistical procedure see Aiken, L. S., & West, S. G. 

(1991). Multiple Regression: Testing and interpreting interactions. Newbury 

Park, CA: Sage. 
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process improvement increases [4], [5].  The probit ana-
lyses will project whether the proportion of high-severity 
errors or low-severity errors is expected to decrease more 
quickly.  If the coefficient on process improvement is pos-
itive, then the proportion of high-severity errors is pre-
dicted to increase with improved processes, i.e., low-
severity errors are declining faster.  However, if the coef-
ficient is negative, then increases in process improvement 
are associated with faster declines in high-severity errors.  
Since we predict that process improvement will have a 
greater impact on high-severity errors and a lesser impact 
on low-severity errors, for our hypothesis to hold, the 
coefficient on process-improvement is expected to be 
negative.  Table 12 shows the parameter estimates for the 
probit analysis of development errors.  A similar analysis 
is performed for production errors and is shown in Table 
13. The models were examined hierarchically, first with 
controls only, then controls and CMM, and finally includ-
ing interactions  

<Table 12> 
<Table 13> 
The results for the probit analyses of both the devel-

opment and production defect severity indicate that each 
of the models is statistically significant (see Wald statistics 
in Table 12 and Table 13).  The following sections address 
each of the hypotheses.   
5.1 Main Effect: Process Improvement and Defect Sever-
ity 
Hypothesis 1 predicted that increases in process im-
provement would reduce the likelihood of development 
errors.  The process improvement coefficient in Table 12 
is negative and significant at the α =.05 level ( 41=-0.069, 
p=0.03), suggesting support for the hypothesis.5 Marginal 
effects analysis of the process improvement coefficient 
supports this conclusion (dF/dx= -0.027, p=0.03). Earlier 
studies have shown that overall defect rates decrease with 
improvements in process improvement [5].  These results 
further indicate that as the organization improved its 
processes, the likelihood of a defect being a high severity 
defect also decreased.   

Hypothesis 2 similarly predicted that process im-
provements would lead to reduced likelihood of high 
severity production defects due to the persistence of qual-
ity throughout the life cycle [48].  The coefficient for 
process improvement in the production equation in Table 
13 is also negative and significant ( 52=-0.370, p<0.01).  
 

5
 In a model with interaction effects it is important to evaluate main effects in 

the complete model. Otherwise the evaluation would suffer from an omitted 
variables bias [66]. Mathematically, when one evaluates the main effect of a 
variable in the complete model (including interactions), one must differentiate 
the model with respect to that particular variable in order to obtain the relevant 
coefficients and standard errors for the main effect. For example, differentiating 
the Development Defects model with respect to the CMM variable yields: β41 + 
β51*size + β61*complexity + β71*ambiguity.  By convention one substitutes the 
mean values of size, complexity and ambiguity to determine the overall coeffi-
cient on the CMM. Since we have centered our independent variables, centered 
size, complexity and ambiguity all have means of 0. Given that, the coefficients 
on β51, β61 and β71 will drop out; this leaves β41 (with a value of -0.069) for the 
main effect of the CMM in the development model. To interpret the coefficient 
on β41 we need to estimate the change in the probability of a severe defect occur-
ring given an “infinitesimal” change in the CMM variable. This is the marginal 
effect (dF/dx) and is estimated using the DPROBIT command in the Stata statis-
tical software. We use a similar process to evaluate the main effect of the CMM 
in the production model. 

Marginal effects analysis of the process improvement 
coefficient supports this conclusion (dF/dx= -0.140, 
p<0.01). Hypothesis 2 is supported; the quality effects of 
process improvement improvements cascade from devel-
opment through the production phase of the software 
development life cycle.  As hypothesized, building quali-
ty into the product in early life cycle stages appears to 
influence the quality at later stages. 

Figure 2 graphically illustrates how process improve-
ments relate to defect severity in software development 
and production over the time period of the development 
effort at our research site. As can be seen in Figure 2, le-
vels of process improvement, as measured by CMM le-
vels, are inversely related to the likelihood of high severi-
ty development defects and high severity production de-
fects. When the CMM level is higher, the proportion of 
high severity development and production defects is low-
er, and when the CMM level is lower, the proportion of 
high severity development and production defects is 
higher. 

<Figure 2> 
5.2 Interaction Effect: Process Improvement and Com-
plexity 
Hypothesis 3 proposed that process improvement mod-
erated the effect of complexity on the probability of en-
countering a high severity defect.  Although we would 
intuitively expect that increases in complexity might in-
crease the likelihood of high severity errors, we proposed 
that process improvements would reduce the likelihood 
for highly complex systems due to the disciplined 
processes involved at higher levels of process improve-
ment.  A test of the interaction effect proposed by Ai and 
Norton [67] and Norton et al. [68] for probit models con-
firms that the interaction term is significant for both de-
velopment and production (one-sided zD=-3.752, p<0.01; 
zP=-3.478, p<0.01). 

In order to provide a stronger understanding of the in-
teraction effects, the results are also illustrated graphically 
in Figure 3.  The lines in the figure represent the propor-
tion of high severity development defects at different le-
vels of complexity for CMM levels 1 through 5. One line 
(the dashed line) is graphed at the mean level of complex-
ity, another line (the dotted line) is graphed at a low level 
of complexity (mean – one-half standard deviation), and 
the third line (the solid line) is graphed at a high level of 
complexity (mean + one-half standard deviation).   

<Figure 3> 
As can be seen in Figure 3 at low levels of complexity 

the proportion of high severity development defects does 
not differ significantly at CMM level 1 (61.33%) versus at 
the highest levels of CMM process maturity (60.19% at 
CMM level 5).  This is shown graphically in Figure 3 as 
the dotted line for low complexity is essentially flat from 
CMM level 1 to CMM level 5. However, at high levels of 
complexity, the proportion of high severity development 
defects is higher when the organization is operating at 
CMM level 1 (65.84%) than at CMM level 5 (45.38%), as 
seen in Figure 3.  The downward sloping line for high 
levels of complexity from CMM level 1 to CMM level 5 
suggests that, at high levels of complexity, there are in-
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creasing benefits from higher levels of process improve-
ment in terms of a reduced likelihood of severe develop-
ment defects.  This implies that the disciplined approach-
es of CMM have a magnified benefit for highly complex 
projects, but make less difference for simple projects.  
Therefore, Hypothesis 3 is supported for development 
defects.   

This pattern is also apparent for production defects in 
Figure 4.  As in development, higher levels of process 
improvement reduce the likelihood of high severity de-
fects in production even more for more complex projects.  
The cascading effect of quality, or the persistence of quali-
ty, is magnified at later life cycle stages.  Similar to devel-
opment, higher levels of process improvement have a 
greater impact on more complex systems in reducing the 
probability of high severity production defects.  Hypothe-
sis 3 is thus supported for production defects. 

<Figure 4> 
5.3 Interaction Effect: Process Improvement and Size 
In Hypothesis 4 we posited that the size of a project 
would have a similar effect on high severity defects as 
complexity.  Complexity measures the internal complexi-
ty of the product design, but the size of the software de-
veloped imposes management complexity on a project.  
We proposed that process improvement would have a 
more significant effect in reducing high severity errors for 
larger projects, since a more disciplined management ap-
proach would be well-suited to large scale software 
projects.  The probit model interaction test of process im-
provement and size for development defects finds the 
coefficient negative and significant (one-sided zD=-4.595, 
p<0.01) [67], [68]. 

Figure 5 graphs the interaction between project size, 
software process improvement and development defect 
severity.  As shown in Figure 5 there is little difference in 
the proportion of high severity development defects for 
small projects at CMM Level 1 versus small projects at 
CMM Level 5. However, for large projects, the proportion 
of high severity development defects is significantly low-
er at CMM level 5 (44.26%) than at CMM Level 1 
(68.85%). Thus, higher levels of process improvement 
appear to have a greater benefit for larger projects than 
smaller ones, supporting Hypothesis 4.   

<Figure 5> 
The pattern is similar for production defects.  The pro-

bit interaction test confirms that the interaction is nega-
tive and significant (one-sided zP=-1.739, p<0.05) [67], 
[68]. The dominance of process improvement over any 
interaction with size is apparent in Figure 6, where higher 
levels of process improvement significantly reduce the 
likelihood of high severity production errors for all size 
levels.  The downward sloping line (lower, solid line) in-
dicates that higher levels of process improvement are es-
pecially beneficial for large software projects in terms of 
reducing the likelihood of severe production defects. 
Therefore, Hypothesis 4 is also supported for production 
defects.   

<Figure 6> 

5.4 Interaction Effect: Process Improvement and Re-
quirements Ambiguity 
Hypothesis 5 predicted that process improvement would 
have a greater benefit for clearly defined software prod-
ucts.  We reasoned that when requirements ambiguity is 
high the selection of a development process will make 
little difference since the goal for the project is not clearly 
defined.  The coefficient for the main effect of process 
improvement on development severity was marginally 
negative, as discussed before.  However, the interaction 
test by Norton et al. finds that the interaction coefficient is 
positive and significant (zD=3.039, p<0.01) [67], [68]. The 
sign of this coefficient means that when the requirement 
is clearly defined, process improvement has the benefit of 
reducing high severity likelihood.  At higher levels of 
requirements ambiguity there are offsetting effects (a re-
duction in severity due to the main effect of process im-
provement, but an increase in severity due to the interac-
tion with ambiguity), which indicate that process im-
provement has a limited effect at higher levels of re-
quirements ambiguity.  This is evident from Figure 7 - at 
low levels of requirements ambiguity there is much more 
benefit from improvements in process maturity, in terms 
of a reduction in the proportion of high severity devel-
opment defects, than at high levels of requirements ambi-
guity.  As indicated in Figure 7, at low levels of require-
ments ambiguity, the proportion of high severity devel-
opment defects is 64% at CMM level 1, but drops to 
46.62% at CMM level 5.  However, at high levels of re-
quirements ambiguity there is little difference in the pro-
portion of high severity development defects at CMM 
level 1 versus at CMM level 5.  This statistical result is 
reminiscent of the management adage, ―If you don’t 
know where you’re going, any road will get you there‖.  
Hypothesis 5 is thus supported for high severity devel-
opment defects.   

<Figure 7> 
We find a somewhat different pattern for production 

defects.  The main effect of process improvement is nega-
tive and significant as previously discussed, but the coef-
ficient for the interaction of process improvement and 
ambiguity is not significant at usual levels using the pro-
bit interaction test (one-sided zP=0.359, p=0.36) [67], [68].  
This is reflected in the lines in Figure 8 which are all 
downward sloping and are almost parallel, indicating a 
main effect due to process improvement, but little or no 
interaction with ambiguity.  Thus, Hypothesis 5 is not 
statistically supported for production defects at the same 
level that it was supported for development defects.  This 
pattern may be evidence that the cascading or persistent 
effect of quality overwhelms the interaction effect with 
requirements ambiguity for later software development 
life cycle stages. 

<Figure 8> 
6 Discussion  
6.1 Summary of Results 
The results of our hypotheses for both the development 
and production models are summarized in Table 14 be-
low.   

<Table 14> 
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6.2 Discussion of results 
The results of this study lend insight into how to gain the 
greatest benefit from CMM process improvements in 
terms of reducing the likelihood of severe errors.  Overall, 
simply advancing in levels of process improvement re-
duces the likelihood of high severity defects and therefore 
decreases the incidence of catastrophic or major function-
al failure.  The greater effect on production vs. develop-
ment defects highlights the importance of process im-
provement to the operational environment of production 
systems.  Production defects are the most costly and their 
removal can have significant financial benefit to users and 
day-to-day operations [1].   

We further found that higher levels of process im-
provement have the greatest leverage (in terms of reduc-
ing severe defect occurrence) on large projects, complex 
projects, and clearly defined projects.  The management 
discipline inherent in higher levels of improvement ap-
pears to solve management complexity issues of coordi-
nating large scale projects.  It is likely that the strict de-
sign review processes, configuration management control 
and quality assurance review ensure that sizeable projects 
avoid coordination and integration issues that typically 
plague larger software projects.  The practice of reducing 
software development risk by breaking large projects into 
component projects has often been advocated as a solu-
tion to managing large projects.  Software process im-
provement is an alternative management approach that 
can improve the quality of large projects and reduce de-
fect severity.   

Technical complexity has also been a risk factor in 
managing software development.  As expected, we find 
that complexity increases the likelihood of high severity 
defects.  However, process improvement appears to be a 
very effective means for countering the risks of increa-
singly complex systems.  Since complexity is often inhe-
rent in the application and therefore not under the direct 
control of the software project manager, applying process 
improvement may be the most effective recourse the 
manager has. 

The ambiguity of a customer’s requirements can clear-
ly affect the ultimate quality of the product, as seen in our 
results.  Since process improvement has a greater impact 
when the requirement is clearly defined, managers 
should ensure that sufficient efforts are undertaken to 
clarify requirements when needed.  Investments in re-
viewing ambiguous requirements with a client, clarifying 
issues and features, can have a significant effect on the 
quality of the system.  Our findings suggest that invest-
ments in requirements clarification and process im-
provement are not substitutes for each other, but instead 
tend to be complementary. 

The payoff of process improvement is the reduction of 
high severity defects which result in operational failures. 
These defects are more costly to repair, result in organiza-
tional downtime, and have greater impact on the users. 
The reduction in these expensive defects is more dramatic 
for larger and more complex products, which inherently 
have more risk. Executives can use CMM-based process 
improvement to simultaneously manage development 

risk while reducing the impact to the organization. 
6.3 Sensitivity Analysis, Strengths and Limitations 
As in any empirical study there are potential alternative 
factors that could influence the likelihood of high severity 
defects.  Team experience, team turnover, team size, 
number of software release versions, code reuse and 
software language all have the potential to affect the fre-
quency of high severity defects.  A sensitivity analysis 
found that team experience was not statistically signifi-
cant in either the development model (p=0.298) or the 
production model (p=0.163). Team turnover was also not 
significant in either model (development p=0.284; pro-
duction p=0.318).  Similarly, neither team size (develop-
ment p=0.139; production p=0.476) nor number of soft-
ware release versions was significant (development 
p=0.810; production p=0.125). With respect to potential 
code reuse all data used during the estimation process of 
each of the software products were available from the 
corporate archives.  In the estimation model input para-
meters all teams had set the percent of code reuse to zero.  
Subsequent conversations with management at the re-
search site confirmed that there was no code reuse during 
the period of the study. Management also confirmed that 
the same programming language was used for all of the 
projects on the system. 

Of course, the research reported in this paper has cer-
tain strengths as well as limitations, as do all such empiri-
cal studies.  The major limitation of this study is that it 
relies on data from a single organization, and may not 
generalize to others.  However, the use of a single firm 
allowed us to control for factors that might have skewed 
the results, such as development methodology, hiring 
policies, or management structure, as each of these factors 
were consistent throughout the life of the study, but 
might vary if data from  multiple organizations had been 
combined.  By focusing on a single organization and 
studying its processes and data in depth we approximate 
a quasi-experimental study where variables not of interest 
are held constant.  Overall, given the nature of the soft-
ware processes studied we believe that the broad results 
represent sound underlying principles of process im-
provement and are likely to be able to be generalized 
across other software development organizations. 

The costs of defects are often difficult to quantify when 
the operational impacts are included.  Operational down-
time, lost organizational productivity, and financial im-
pact to the day-to-day operations of a company should be 
included for an exhaustive list of costs per defect.  Since 
only high severity defects have operational impacts, it is 
clear that the return on investment for preventing high 
severity defects is understated.  Better quantification of 
the cost prevention benefits would allow managers to 
make more informed decisions when evaluating software 
process improvements. 
7 Conclusions 
This research addresses an issue of practical importance, 
i.e., the relationship between software process improve-
ment and the severity of defects in the produced soft-
ware-based systems. A significant amount of data that 
stems from many projects performed during a long time 
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span was analyzed in order to better understand this rela-
tionship and derive guidance for process improvement. 
Specifically, we examined an extensive dataset over a 
twenty year period from a CMM level 5 organization in-
cluding software projects averaging 175,000 lines of code 
with varying levels of process improvement, size, com-
plexity and requirements ambiguity.  Over 7,500 defects 
were recorded and analyzed.  Having data collected over 
such a long period is an unusual opportunity, and analyz-
ing this data has important implications for process im-
provement. This unique research opportunity allowed us 
to evaluate the effect of each of key design parameters on 
defect severity during software development and later in 
production and operations.  The results are supportive of 
the hypotheses in our model and lend insight into when 
process improvements are most beneficial.   

In general, our findings indicate that process im-
provement reduces defect severity for both the develop-
ment and production life cycle phases. The effect of 
process improvement on defect severity in production 
tends to be stronger than the effect in development, and 
we suggest that this might be evidence of the persistence 
or cascading effect of quality throughout the software 
development life cycle.   

Our results also reveal that process improvement has 
differential effects on reducing defect severity for each of 
our design variables of interest.  Although process im-
provement reduces the likelihood of defects for all levels 
of complexity, it has a greater effect on the reduction of 
high severity defects for more complex products.  We find 
that the highly structured, disciplined processes of the 
CMM have a greater payoff when a software system is 
above average in complexity.   

The effect of the CMM on severity for larger projects 
mirrors the results found for complexity.  Increasing the 
size of a project introduces management complexity.  We 
find that higher levels of process improvement have 
greater benefits in reducing defect severity for large scale 
projects. The disciplined management processes at higher 
levels of the CMM provide the ability to manage projects 
with more integration and staff coordination require-
ments.   

In contrast, higher levels of the CMM are less effective 
in reducing defect severity when requirements are ill de-
fined.  Requirements ambiguity dampens the benefits of 
process improvement when considering the severity of 
errors.  As we have noted, disciplined processes are not as 
useful when it is not clear what the software should do. 
Instead, for clearly defined software products higher le-
vels of CMM processes appear to effectively reduce defect 
severity. 

Our findings provide a detailed analysis of the benefits 
and limitations of software process improvement for the 
removal of severe development and production defects 
and suggest where investments in improving develop-
ment processes may have their greatest effects. 
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Table 1: Summary of Research Questions 
1 What effect do investments in CMM software process improvements have on the severity of 

software defects?  Does advancing to a higher CMM level have a differential impact on the like-

lihood of critical versus minor defects?  What implications do these distinctions have for soft-

ware development? 

2 How do higher levels of software process improvement differentially affect defect severity by 

life cycle stage?  Are the effects on development and production defects different, and, if so, 

how should this knowledge affect investment rates and plans for software improvement? 

3 What types of systems exhibit the highest benefits in terms of a reduced likelihood of severe de-

fects from improvements in software processes?  Do the size, complexity and requirements am-

biguity of the system affect the improvement in defect severity, and, if so, how should this in-

fluence management decisions?   

 
 
 

 
Figure 1. Development and Production Defect Severity Models 

 

TABLE 2 

Software Measures 

Factor Description (Measure) 

High Severity Defect Major functional failure or abnormal termination (1) 

Low Severity Defect Minor or cosmetic error (0) 

Software Process Im-

provement 

The SEI Capability Maturity Model (CMM) level at which the 

software was developed (ranging from 1 to 5) 

Software Size Thousands of Lines of Code (KLOC) of the software 

Software Complexity 
Domain, data, and decision complexity of the software (rated on 

scales of 1 to 5) [24] 

Requirements Ambiguity 
Level of ambiguity in the requirements specification for the 

software (rated on a scale of 1 to 5) [24] 
 
 

TABLE 3 

Domain Complexity Measures [24] 

Domain Complexity Description 

1 Simple algorithms and simple calculations 

2 Majority of simple algorithms and simple calculations 

3 Algorithms and calculations of average complexity 

4 Some difficult algorithms or complex calculations 

5 Many difficult algorithms and complex calculations 

  

High Severity   
Defects   

Process:   
Process Improvement (-)     

Software :   
Size (+)   
Complexity (+)   
Require ments Ambiguity (+)   

Proportion   
High Severity   

Prior Stage   

+   

-   

-   

+   
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TABLE 4 

Data Complexity Measures [24] 

Data Complexity Description 

1 Simple data with few variables and low complexity 

2 Several data elements, but simple data relationships 

3 Multiple files, data interactions, and file updates 

4 Complex file structures, data interactions, and updates 

5 Very complex data elements, interactions, and updates 
 

TABLE 5 

Decision Complexity Measures [24] 

Decision Complexity Description 

1 Non-procedural (e.g., spreadsheet, query language) 

2 Well-structured, plus standard reusable modules 

3 Well-structured, with small modules and simple paths 

4 Fair structure, but some complex modules and paths 

5 Poor structure, with many complex modules and paths 
 
 
 

TABLE 6 

Requirements Ambiguity Measures [24] 

Requirements Ambiguity Description 

1 Program developers are also program users 

2 Working model or prototype, plus clear requirements 

3 Fairly clear user requirements 

4 Ambiguous or incomplete user requirements 

5 Ambiguous, incomplete, and rapidly changing user requirements 
 
 

TABLE 7 

Data Collection Summary 

Data Collected by Audited by 

Software Process  

Improvement  

(CMM Maturity Level) 

 External divisions 

 Client’s auditors 

 External senior executives 

 Client’s auditors 

Software Size  Configuration Management  Quality Assurance 

 Client technical reviewers 

Software Complexity  Software engineering man-

ager 

 Chief Engineer 

 Client technical reviewers 

Requirements Ambiguity  Software engineering man-

ager 

 Chief Engineer 

 Client technical reviewers 

Development Defect Severity  Configuration Management  Quality Assurance 

 Client technical reviewers 

Production Defect Severity  Configuration Management  Quality Assurance 

 Client technical reviewers 
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TABLE 8 

Development Defect Severity Summary Statistics by Defect  

Variable Mean 
Standard 

Deviation 
Minimum Median Maximum 

1. Process Im-

provement 
  1.00 2.00 5.00 

2. Software Size 

(KLOC) 
175.42 148.27 0.17 129.41 605.58 

3. Complexity   2.23 3.15 4.00 

4. Requirements 

Ambiguity 
  1.00 3.00 5.00 

 
 

TABLE 9 

Production Defect Severity Summary Statistics by Defect  

Variable Mean 
Standard 

Deviation 
Minimum Median Maximum 

1. Process Im-

provement 
  1.00 2.16 5.00 

2. Software Size 

(KLOC) 
67.22 68.64 0.17 45.13 312.62 

3. Complexity   2.23 3.15 4.00 

4. Requirements 

Ambiguity 
  1.00 3.10 5.00 

5. Percent of High 

Severity in Devel-

opment 

0.58 0.23 0.00 0.59 1.00 

 
 

TABLE 10 

Development Defect Severity Correlation Matrix by Defect 
 (n=6,190; Pearson correlation coefficients with p-values in parentheses) 

 
1. High 

Severity 

2. Process 

Improvement 

3. Software 

Size 

4. Design 

Complexity 

5. Requirements 

Ambiguity 

1. High Severity  1.0000     

2. Process Improve-

ment 

-0.0086 

(0.4984) 

 1.0000    

3. Software Size -0.0070 

(0.5824) 

0.2589 

(0.0000) 

 1.0000   

4. Complexity 0.0155 

(0.2225) 

0.5839 

(0.0000) 

0.2329 

(0.0000) 

 1.000 

 

 

5. Requirements 

Ambiguity 

0.0493 

(0.0001) 

0.0378 

(0.0029) 

-0.1714 

(0.0000) 

0.2209 

(0.0000) 

1.0000 
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TABLE 11 

Production Defect Severity Correlation Matrix by Defect 
 (n=1,355; Pearson correlation coefficients with p values in parentheses) 

 
1. High 

Severity 

2. Process 

Improvement 

3. Software 

Size 

4. Design 

Complexity 

5. Requirements 

Ambiguity 

6. Percent 

Devel. High 

Severity 

1. High Severity  1.0000      

2. Process Im-

provement 

-0.1533 

(0.0000) 

 1.0000     

3. Software Size 0.0445 

(0.1042) 

-0.4432 

(0.0000) 

 1.0000    

4. Complexity -0.0601 

(0.0281) 

0.4939 

(0.0000) 

-0.1022 

(0.0002) 

 1.0000 

 

  

5. Requirements 

Ambiguity 

0.0880 

(0.0013) 

0.1087 

(0.0001) 

-0.0160 

(0.5591) 

0.3413 

(0.0000) 

1.0000  

6. Percent Devel-

opment 

High Severity 

0.0564 

(0.0394) 

0.0707 

(0.0098) 

-0.0308 

(0.2610) 

0.4075 

(0.0000) 

0.0946 

(0.0005) 

1.0000 

 
 
 

TABLE 12 

Development Severity Probit Parameter Estimates (n=6190) (one-tailed p-values) 

Variable 

 

 

Para-

meter 

 

Controls 

 

 

Controls + 

CMM 

 

Controls + 

CMM + In-

teractions 

Intercept 01 

p 

0.202 

0.000 
0.202 

0.000 
0.275 

0.000 

Size 11 

p 

0.000 

0.497 
0.000 

0.413 
0.001 

0.000 

Complexity 21 

p 

0.018 

0.361 
0.063 

0.154 
-0.033 

0.304 

Ambiguity 31 

p 

0.104 

0.000 
0.101 

0.001 
0.115 

0.000 

Process-

Improvement 

(CMM) 

41 

p 

 -0.046 

0.097 
-0.069 

0.032 

CMM * Size 51 

p 

  -0.001 

0.000 

CMM * Com-

plexity 
61 

p 

  -0.370 

0.000 

CMM * Ambigu-

ity 
71 

p 

  0.142 

0.002 

Wald Statistic 2
 

P 

15.16 

0.002 
16.85 

0.002 
84.59 

0.000 
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TABLE 13 

Production Severity Probit Parameter Estimates (n=1336) (one-tailed p-values) 

Variable 

 

 

Para-

meter 

 

Controls 

 

 

Controls + 

CMM 

 

Controls + 

CMM + In-

teractions 

Intercept 02 

p 

0.309 

0.000 
0.313 

0.000 
0.348 

0.000 

Percent Devel. 

High Severity 
12 

p 

0.581 

0.001 

0.437 

0.005 

0.517 

0.002 

Size 22 

p 

0.001 

0.111 
-0.001 

0.185 

-0.001 

0.041 

Complexity 32 

p 

-0.437 

0.000 
-0.179 

0.059 
-0.122 

0.150 

Ambiguity 42 

p 

0.236 

0.000 
0.219 

0.000 
0.218 

0.000 

Process-

Improvement 

(CMM) 

52 

p 

 -0.299 

0.000 
-0.370 

0.000 

CMM * Size 62 

p 

  -0.002 

0.047 

CMM * Com-

plexity 
72 

p 

  -0.492 

0.001 

CMM * Ambigu-

ity 
82 

p 

  0.005 

0.481 

Wald Statistic 
2
 

P 
36.44 

0.000 
55.07 

0.000 
71.00 

0.000 
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Figure 2. Process Improvements and Defect Severity Over Time 

 

 

Figure 3. Interaction Effect of CMM and Complexity on Development Defects 
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Figure 4. Interaction Effect of CMM and Complexity on Production Defects 

 
 

 

Figure 5. Interaction Effect of CMM and Size on Development Defects 

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Low 76.69% 67.82% 57.80% 47.24% 36.87%

Medium 79.99% 68.14% 54.07% 39.45% 26.20%

High 82.99% 68.46% 50.30% 32.07% 17.39%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s 

(P
ro

d
u

ct
io

n
)

Complexity

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Small 58.10% 58.90% 59.69% 60.49% 61.27%

Medium 63.61% 60.98% 58.30% 55.58% 52.83%

Large 68.85% 63.03% 56.89% 50.59% 44.26%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

p
o

rt
io

n
 H

ig
h

 S
e

ve
ri

ty
 D

e
fe

ct
s 

(D
e

ve
lo

p
m

e
n

t)

Size



HARTER, ET AL.:  DOES SOFTWARE PROCESS IMPROVEMENT REDUCE THE SEVERITY OF DEFECTS? 21 

 

 
Figure 6. Interaction Effect of CMM and Size on Production Defects 

 

 

 

Figure 7. Interaction Effect of CMM and Ambiguity on Development Defects 
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CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Low 64.00% 59.78% 55.44% 51.04% 46.62%

Medium 63.61% 60.98% 58.30% 55.58% 52.83%

High 63.21% 62.17% 61.11% 60.05% 58.98%
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Figure 8. Interaction Effect of CMM and Ambiguity on Production Defects 

 
 

TABLE 14 

Empirical Support for Hypotheses by Model (α=.05) 
Variable Development Model  Production Model 

Process (main effect) H1: Supported H2: Supported 

Complexity (interaction effect) H3: Supported H3: Supported 

Size (interaction effect) H4: Supported H4: Supported 

Requirements Ambiguity (interaction effect) H5: Supported H5: Not Supported 
 

CMM-1 CMM-2 CMM-3 CMM-4 CMM-5

Low 77.84% 65.37% 50.96% 36.42% 23.63%

Medium 79.99% 68.14% 54.07% 39.45% 26.20%

High 82.01% 70.81% 57.15% 42.55% 28.92%
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