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Staffing Factors in Software
Cost Estimation Models
by Chris F. Kemerer and Michael W Patrick

Many software cost estimation models have attempted to incorporate staffing vari-
ables such as personnel experience and capability. This chapter surveys such mod-
els and evaluates the extent to which accounting for staffing variables can irprove
their software project cost estimates. Current measures of ability, such as years of
experience, appear to be poor indicators of individual capability differences and do
little to improve model accuracy. Suggestions for improving these models through
expanded effort in theoretical development are proposed.

3

Introduction

Software projects have a well-deserved anecdotal reputation for being late and over
budget. This anecdotal evidence is supported with a number of research studies.
Jenkins, Naumann, and Wetherbe (1984) report that of 72 medium-scale (average
10 month) software projects in 23 major US corporations, only 9% were completed
within the scheduled manpower effort. The average effort overrun was 36%. Most
projects (48%) completed with 75% extra effort, but some projects required three,
four, and even five times the manpower effort of the original estimate.

A University of Arizona survey found an average, self-reported (191 of 827) over-
run of 33%, and that only 16% of the respondents felt that software projects “rarely”
or “never” experienced cost overruns (Phan, Vogel, and Nunamaker 1988). DeMarco
and Lister (1987) report that in their survey of 500 software projects, 15% of all proj-
ects were so late they were canceled, and a full 25% of large (over 25 person-year)
projects were canceled. '
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Heemstra and Kuster’s (1991) survey of almost 600 European organizations re-
vealed that over 80% of their software projects failed to meet their original time
schedule. As expected, the larger the project, the more likely it was to slip. Whereas
71% of all projects completed within 10% of original budget, only 45% of the largest
(>200 person-month) projects were within 10% of their original manpower estimate.

Most recently, van Genuchten (1991) presents the results of a number of studies
that provide similar findings. When surveyed as to why software was late, van
Genuchten found that the two most cormmon answers were that personnel were not
available (i.e., some other project was late) and “product related reasons” including
“complexity of application underestimated.”

Software cost estimation models attempt to more accurately estimate the effort
required to develop a software project by using a mathematical formula of expected
project inputs. The most frequently used input measure is the estimate of the size of
the program in lines of code. The output of the model is usually an estimate of the ef-
fort in person-months.

« However, use of these models in their current state of development is not a
panacea for project management overruns. The Heemstra and Kuster (1991) study
also demonstrated that software cost estimation models are not widely used or par-
ticularly effective when they are used. Only 14% of the projects surveyed used any
kind of algorithmic cost estimation model at all. There was no significant difference
in the magnitude of schedule slips between those projects that used a model and
those that did not.

It is widely believed in practice that the single most critical factor to manage on a
project is the staffing. Teams of the “the best” staff are widely believed to signifi-
cantly outperform average teams. This belief is even sometimes raised to challenge
clairas for new tools or methodologies, arguing that the project was “stacked” with
talented individuals, who were the primary reason for the success rather than the
new tool. Given the belief in the importance of this factor, some cost estimation mod-
els atternpt to improve their estimates by incorporating differences in the ability of
the individual project team members.

This chapter surveys the published empirical literature that attempts to explic-
itly model the effect of alternative staffing policies. The main results of this sur-
vey are that, despite research spanning approximately two decades, little
progress has been made in modeling the effect of these variables. Some sugges-
tions are made for improving these models through greater incorporation of a
stronger theoretical base.

. Cost estimation models

The cost estimation modeling literature has been recently reviewed (Kemerer 1991)
and will only be briefly summarized here. All software cost estimation models at-
tempt to predict the effort as a function of various measured “factors™

Effort = <f>(factorl, factor2, ...)

Several researchers have measured a variety of factors and run a multiple regres-
sion to determine the most significant factors. For example, Walston and Felix
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(1977) collected data on 68 factors, finding 29 to be of significance, and Chrysler
- (1978) collected data on 24 factors and found 14 to be statistically significant.

In all cases, the most significant variable was the actual “size” of the project, usu-
ally measured as lines of code. To improve accuracy, many models multiply the base-
line effort by a modification factor M(x,, x,, . . . xn), which is a function of additional
independent factors x,, X., . . . xn. The detailed COCOMO model, for example, uses
16 such modification factors (15 plus a “mode” overall variable). Many researchers
feel that one of the most important modification factors is some measure of the dif-
ferences between the individuals involved in the development team (Boehm 1981).

Table 11.1 summarizes the survey of software cost estimation model studies. Most
of the colurans are relatively self-explanatory, but the column marked “Productivity
Output Measure” requires some further discussion. This column indicates how the
study measured output, typically expressed in lines of code. This survey of software
cost estimation models reveals a wide diversity in the method of counting lines of
code. Most researchers did not count comments, but did count data (non-exe-
cutable) statements. All studies counted new lines of code; Table 11.1 indicates
whether reused (modified) code was counted as well. The columns indicate with a
“Y” whether Executable, Data, Corument, and Overhead (developed but not ulti-
mately used) lines of code were counted by the study.

The treatment of reused code varies significantly. Some studies, such as Walston
and Felix (1977), ignore reused code completely. This was probably because it was not

TABLE 11.1 Surveyed studies.

Study Num  Min Size Max  AvgSie Type Data Language | Productivity | Productivily input M
Proj (KLOC) Size {KLOC) Source Cutput (Phases of Efforty
{KLOC) Measure
{Lines of Code
N:New Lines R: Requirements Phase
R: Reused Lines F: Functional Spec Phase
E: Executable | D: Design, Code, Unit Test
D:Datatines | S: System Test Phase
C:Comments | m: Effort
O: Overhead P: Paperwork (Documentatn)
U: Units of Effort Measured..
N}RlElD’C'O R ]F D }T }s !M !P IU
[Backman 88] {12  0.65 8.14 Exper- SO Jovial, | Successhul Oebug Hours
(Kobi} {Kobij) iment Assy |
[Walverton 74]188  0.30  5.00 Military 1AW Fortran, m"}uﬂe Dollar Cost (8)
Assy or,
[Walsion 77] {66 4.00 467.00 20.00 Scientific |BM Several [YnYYVYVY|Y ¥V Y ¥ Y Y Y M
PP
C 78f 31 oP Sw Cobol 15 FP-like nn Y Y n onon Hr
[Chrysier -
[Lawrence 81] 7’8 0.01 £.00 Data Proc_Australia Cobol, + 1Y n Y n n nln h ¥ Y n n n Hr
[{Boshm 81] |6 88 966.0 Varicus  TRW _ Several LYY Yo ¥In Y NN 0y Y W]
xg__ag_.z 81} 2.10 100.8  28.80  Scientific NASA Fortran YYYyYnaln ¥ Y9 n Y 7 Hr
[Behrens 83] ]2 22FP 435 FP Data Proc  Equitable  Cobol, New FPs only an Y Y n ?7 7 Hr
Life
| [Thadani 84] 11 210.00 210.00 Data Proc _18M PLA YoYynaneln » Y n nonon Hr
[Jettery 85] 103 0.02 9.80 ’ Data Proc  Australia Cd)ol‘ YnYannnln Y Y n n on Hr
) PL
{Card 877 22 32.80 159.00 62.00 Scientific NABA/  Fortran |Y Y Y ¥ n aln vV Y n ¥ 7 Hr
{Gilt s0] 85 .22 128.00 15.60 Scientilic Aero- Fortran, IY n Y n n n[Y¥Y Y YV ¥ Y n Y Hr
space Pascal
{Banker 91] &5 0.08 31.00 542 Data Proc Bank Cobol YYYYnnalY Y Y ¥ Y Y Y Hr
8FP 616 FP_ 118 FP
{Kemaye!l 91] [200 n/a nfa a/a Public  Tunisia Cobol YaYYnaln n Y on a nn Mo
Sector
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deemed a significant factor in the Federal Systems Division of IBM, which built large
custom systems. The Software Engineering Laboratory of the University of Maryland
has adopted the standard of a fixed 20% of reused code being counted as being “de-
veloped,” and hence appearing in productivity measures (Bailey and Basili 1981) and
(Card, McGarry, and Page 1987). Boehm (1981) offers a more complex, but relatively
appealing approach in COCOMO. Given that the average project should spend 40% in
design, 30% in coding, and 30% in testing, COCOMO calls for estimating the percent-
age of the original design, code, and testing effort that must be reproduced, and mul- .
tiplying it by 0.4, 0.3, and 0.3, respectively, to get a weighted factor of the amount of
work that must be reproduced. That factor is then multiplied with the old code size to
get the “effective” number of lines developed by modifying the old code.

Note that one problem with using lines of code for the size estimate is that the fi-
nal number of lines of code is not known at the start of the project, and so must be
estimated. Albrecht and Gaffney (1983) proposed another size measure called
Function Points (FPs), which counts the number of input files, output files, inter-
nal files, inquiries, and interface files. Function Points have been shown in some or-
ganizations to provide better predictors of effort than lines of code (Behrens 1983),
and there is evidence that prediction equations based on FPs may be applicable be-
tween different organizations (Kemerer 1987). Some software productivity re-
searchers have concluded that lines of code should be abandoned as a measure of
software productivity output in favor of FPs (Jones 1991). Function Points are and
will continue to be a fruitful area of software cost estimation model research.

Software managers generally divide software development projects into “phases”
of requirements definition, functional design, detailed design, coding, unit test, and
system infegration/test. All of the software productivity studies surveyed measured
the time that software engineers spend in the detailed design, code, and unit test
phase. That still leaves several issues as to what other effort to measure:

1. How much of the “requirements definition” phase effort is nieasured, such as pro-
posal preparation, user meetings, and background research?

2. How much of the “functional specification” phase is measured, e.g., the time
spent by product planners or system engineers?

3. How much of “system testing” is measured? If the project is developed for an in-
house customer, this effort is usually included. If the project is developed for an
external customer, however, the customer may perform system testing that is not
counted.

4. How much of the support staff effort is counted, including secretaries, building
maintenance, personnel, and other general and administrative overhead?

5. How much of management effort is charged to the project, including reviews by
senior managers, design-review time by non-project engineers, and sirnilar items?

6. How much of the documentation effort is counted? In projects developed for the
federal government, documentation is a significant portion of the effort.

7. How much of the engineers’ “nonproductive” time is counted? Studies have
shown that from 30% (Boehm 1981) to 50% (Brooks 1975) of software engineer
time is not spent in activities that directly contribute to the final software product.
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The “Productivity Input Measure” column of Table 11.1 indicates whether the
study included the effort described in the preceding questions 1 through 6. As for
measurements of nonproductive time, few studies indicate whether it was excluded.
Table 11.1 indicates the granularity with which effort was measured. It is possible
that studies that measured effort on the hour (Hr) level did not include non-produc-
tive hours. Studies that measured effort on the work-month level (Mo) are more
likely to have included the nonproductive time,

Staffing Variables in Software Estimation Models

The distinguishing feature of the studies surveyed in this paper is that they included
staffing variables as an explicit independent variable. In all cases, the models are at-
terpting to account for differences in individual ability as a possible source of soft-
ware productivity differences.

Individual differences: experimental results

In one of the earliest software productivity studies, Sackman, Erikson, and Grant
(1968) measured the productivity of individual engineers solving the same problem
with on-line terminals and off-line batch submissions. To their surprise, they noticed
a 28:1 difference in the time between the fastest and slowest solution to the probiem.
This 28:1 ratio is widely and inaccurately cited as the range of individual program-
mer performance capability.

As clarified by Dickey (1981), the figure of 28:1 arose as follows: one subject pro-
grammed in assembly language in a batch mode and took 170 hours to solve an alge-
bra problem. Another subject programmed in a high-level language on a time-shared
system and took only six hours. The difference of 28:1 was caused partly by individual
differences and partly by the deleterious effects of programming in a relatively time-
inefficient language and in a time-inefficient manner. For individuals using the same
language and the same system, the difference recorded by Sackman was only 5:1.

In response to Dickey, however, Curtis (1981) reaffirms individual differences by
presenting another experiment in which three individuals took 39 minutes to find a
planted bug and another individual took only three minutes, a 13:1 difference. (In
fact, one individual never found the bug and quit after §9 minutes.) The Curtis study,
however, is for a significantly smaller problem (minutes rather than hours).

The major unresolved issue for either of these studies is whether these ranges of
performance in solving one small problem will be observed when the issue is scaled up
to the full range of activities required of a practicing software engineer. Researchers

~ cannot unequivocally generalize from the Sackman et al. data or the Curtis data that
the long-term productivity of software engineers varies “on the order of a decimal or-
der of magnitude.” Furthermore, these small experiments do not strongly suggest that
the same engineers will have similar productivity rates on different small problems.

In addition, it should be noted that controlled software experiments have also
sometimes shown no significant correlation between performance and experience.
Sheppard et al. (1979) found little correlation in small-scale experiments testing pro-

‘gram comprehension and modification tasks. For debugging tasks, they found that
programmers with less than 3 years experience showed correlation between debug-
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ging time and 1, 2, or 3 years of experience, but they admit this may be a statistical
artifact of the wider variation in times reported for this low-experience group. The
correlation was not present for programumers with more than 3 years experience.

Of more interest would be studies of much larger, typical problems. Unfortunately,
the cost of such an experiment is prohibitive, so published studies of individual pro-
ductivity differences on large projects are confounded by differences in the tasks
themselves. Thadhani reports one small study with six subjects working on a large
(210 KLOC) program, each doing separate tasks. The range of productivity was 4:1,
from 1200 to 300 LOC/MM. DeMarco and Lister (1985) report, on page 45, a “com-
posite of the findings of three different sources” that show an individual perfor-
mance difference of 2.5:1 from the best to the median performer, and 10:1 from best
to worst. These range differences are supported by their “coding war games” exer-
cise performed by over 600 software engineers.

Individual differences: field studies

Current software cost estimation models atterpt to account for individual differences
indirectly—by assuming that other measurable factors, such as experience, may sub-
stitute for personal productivity. Usually, the staffing variables included in a model are
measures of the experience of an individual, as measured in years experience with
various facets of the project. Some models also add measures of the capability of the
individual. Banker, Datar, and Kemerer (1991), for instance, used the performance
ranking of the individuals as a measure of capability. Other models used subjective
management classifications of capability. Table 11.2 classifies the staffing variables

“used by published software cost estimation models into eight categories, and shows
which categories are used by which model. The human factor categories are:

= Total experience—the total professional experience of the engineer or team

® Language experience—the experience of the engineer/team with the program-
ming language for the project

® System experience—the experience with the operating system or development
environment

s Application experience-—the experience with the software application domain
® Hardware experience—the experience with the hardware platform
# Programmer capability—a measure of the capability of the individual or team

® Management capability—a measure of the capability of the management or sys-
terus analysts of the team

® Education—the level of formal education of the individual or an average for the
team

A major problem of all of the studies with more than one developer is how to as-
sign a measure for a multi-person team. Although simple averages of years of expe-
rience could be applied, it does not appear that any study actually did this. In most
cases a subjective determination is made to classify the team into one of a limited
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number of experience or ability categories. This is the approach, for instance, of
both the COCOMO model (Boehm 1981) and the SPQR model of Jones (1986). Such
arbitrary assignments, of course, diminish the repeatability of observed data and re-
duce the generalizability of the model.

Note that many popular cost estimation models, such as the SLIM model of Put-
nam (1978), do not require quantification of staffing variables per se. The SLIM
model uses a “technology factor” constant to incorporate all factors other than proj-
ect size and scheduled time. As such, it can be thought of as the correction factor
“M.” Putnam posits that this correction factor, or productivity index, stays within a
narrow range for a given organization and changes relatively slowly over time. How-
ever, the SLIM database has observed productivity indexes for a single class of ap-
plications to vary by plus or minus 3 as a standard deviation. The difference between
a productivity index of 12 and one of 6 is an effort estimation variation of as much as
4.23:1. Changing the index by even plus or minus one level changes the effort esti-
mate by 60% (Mah and Putnam 1990). Therefore, the SLIM model allows for wide
ranges in productivity.

Project team size

Programming-in-the-large is fundamentally a group activity. Weinberg (1971) was
one of the first to recognize that improving psychological group dynamics would be
likely to improve software productivity. He proposed “egoless programming” in order
to improve group communication and effectiveness. Schneiderman (1980), in recog-
nizing programming as a group process, advocates peer review and peer rating.

One of the easiest software metrics to measure is team size itself, and several re-
searchers have investigated its impact on performance. The most famous anecdotal
evidence is from Fred Brooks' experience on the 0S/360 project documented i The
mythical man-month (Brooks 197! 5). Brook’s Law states that “Adding manpower to
a late software project makes it later,” due to increased communications and train-
ing efforts. Scott and Simmons (1975) documented the effect of increased commu-
nications due to different organizational styles, again showing how greater project
communication requirements reduced productivity.

A thorough analysis of group size impact on productivity appears in the Conte,
Dunsmore, and Shen (1986) textbook. They propose a Cooperative Programming
Model (COPMO) developed by Thebaut and the authors at Purdue (1983). The gen-
eralized COPMO model is of the form

Effort:a«H:»xSizeJrc:a((Pbau*)’d

where Pbar is the average team size, defined as E+T, where E is effort in person-
months and T is project duration in months. The Conte et al. textbook includes six
databases of project size, effort, and time. They used these data to estimate a to be
zero and d to be 1.5. They calculated a set of b and ¢ parameters in b, and c, pairs for
a set of “effort complexity classes.” Using COCOMO?s a priori modification factors,
they defined four complexity classes and found the b, and c; for each class that min-
imize the Magnitude of Relative Error (MRE) measure for the COPMO model. With
four such complexity class partitions, the COPMO model has an MRE of 25%, pro-
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ducing an effort estimate within 25% of the actual effort for 75% of the COCOMO
database projects. This level of accuracy is consistent with best performance for cur-
rent software cost estimation models.

Staffing Variables Impact on Software Cost Model Estimates

Human factors have had mixed success in improving software model accuracy. Stud-
ies that have successfully shown that more-experienced teams were more produc-
tive include those by Chrysler (1978), Walston and Felix (1977), Thadhani (1984),
and Card, McGarry, and Page (1987).

Chrysler tested five programmer-related variables, including age and various

most useful predictor variable was “experience at this facility.”

Walston and Felix collected data on a set of 60 projects by IBM's Federal system
division in the 1972-1976 time frame. First of all, they calculated the productivity, in
lines of code per work-month (LOC/WM) for each project. They collected data by a
questionnaire on some 68 variables concerning the development environment, na-
ture of the problem, and staffing variables. Of the 68 variables, 29 showed significant
spread of productivity between the upper third and lower third of the variable
ranges. Five of the 29 variables concerned staffing variables, and the results are
shown in Table 11.2.

Thadhani measured the productivity of six programmers working on a large PL/
program. Although his primary interest was the effect of response time on produc-
tivity, he noted in his sarnple that the two experienced programmers produced at a
higher rate than the four less-experienced programmers. The two experienced pro-
grarmmers produced 1200 and 900 LOC/MM, while the less-experienced program-
mers produced 600, 600, 400, and 300 LOC/MM. Such a study was too small to have
a high degree of statistical significance, and as mentioned earlier, may have been
confounded by the differences in the tasks performed by the engineers. ’

Card et al. measured a set of eight “technology use” variables (e.g., structured pro-
gramming) and 12 “non-technology” variables (e.g., programmer effectiveness)
along with LOC/MM productivity for 22 projects at NASA's Goddard Space Flight
Center. The “programmer effectiveness” measure was “a weighted measure of the
development team’s general and application-specific years of experience.” They
found that this programmer effectiveness variable had the highest positive correla-
tion with productivity. A variable called “computer use,” which was computer time
perline of code, had a slightly higher negative correlation, probably because projects
in trouble had to spend more computer time. Together, ‘these two variables ac-
counted for 54% of the variation in productivity.

An ANCOVA analysis of the remaining variables showed that no other variable ac-
counted for more than 5% additional explanation of variance. They also found that the
programmer effectiveness variable had the highest correlation to software reliability.
The range of staff application experience (2.9-5.0 years) and overall experience
(7.0-11.0 years) appears to be low, and it is not clear to what extent the transforma-
tion to a “programmer effectiveness” measure affects the significance of the results.
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TABLE 11.2 Human factors in surveyed studies.

Study Staffing Resulis
Variables
T: Total Experience
L: Language Experience
S: System (OS) Exp.
A: Application Exp.
H: Hardware Exp.
P: Programmer
| abitity
M: Manager Ability
E: Education
TLSAHPME

[Sackman 68] J]Y Y Y High individual differences (28:1) in debug time, but
confounded with different languages and on-iine/off-line.
Maximum 5:1 difference with same treatment.

[Wolverton 74}}Y No correlation of programmer total experience with dollar
cost of object code produced.

[Walston 77} 1YY Y Y 3:1 variation in produclivity between extremes of five
human factor variables.

{Chrysler 78] lY Y Y Y Y Reductions in programming time correlated with 5 different
experience related variables. “Experience at this facility”
most useful single predictor.

[Lawrence 81] |Y No increase in productivily after the first year of
experience.

{Boehm 81] YYY YY |Human factors are 5 of 15 factors which together reduce
prediction mean relative error_from 60% to 19%.

[Bailey 81) YYY Y Y |Human factors are 5 of 21 factors tested. Minimum model
prediction error obtained without using any of them.

[Behrens 83] Y Experience factor did not improve model prediction error.

{Thadani 84] Y Y Sample of 6 programmers on real-world application which
showed 3:1 productivity differences between experienced an
inexperienced engineers.

[Jeffery 85] Y Y| Follow-up to [Lawrence 81] with same results: no
productivity increase after first year of experience.

[Card 87] Y Y Experience had highest correlation to productivity (.53) of
12 non-technology and 8 techno! factors,

[Gill 90] Y Y| Slight decrease of productivity with increased fraction of
project time by highly experienced personnel. (Task
compiexity not controlled for.)

[Banker 91] Y Y Ability and application experience not significant at usual
levels after controlling for other factors such as project
size.

{Kemayel 91] YYYY Y| Two of five experience variables significantly correlated

with productivity, but together explained only 7.5% of
variance.

Other studies have failed to find significant effects of differences in experience
level. An early study by Wolverton (1974) failed to find any correlation between ex-
perience and programming cost per object instruction. Lawrence (1981), and Jeffrey
and Lawrence (1985) conducted two studies of over 350 programs prepared by 17
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Australian organizations in 1976 and 1980. Their data showed very slight increases
in productivity after the first year of COBOL programmer’s experience, but no im-
provement in subsequent years. In general, they conclude (on page 55) by noting “a
confusing relationship between education, experience, and productivity suggesting
no clear trend of increasing productivity with education and experience.” This con-
firms the experimental work by Sheppard et al. (1979), also showing early improve-
ment with experience but no significant differences after the first few years.

Kemayel, Mili, and Quederni (1991) studied the productivity of 200 individual
Tunisian programmers, collecting data on 33 variables categorized as “personnel,”
“process,” and “user-related” factors. Of the 33 variables, five were staffing factors—
education, applications domain experience, programming language experience, vir-
tual machine experience, and experience with the user community. Of these, only
the last two were statistically significant, and these variables combined explained
only 7.5% of the variation in productivity. They found very wide variation (5:Din
KDSI/MM productivity ratings, which they attribute to Tunisia’s practice of tenured
employment of even low-skill programmers.

One limitation of most of the studies cited above is that the researchers have done
simple correlations of (typically) one experience variable and, for example, produc-

- tivity. Such correlations might mask the effect of other variables that might be cor-
related with experience but are not controlled for in the model. Of the research
surveyed here, Banker, Datar, and Kemerer ( 1991) reported the effect on the stan-
dard error when the human factor variable was removed.

They considered two variables: “No Experienced” (a dummy variable equal to 1
when no team member exceeded 2 years experience) and “Top Staff” (the percent-
age of project hours charged by individuals rated above average in the organization’s
performance review system). The “No Experienced” variable, and the “Top Staff”
variable were not significant at usual levels (p = 0.41 and p=0.11).

Another way to investigate the value added by the staffing variables in current cost
estimation models is to examine the relative performance of these models and to de-
termine factors common to the better-performing models. Interestingly, such an analy-
sis suggests that the best software effort prediction models do not require the use of
staffing variables as an independent variable. Of the models surveyed, the best results
in terms of predicting the actual project values were obtained by Bailey and Basili
(1981), using a baseline model and correction factors for the NASA Goddard data set.

Although they collected staffing variables data, they found that the correction fac-
tors for project complexity and development methodology alone were sufficient to
build a model with a standard multiplicative error of only 16%. Conte, Dunsmore, &
Shen (1986) also suggests a model (COPMO) that uses both estimated project size
and team size, with modification factors only for project complexity, that achieves a
mean absolute relative error of 21%.

From the above review it can be concluded that staffing variables, as currently op-
erationalized, have not been shown to be a particularly useful addition in software
cost estimation models. After accounting for measures of the project size, and mod-
ifying this estimate for project complexity differences and tool/methodology differ-
ences, additional correction for human performance differences appear to not
significantly improve model accuracy. Given that this result is at odds with what
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practicing software managers believe about Jactors affecting project perfor-
mance, this suggests that more work is necessary to improve the modeling of
staffing factors.

Future Research and Recommendations

The main difficulty with incorporating staffing variables in software cost models is
that it is not well understood why individual and team programming performance
varies. “We do not know if these differences are attributable to differences among
individuals’ speed of information processing while programming, the nature of the
information processing themselves, or some combination of the two.” (Laughery
and Laughery 1985). Weinberg (1971) suggests that differences in performance,
especially debugging speed, are probably due to the exact structure of the prob-
lem itself, and whether a similar exact problem has been seen before. If debugging
time is related to specific pattern matching, then studies of ranges of different
times to debug a small problem are not useful: the variation is only due to the vari-
ation of particular previously-solved problems. Supporting this difference is the
failure of almost all studies to show a correlation between tests of programming
skill and actual programming performance. :

The most commonly accepted theories for accounting for individual differences
are the cognitive psychology theories of how programming knowledge is repre-
sented. These theories are surveyed in Laughery and Laughery (1985), and Curtis
(1990), and are only briefly described here.

Newell and Simon introduced a major theory of human problem solving via goal-
seeking production rules, today the basis of knowledge-based artificial intelligence
systems. Brooks (1977) applied the Newell and Simon theory to the programming
task by studying in detail a single expert programmer. He identified 23 protocols
used to produce code, themselves producing the 73 actions that generated the sim-
ple program under development.

He estimated that the total number of rules used by an expert programmer was in
the tens of thousands, consistent with the 31,000 rules estimated used by a chess ex-
pert. He argues that domain knowledge (the set of rules mastered), determines dif-
ferences in programming skill. Schneiderman and Mayer (1979) propose that
syntactic and semantic knowledge is stored separately, so that, for instance, the al-
gorithrm for finding the largest integer in an array is stored independent of the form
of the FORTRAN program to implement it.

Program comprehension is a central skill for software maintenance and an impor-
tant component of original software design. Robson et al. ( 1991) recently surveyed
the various psychological research on how programs are comprehended. They cite
48 papers studying the effectiveness of code artifacts on comprehension and various
other theories of program comprehension. As an example, Letovsky (1987) analyzed
the protocols employed by maintenance programmers in reading and understanding
programs, characterizing the process as an iteration of questions and conjectures.
He classifies these processes into a taxonomy of psychological constructs including:
slot filling, abductive reasoning, symbolic evaluation, discourse rules, generic plans,
and endorsement rules.
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Brooks (1983) attributes individual differences in program comprehension per-
formance to differences in programming knowledge, problem-domain knowledge,
and hypothesis-confirmation search strategies. Soloway and Ehrlich (1984) identify
two distinguishing components of expert programming skill to be programming
“plans” or knowledge schemas and “rules of programming discourse,” or useful cod-
ing conventions.

It seems apparent from the above that cognitive psychology offers a rich, complex,
and growing set of theories to account for the observed differences in individual per-
formance. Expert programmers may be those who have learned rules appropriate to
the problern under examination. This includes semantic and syntactic knowledge of the
computer language and computing environment, and often domain-specific knowledge
as well. Vast individual differences in individuals may swamp any observed variation
due to different treatments in programming experiments and software productivity
studies. In an excellent critical review of programming psychology experiments, Sheil
(1981) expresses the difficulty of measuring productivity differences as follows:

However programmers’ knowledge bases are actually organized, their existence and size
seems clear. Hypotheses which posit differences in either individual aptitude or task dif-
ficulty are therefore, at best, extremely difficult, to investigate, as the enormous size of
the knowledge bases being drawn on imply that different individuals approach the same
task with vastly different resources. Comparing their behavior is like contrasting the
work of two tile layers, each of whom has covered an equivalent wall, working with radi-
cally difference sizes and colors of tiles. Similarity of pattern is unlikely.

Significant difficulties remain in measuring the richness of an individual's knowl-
edge base and its conceptual fit to a problem’s domain knowledge. Gibson and
Senn (1989) for instance, found that programmers performing software mainte-
nance tasks cannot reliably separate the syntactical complexity of a program’s text
from the semantic complexity of the modification task itself. Psychological con-
structs that cannot be distinguished cannot be measured.

Cognitive psychology offers a path for understanding why increases in, say, pro-
gram size increase programming effort. It offers a diverse set of theories from
which hypotheses can be drawn, measures defined, and experiments conducted.
Vessey and Weber ( 1984) chide the computer science community for concentrat-
ing research on predicting dependent variable effects of structured programming,
rather than understanding those effects. Their criticism applies to the entirety of
software cost estimation model research.

Given the richness and complexity of the still-early understanding of software cog-
nitive psychology, staffing variable measures like “years of application experience”
are at best crude approximations of the differences among individuals. In addition,
they do not at all address the issue of coordinating the mix of experiences and apti-
tudes of multiple agents in software development teams. It is, therefore, not surpris-
ing that such measures often fail to significantly improve the accuracy of software
cost estimation models.

What are needed are more well-grounded variables that reflect these more com-
plex notions of individual differences, most especially the staff/problem fit issue.
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