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Structural Complexity and Programmer Team 
Strategy: An Experimental Test 

Narayan Ramasubbu, Chris F. Kemerer (IEEE Computer Society Member), and Jeff Hong 

Abstract— This study develops and empirically tests the idea that the impact of structural complexity on perfective 

maintenance of object-oriented software is significantly determined by the team strategy of programmers (independent or 

collaborative). We analyzed two key dimensions of software structure, coupling and cohesion, with respect to the maintenance 

effort and the perceived ease-of-maintenance by pairs of programmers. Hypotheses based on the distributed cognition and task 

interdependence theoretical frameworks were tested using data collected from a controlled lab experiment employing 

professional programmers. The results show a significant interaction effect between coupling, cohesion, and programmer team 

strategy on both maintenance effort and perceived ease-of-maintenance. Highly cohesive and low-coupled programs required 

lower maintenance effort and were perceived to be easier to maintain than the low cohesive programs and high-coupled 

programs. Further, our results would predict that managers who allocate maintenance tasks to independent or collaborative 

programming teams depending on the structural complexity of software could lower their team’s maintenance effort by as much 

as 70% over managers who use simple uniform resource allocation policies. These results highlight the importance of achieving 

congruence between team strategies employed by collaborating programmers and the structural complexity of software. 

Index Terms—Object-Oriented Programming, Complexity Measures, Software Quality, Programming Teams, Maintenance 

Process, Management  

——————————      —————————— 

1 INTRODUCTION

rganizations spend a significant proportion of their 
IT budgets on software maintenance with aims to 
improve software quality and to prolong system life. 

However, a disproportionate allocation of resources to 
maintenance activities can potentially reduce the ability of 
firms to innovate through new application development, a 
phenomenon termed the ―legacy crisis‖ [1].   

In response to the challenge of reducing system main-
tenance costs a wide range of techniques has been devel-
oped by the software engineering research community [2-
4]. A fundamental principle often utilized by these tech-
niques is that software maintenance is strongly influenced 
by structural complexity, i.e., the manner in which pro-
gram elements are organized within a system [5, 6].  It has 
been shown that through better design the interconnec-
tions between the various elements of a system can be 
simplified to aid maintainability [5, 7-10]. However, a ma-
jority of the research investigating the relationship be-
tween software structure and maintenance has either been 
conducted (a) pertaining to an individual maintainer’s 
approach to maintenance (e.g., cognition and program 
comprehension studies [11, 12]), or (b) has addressed the 
software structure without detailed attention to pro-
grammers’ strategies (e.g., complexity metrics studies [2, 
13-15]).  

While both of these factors (programmer strategy and 
software structure) have influence on the final outcome, 
the interactions of these two elements have generally been 
neglected and leaves open the possibility that simply bet-
ter matches of programmer strategies and situations may 
result in improved performance outcomes. In addition, 
there has been a consistent and growing emphasis on 
team approaches to software development and mainten-
ance in both commercial software development and in 
software engineering education [16-23]. Therefore, there is 
a need to study the relationship between systems main-
tenance and system structure in more detail by accommo-
dating the programmer team strategies which influence 
the conduct of system maintenance activities in order to 
determine if there are complementary team mechanisms 
for specific software structures. Expanding the unit of 
analysis to include both the software structural elements 
and the human factors also presents an opportunity to 
bridge the prescriptions offered by both the program 
comprehension and the software complexity research 
streams, and has the opportunity to positively influence 
maintenance management practice. The objective of the 
study is to take a step forward in this direction by examin-
ing the joint impact of object-oriented software structure 
and programmer team strategies on software mainten-
ance. The study also offers a contribution to the growing 
use of experimental design in empirical software engi-
neering research.  

Variations in programmer team strategies during 
software maintenance are typically caused by the different 
ways in which teams achieve their division of labor. Two 
widely used team strategies in software projects are 
independent team programming and collaborative team 
programming [16-23]. Independent team programming 
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(hereafter simply ―independent programming‖) refers to a 
team strategy where system maintenance tasks are 
divided among programmers who work in parallel on 
separate parts of the system and coordinate their efforts 
[16, 23]. On the other hand, collaborative team programming 
(hereafter simply ―collaborative programming‖) refers to 
a scheme where two or more programmers work together 
on the same piece of software rather than working in 
parallel on two different parts of the system [16, 18]. It has 
been shown in organizational studies that the efforts 
required to achieve mutual understanding of a problem 
and to coordinate among team members under alternative 
team strategy regimes can be significantly different [25-
27], and therefore the outcomes for independent versus 
collaborative programming strategies can be expected to 
also differ.  

Past research studies examining programmer team 
strategies (including pair-programming) have not 
explicitly accounted for the possible joint effects of system 
complexity and team strategy in their design [16-21, 23]1. 
This study investigates maintenance tasks done by pair of 
programmers and specifically focuses on the differences 
between two different team strategies—independent 
programming and collaborative programming employed 
by the pairs of programmers, and how the interaction 
between the software structure and the team strategy 
influences maintenance performance. The central research 
question answered by this study is this: What is the effect 
of programmer team strategy on software maintenance 
performance for different levels of structural complexity?  

To answer this research question we conducted a 
controlled lab experiment with 45 professional 
programmer pairs (90 subjects). We found that 
programmers’ maintenance effort levels (in person 
minutes) and ease-of-maintenance perceptions for the two 
different team strategies were highly contingent upon the 
structural complexity levels that they encountered. In the 
lowest possible structural complexity environment of the 
experiment, programmers employing the independent 
programming strategy required 49% less effort than 
programmers employing the collaborative programming 
strategy. But, in environments with higher structural 
complexity levels, teams using the collaborative 
programming strategy required a minimum of 12% to a 
maximum of 51% less effort than teams using the 
independent programming strategy in the same 
complexity settings. Further, programmers’ perceptions of 
ease-of-maintenance for modules with low structural 
complexity were approximately 30% higher than more 
structurally complex modules, and all else being equal, 
the collaborative programming strategy was perceived to 
be easier to use (approximately 28% higher) than the 
independent programming strategy. The results of this 
study highlight how the programmer team strategies and 
the structural complexity of a system can interact to jointly 
influence maintenance performance variables such as 
maintenance effort and ease-of-maintenance perceptions. 

The remainder of this paper is organized as follows: 
 

1 Although see Arisholm et al. [47] for a recent notable exception which 
uses control delegation (centralized vs. decentralized) as a complexity 
measure. Our study proposes a contingency view of structural complexity 
and utilizes standard coupling and cohesion object-oriented metrics to 
measure complexity. 

the theoretical background on the key constructs of this 
study is presented in section 2. Research hypotheses are 
developed in section 3. The empirical research design to 
test the hypotheses and the experimental procedures are 
described in section 4. Section 5 presents the analysis of 
the data and the results of the hypothesis tests. Section 6 
discusses the results and their limitations, and Section 7 
concludes the paper by highlighting the contributions of 
this study.  

2  THEORETICAL BACKGROUND 

We used two main theoretical perspectives for 
hypothesis development. We conceptualized the 
properties of software maintenance tasks undertaken by 
collaborating programmers using the distributed cognition 
theoretical framework [28]. And we analyzed the impact of 
the team strategy employed by the programmers and its 
impacts on maintenance performance using the task 
interdependence theoretical framework [25, 27, 29].  

2.1 Distributed Cognition Framework 

Software maintenance is recognized both as a 
cognitive activity dependent on an individual 
programmer’s system comprehension, and as a social 
activity involving frequent interactions between 
programmers working in teams [30, 31]. The distributed 
cognition framework posits the study of such cognitive 
phenomena by taking into account the social context in 
which the actors are situated, and treating the actors, their 
interactions with one another, and their environment as a 
single distributed cognitive system [28, 32].  

Flor and Hutchins [24] were among the pioneers in 
the application of the distributed cognition framework to 
the study of software maintenance activities. Rogers and 
Ellis [33] detailed the theoretical basis of distributed 
cognition for studying collaborative activity. Other 
researchers have also utilized the distributed cognition 
framework to study pair programming teams [34]. 
Collectively, the stream of literature examining the 
application of the distributed cognition framework to 
study software maintenance teams recommends the 
analysis of the following properties: a) structure and 
frequency of tasks, b) team structure and the coordination 
mechanisms used, c) tools, documents, and the patterns of 
use of these artifacts, and d) development of shared 
knowledge. These properties derived from the distributed 
cognition framework are utilized for the design of this 
study. We treated a pair of programmers and the software 
application they worked on as a distributed cognition 
system. We then observed the activities of the 
programmer pairs, their team strategies (work division 
and coordination mechanisms), and performance under 
different environments of structural complexity where 
appropriate tool usage was experimentally controlled.  

2.2 Task Interdependence Framework and Team 
Strategies 

Task interdependence is the degree to which team 
members must rely on each other to perform their tasks 
[25, 27, 29]. Prior research in organizational studies and 
psychology have shown that increased task 
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interdependence is associated with increased 
requirements for coordination and communication effort 
among team members in order to perform their tasks well 
[25, 27]. Different modes of task interdependence have 
been categorized based on the information and workflow 
sequences between team members performing the tasks. 
Under reciprocal interdependence, team members perform 
different parts of a task in flexible order as per their 
specializations, and then coordinate among themselves 
using temporally lagged, two-way interactions to 
complete the whole task [27, 29]. In contrast, under team 
interdependence, team members jointly diagnose, problem 
solve, and collaborate to perform a task. Unlike reciprocal 
interdependence, team interdependence involves 
simultaneous work interactions and requires group 
discretion for interactions between team members. In our 
study, one pair of programmers performing a 
maintenance task had the opportunity to work in parallel 
and independently, and this group, referred to as the 
independent programming strategy, corresponds to the 
theoretical ―reciprocal interdependence‖ classification. 
Another group (pair of maintainers) worked jointly to 
complete a maintenance task, and is referred to as the 
collaborative programming strategy; this group 
corresponds to the theoretical ―team interdependence‖ 
classification2. 

By mapping the programmer team strategies to the 
theoretical task interdependence classifications, we can 
build upon the insights from past psychology and 
organization theory research studies which have shown 
that the congruence between the nature of a task and the 
interdependence of team members can significantly 
impact group performance and the perceived 
effectiveness of team members, and that the selection of 
appropriate team strategies often requires a careful 
assessment of the information processing and 
coordination demands of team tasks [26, 27, 35, 36]. In 
prior research, structural complexity of software has been 
used to examine and assess the information processing 
and coordination demands placed on team members 
working on a maintenance task [5]. In this study, we 
extend the analysis by assessing the congruency between 
the structural complexity of software and the team 
strategy employed by programmers.  

2.3 Structural Complexity of Software 

There is a rich body of software engineering literature 
associating the structural properties of systems with their 
maintainability [2, 4-6, 37-39]. Early studies adopted spe-
cific characteristics of programming languages, such as 
usage of long jumps, GO TO statements, depth of IF 
statement hierarchies, etc., for characterizing structure, 
and this early work has been generalized to focus on 
coupling and cohesion as the key measurable conceptual 
properties of the structural complexity of software.  

Coupling represents the interdependencies between 
 

2 In the organizational literature there are other forms of task interde-
pendence. Under pooled interdependence, each team member makes a con-
tribution to team output without the need for any direct interaction with 
other team members; sequential task interdependence requires specific beha-
viors to be performed by team members in a predetermined order [27, 29]. 
These theoretical forms of interdependence are not applicable in our re-
search context, and thus are not considered further here. 

software elements in a system, and cohesion captures the 
similarities or binding of elements that are grouped to-
gether [5]. Several metrics have been developed for coupl-
ing and cohesion for both procedural and object-oriented 
designs, and are described in detail in prior research [40-
45]. Automated tools to gather coupling and cohesion me-
trics from existing software systems are commercially 
available as well [46]. A majority of research studies that 
have analyzed the impact of coupling and cohesion on 
higher order measures of software quality and productivi-
ty have concluded that low coupling and high cohesion 
designs generally yield systems of higher quality that are 
easier to maintain [5, 47]. Further, maintenance effort has 
been shown to be influenced by the interaction between 
coupling and cohesion, implying the advantage of consi-
dering coupling and cohesion jointly, not merely inde-
pendently, in software system design decisions [5]. 

2.4 Maintenance Performance 

Similar to prior software maintenance studies [e.g., 5, 
13, 48], performance of a team was assessed by measuring 
maintenance effort operationalized as the total person 
minutes spent by a programming team to complete a 
perfective maintenance task.  In addition to maintenance 
effort programmers’ perceptions of the ease-of-
maintenance using the chosen team strategy were also 
captured. People’s subjective beliefs on ―ease of doing‖ 
have been shown to act as influential behavioral 
determinants of accepting technology and processes 
irrespective of their inherent objective qualities [49-51]. 
Therefore, it is important to assess programmers’ 
perceptions of ease-of-use of maintenance team strategies, 
along with other objective measures of performance, such 
as maintenance effort, to assess the relevance of different 
team strategies while planning resource allocation policies 
and project work breakdown structures. Further, an 
understanding of the programmer’s perceptions on ease-
of-maintenance under different team strategies can help 
managers formulate policies that aid organization-wide 
assimilation and acceptance of favorable team strategies. 
Similar to perceived ease-of-use measures employed in 
prior technology acceptance studies [e.g., 49-51], 
perceived ease-of-maintenance is defined as a 
programmer’s subjective appraisal (on Likert scales of 1-5 
(1=hardest to perform maintenance, 5=easiest to perform 
maintenance) of the ease of conducting the maintenance 
tasks under specific team strategies that were assigned to 
them.  

3 HYPOTHESES 

3.1 Coupling, Cohesion and Maintenance Effort 

The main effects of coupling and cohesion on main-
tenance effort are well documented [e.g., 5], and our first 
set of hypotheses is designed to check those results in our 
experimental setting and to establish a baseline to com-
pare against later results.  

A highly cohesive system binds similar software ele-
ments in a single place, and is expected to aid program 
comprehension by minimizing a software maintainer’s 
search and exploration tasks. These benefits are expected 
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to translate to higher order gains in the form of lowered 
maintenance effort. On the other hand, a highly coupled 
system has relatively many interconnections between its 
software elements, which hinder program comprehension. 
Programmers working on highly coupled systems need to 
carefully explore a typically large array of possible inter-
connections when making changes to individual software 
elements, necessitating a higher relative maintenance ef-
fort. Further, highly coupled systems are not easy to 
―chunk‖ into logical information processing units due to 
the large number of interconnections, which hinders the 
learning process of maintenance personnel, potentially 
leading to higher maintenance effort expenditure [5].  

Program comprehension by human actors may de-
pend upon both coupling and cohesion rather than simply 
their individual effects. Following Darcy et al. [5], it is also 
expected that a significant interaction effect may exist be-
tween coupling and cohesion that impacts maintenance 
effort. Thus, the first set of confirmatory hypotheses is:  

H1:  Maintenance effort is lower for the more highly cohe-
sive programs. 

H2:  Maintenance effort is higher for the more highly 
coupled programs. 

H3:  For more highly coupled programs, maintenance ef-
fort is lower if cohesion levels are high3. 

3.2 Programmer Team Strategy and Maintenance 
Effort 

Two specific strategies for programmer teamwork, 
independent programming and collaborative program-
ming, are considered in this study. Under the indepen-
dent programming strategy, maintenance tasks are ―split 
and conquered‖ among team members, enabling parallel 
work. But, when looked at from a task interdependence 
point of view, independent programming entails addi-
tional effort expenditure on explicit coordination (boun-
dary spanning activities) to synchronize parallel work 
among team members [22, 52].  Moreover, additional ef-
fort has to be spent on achieving common ground when 
team members deal with errors at the boundary of their 
individual work that ripples across in different directions.  

On the other hand, under the collaborative program-
ming strategy, team members jointly work on all activities 
and do not have to spend as much effort on boundary 
spanning activities. However, the savings that stem from 
parallel work are not possible under the collaborative 
programming strategy. Thus, the final relative perfor-
mance of independent programming and collaborative 
programming with regards to maintenance effort is likely 
to depend upon other factors that influence coordination 
and comprehension effort.  For this research we view 
maintenance activity as a distributed cognition system, 
with the maintainers and the system as intertwined ele-
ments, and therefore posit that the structural complexity 
of the software needs to be considered to differentiate the 
 

3 The interaction hypothesis can also be stated in several equivalent al-
ternative ways in terms of characterizing the different levels of coupling 
and cohesion. For simplicity we explicitly state only one of the possible 
combinations in the two-way interaction between coupling and cohesion. 
We thank an anonymous reviewer for raising this clarification.  

effects of independent and collaborative programming on 
maintenance performance.  

Following the logic of the first set of hypotheses main-
tenance effort is expected to be relatively lower in low 
coupling/high cohesion environments. As established in 
prior research [5], it is expected that, in such low structur-
al complexity regimes, coordination and boundary span-
ning overhead efforts between programmers working on 
a maintenance task are lower. Thus, savings arising from 
parallel work enabled by the independent programming 
strategy would outweigh the costs of overhead efforts 
(coordination and boundary spanning) associated with it. 
However, such savings are not possible under the colla-
borative programming strategy because it does not facili-
tate parallel work between collaborating programmers. 
Therefore, in low structural complexity regimes (high co-
hesion/low coupling), we expect that maintenance effort 
of independent programming strategy will be lower than 
that of collaborative programming strategy. 

In contrast, in high structural complexity environ-
ments (high coupling/low cohesion) where achieving 
higher levels of program comprehension is generally 
harder, it is expected that the coordination and boundary 
spanning overhead costs of independent programming 
will outweigh the costs of collaboration programming 
(lack of parallel work). Therefore, we expect the mainten-
ance effort of collaborative programming strategy to be 
lower in higher structural complexity regimes.  

In summary, we expect the levels of cohesion, coupl-
ing and their interactions with the chosen team strategy 
(independent or collaborative programming) to signifi-
cantly determine effort spent on a maintenance task. Hy-
potheses related to the three-way interaction between 
coupling, cohesion, and team strategy can be stated in any 
combination of lower/higher levels of each of the three 
interacting variables. For simplicity, we explicitly enume-
rate only the following combinations among the three-
way interaction as our second set of hypotheses4: 

H4: For the more highly cohesive programs, the indepen-
dent programming strategy will be associated with 
lower relative maintenance effort. 

H5:  For the more highly coupled programs, the collabora-
tive programming strategy will be associated with 
lower relative maintenance effort. 

H6: Under the collaborative programming team strategy 
for the more highly coupled programs, maintenance 
effort will be lower if cohesion levels are high. 

H7: Under the independent programming team strategy 
for the more highly cohesive programs, maintenance 
effort will be higher if coupling levels are high. 

3.3 Task Strategy and Perceived Ease 

Prior research on antecedents of perceived ease-of-use 
shows that individuals use ―anchoring and adjustment‖ 
heuristics to form their decisions on ease-of-use [53-55]. 
Initial anchoring might be based on an individual’s prior 
knowledge and inherent beliefs, and adjustment to the 

 

4 We thank an anonymous reviewer for the suggestion to include this 
clarification on the interaction hypotheses. 
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initial anchor of perceived ease-of-use is often influenced 
by the social contexts of an individual’s task environment. 
Formal training, informal learning and knowledge trans-
fer through group interactions serve as important facilitat-
ing conditions for adjustments to initial anchors of percep-
tions on ease of doing a task [53].  Thus, in the context of 
software maintenance teamwork, all else held equal, the 
ease with which team members are able to interact with 
and learn from each other influences programmers’ per-
ceived ease-of-system maintenance.  

It is expected that the collaborative programming strat-
egy would be perceived as more easy-to-use than the in-
dependent task strategy because collaborative program-
ming facilitates the development of communal and ―shar-
ing-the-burden perceptions‖ through explicit joint-work 
processes. Under the collaborative programming strategy, 
programmers jointly conduct diagnosis and problem solv-
ing activities, and can learn from each other. Since such 
group interactions in collaborative programming are built 
into the regular work process, programmers do not expe-
rience an extra burden for knowledge transfer. In contrast, 
under the independent programming strategy, program-
mers encounter an additional burden to coordinate and 
exchange knowledge, which could be expected to dampen 
the formation of positive ease-of-use perceptions. Thus, 
our next hypothesis is: 

H8: The perceived ease-of-maintenance of the collabora-
tive programming task strategy will be higher than 
the perceived ease-of-maintenance of the indepen-
dent programming task strategy. 

Following the logic of interaction effects posited in our 
first and second set of hypotheses, it is also likely that per-
ceptions on ease-of-maintenance for independent and col-
laborative programming strategies are varied according to 
the structural complexity regimes encountered by the 
programmers. Especially, the interdependence between 
code elements as represented by coupling can be expected 
to influence programmer perceptions on ease-of-
maintenance along with their task interdependence due to 
their chosen team strategy. Since coupling acts as a dam-
pening mechanism for easy interactions between collabo-
rating programmers, we can expect the positive ease-of-
maintenance perceptions typically engendered by a colla-
borative programming strategy to decrease in higher 
coupling environments. Therefore, our next hypothesis is:  

H9: The difference in perceived ease-of-maintenance be-
tween the collaborative programming task strategy 
and the independent programming task strategy will 
decrease with an increase in the level of coupling. 

4 RESEARCH DESIGN AND EXPERIMENT 

PROCEDURES 

4.1 Experiment Design 

A controlled lab experiment method was chosen to col-
lect data for testing the hypotheses. A 2X2X2 between-
subjects experiment design, as shown in Figure 1, was 
chosen with the following three factors: a) coupling (low-

high), b) cohesion (low-high), and c) team strategy (inde-
pendent programming and collaborative programming) 
which generates 8 (23) possible conditions.  

 
------Insert Figure 1 about here ------ 

 
The dependent variables were maintenance effort and 

perceived ease-of-maintenance. As described above, main-
tenance effort was measured in person-minutes, and per-
ceived ease-of-maintenance as the average score of a 
three-item interview questionnaire with responses sought 
on 5-point Likert scales. Responses from the team mem-
bers were sought through an interview on (1) ease of un-
derstanding the business logic of the system while work-
ing the maintenance task, (2) ease of understanding the 
technical design and operation of the system while work-
ing on the maintenance task, and (3) overall ease of per-
forming the maintenance task under the assigned team 
strategy. Coupling and cohesion were measured using 
two CK object-oriented software metrics (coupling using 
CBO; cohesion using LCOM) [43]. These specific object-
oriented metrics to measure coupling and cohesion were 
chosen as their properties with respect to software main-
tenance are well documented in prior research [5, 15, 43, 
46], providing a sound basis for comparing our experi-
mental results with prior published structural complexity 
experiments, especially [5]. 

4.2 Experiment System, Manipulation of Factors, 
and Subject Tasks 

A stable version of an existing database and reporting 
application system written in Java (Java SE 6, update 11) 
was chosen as the experiment artifact. The application had 
13400 lines of code, 20 database tables, 185 SQL state-
ments, and 85 interfaces among the various classes and 
Java Server Pages. In preparation of the experiment arti-
facts an extensive manual walkthrough of the system 
source code was conducted, along with an object-oriented 
metrics extraction using the CKJM tool [56]. Four different 
versions of the system with the same business functionali-
ty, but with varying levels of coupling and cohesion cor-
responding to the experiment design, were developed 
from the original application. The refactoring techniques 
we used to manipulate coupling and cohesion were moti-
vated by prior published structural complexity experi-
ments [5, 9, 10].  

Broadly, coupling was primarily manipulated by 
modifying method calls, and cohesion was primarily ma-
nipulated by adjusting the sharing of instance variables 
between method pairs. For example, when a method is 
used by more features of another class than the class on 
which it is defined, we created a new method with a simi-
lar body in the class where it is used most, and we then 
either turn the old method into a simple delegation, or 
remove it altogether. We also converted local variables to 
fields—if the local variable is initialized on creation, then 
the refactoring operation moves the initialization to the 
new field's declaration or to the class's constructors. These 
refactoring manipulations yielded two distinct levels of 
cohesion (low, LCOM=45; high, LCOM=10) and coupling 
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(low, CBO=6; high, CBO=12). The manipulations did not 
significantly alter the code size (measured in lines of code 
(LOC)) of the application (the differences in LOC among 
the four versions was less than 1%). Two independent 
computer science Ph.D.-holding experts (not the authors) 
who were familiar with the system usage and had more 
than ten years of object-oriented software development 
expertise were provided with the source code of the four 
different artifacts corresponding to our experiment design 
and were asked to verify and report the equivalence in 
business functionality and accuracy of the metrics collec-
tion. The experts confirmed that the four different ver-
sions of the system had the same functionality and de-
picted different structural complexity levels as measured 
by the CBO and LCOM coupling and cohesion metrics. 
The level of inter-rater reliability as measured by Cohen’s 
Kappa of the verification exercise was 0.9, indicating a 
high degree of consensus between the raters.  

We designed a perfective maintenance task to be 
completed by all subjects (pairs of professional program-
mers). The context of the perfective maintenance task was 
that the organization using the system had instituted a 
new operational location, and a subset of its operational 
activities was to be run at the new location. The design of 
the perfective maintenance task was motivated by a real 
world case drawn from an observation of the develop-
ment requests reported for the system, which improves 
the ecological validity of our experiment5. Subjects were 
asked to modify the system in order to accommodate the 
new user requirement. The same IDE (JEdit), test data and 
sample reports were provided to all subjects. 

4.3 Pretest and Power Analysis 

We pre-tested the experimental system and planned 
procedures and conducted a pilot study with two pairs of 
professional programmers and four pairs of advanced 
university students majoring in Information Systems. We 
conducted a power analysis using the data collected from 
the pilot study to estimate the sample size required for the 
experiment design. Similar to past software engineering 
research [48], we chose the desired power for the model as 
0.8 where the effect size was based on the task completion 
rate, cell means, and standard deviations from the pretest 
data, with the alpha set to 0.05. The power analysis indi-
cated that approximately forty pairs, or eighty program-
mers, were needed for the 2X2X2 fixed effect experiment 
design to appropriately test all main effects and interac-
tions. 

4.4 Subjects 

In order for the research results to have substantial 
external validity to commercial environments, eligibility 
to serve as an experimental subject was limited to profes-
sional programmers with a minimum of two years of Java 
programming language experience and possessing an 
official ―Java Programmer‖ certification [57].  Volunteer 
programmers were solicited through a professional spe-
cial interest group on Java programming in Singapore, the 
site of the experiment. Email advertisements for the expe-
 

5 We thank an anonymous reviewer for raising this clarification. 

riment were also sent through the human resources divi-
sions of three leading software services firms located in 
Singapore. Ultimately, 45 pairs of programmers, or 90 
subjects, participated in the experiment. 

4.4 Procedures 

Pairing of programmers and subject (pair) allocation to 
experimental cells was done randomly. When the subjects 
arrived on site they were briefed about the experiment, a 
high-level overview of the experimental system was pre-
sented, and two training tasks were given. The training 
tasks were different from the main experiment tasks, but 
were designed to help the subjects become familiarized 
with the different modules of the application. All subjects 
received identical training. 

Subjects were required to work on laptops provided for 
the experiment which had identical hardware configura-
tions and installed applications. For subjects in the inde-
pendent programming strategy group, two laptops were 
provided for each pair, whereas only one laptop was pro-
vided for subjects in the collaborative programming 
group. The laptops were preloaded with the appropriate 
variant of the experiment application, test data and sam-
ple reports, and screen capture recording software. The 
screen capture software was used to track the exact timing 
of maintenance events. Subjects were required to check-in 
their completed code to a version control system. Once 
subjects indicated task completion, tests were run on their 
final checked-in version to determine the accuracy of their 
solution. If errors were found, the subjects were notified 
and asked to rectify the errors. Only when the solutions 
passed all of the acceptance tests was the solution deemed 
complete. The time required for solution validation by the 
supervisor was not counted as part of the maintenance 
effort. Upon completion of the task, subjects completed a 
post experiment interview and were compensated 25 SGD 
for their participation in the experiment. All subjects com-
pleted the experiment within the planned two hours, and 
there were no dropouts. 

Throughout the experiment an observer was present in 
the lab along with the subjects. The observer kept track of 
the experiment time (start and end of comprehension ac-
tivities, coordination activities, and execution activities), 
documented the work division between programmers, 
and made non-intrusive general observations of the task 
progress. The experiment observations were corroborated 
with data from the screen capture videos and check-in, 
check-out patterns from the version control system. The 
three way check of experiment data from observer notes, 
screen capture videos, and the version control system 
served to minimize any measurement-related human er-
rors. 

5 ANALYSIS AND RESULTS 

5.1 Data Analysis 

We analyzed the experiment data using version 11 of 
the STATA statistical package [58]. In the first stage we 
verified the normal distribution of the response variables, 
maintenance effort and perceived ease-of-maintenance, 
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using the Shapiro-Wilk test [59] and through visual in-
spection of QQ plots, skewness and kurtosis graphs [60]. 
These tests did not reveal any normality-related issues.  
An outlier analysis was performed to check for potentially 
influential or erroneous outliers. This analysis revealed 
two candidate cases. In one of the cases maintenance ef-
fort was lower than the respective cell mean, and in the 
other case higher. We checked all data on the two candi-
date cases and found no errors, and therefore we retained 
these cases in the dataset (the final results are robust to 
both the inclusion and the exclusion of the two candidate 
outlier cases).  

Descriptive statistics of the potential covariates col-
lected through the post-experiment interview and their 
correlations with the response variables are shown in 
Tables 1 and 2 respectively. None of the potential cova-
riates was significantly correlated with either maintenance 
effort or perceived ease-of-maintenance. We verified the 
homogenous distribution of covariates across the eight 
experiment cells through a series of Analysis of Variance 
(ANOVA) tests with the covariates as dependent va-
riables, and coupling, cohesion, and team strategy as the 
independent variables. None of these ANOVA models 
was statistically significant, implying homogenous distri-
bution across the experiment cells. 

 
------Insert Table 1, Table 2, and Table 3 about here ------ 

 
Since the research model of this study involved two re-

sponse variables (maintenance effort and perceived ease-
of-maintenance), we performed a Multivariate Analysis of 
Variance (MANOVA). Table 3 shows the results of this 
analysis. The overall model was statistically significant 
(Table 3, Row 1, F=2.95, p-value=0), confirming that there 
were significant differences in the means of maintenance 
effort and perceived ease-of-maintenance across the dif-
ferent experiment cells. Referring to Table 3 it can be seen 
that the main effects of cohesion (Table 3, Row 2), and 
coupling (Table 3, Row 3) are both highly significant at 
usual levels. The two-way interaction between coupling 
and cohesion (Table 3, Row 4) is also significant in the 
overall model at the p<0.10 level. The independent main 
effect of team strategy was not significant at usual levels 
(Table 3, Row 5), but the two-way and three-way interac-
tions of team strategy with coupling and cohesion were 
found to be statistically significant (Table 3, Rows 4-8), 
indicating that the interaction effect of team strategy and 
structural complexity of software is a significant driver of 
performance outcomes. 

We also performed separate univariate Analysis of Va-
riance (ANOVA) analyses for both maintenance effort and 
perceived ease-of-maintenance. The univariate models 
were statistically significant, and results of these univa-
riate models were similar to the MANOVA analysis 
(maintenance effort model: F=5, p-value=0.001, adj. R-
squared=0.39; perceived ease-of-maintenance model: 
F=2.9, p-value=0.01, adj. R-squared=0.23). 

 
5.2 Hypotheses Tests 

We examined the individual hypotheses developed in 

section 2 using post-hoc tests following the MANOVA 
analysis. Since all the hypothesis tests comparisons were 
done using the same MANOVA results, a Bonferroni ad-
justment was applied to the p-values to minimize Type 1 
errors [62], and these results are shown in Table 4. The 
observed differences (reported in Table 4, column 3) be-
tween the hypothesized comparison conditions are calcu-
lated using the experiment cell means, which are reported 
in Table 5 and Figure 2 for maintenance effort and Table 6 
and Figure 3 for perceived ease-of-maintenance.  

 
------Insert Table 4, Table 5, and Table 6 about here ------ 

------Insert Figure 2 and Figure 3 about here ------ 
 
The statistical tests reported in Table 4, column 5, veri-

fy if each of the observed differences are significant at the 
Bonferroni adjusted α = .006 level. For example, the value 
for H1 in Table 4 is calculated as follows. Total mainten-
ance effort for the low cohesion condition is 192.7 as de-
rived using the cell means of the low cohesion condition 
(=41+19.8+70.2+61.7=192.7). Similarly, total maintenance 
effort for high cohesion condition is derived as 102.2 
(15+29.3+33.2+24.7=102.2). Calculating the ratio [(high 
cohesion – low cohesion) / low cohesion] as a percentage 
(i.e., [(102.2 – 192.7)/192.7] * 100 = – 46.96), shows that the 
highly cohesive programs requires about 47% lower main-
tenance effort than the low cohesive programs. This ob-
served difference is statistically significant as shown by 
the Chi-squared statistic in Table 4 H1 (p-value = 0.000).  

All of the confirmatory hypotheses for the maintenance 
effort (H1, H2, and H3) were supported. Maintenance ef-
fort was lower for highly cohesive programs, higher for 
highly coupled programs, and there was a significant inte-
raction effect between coupling and cohesion in determin-
ing maintenance effort.  

While we found significant interaction effects for team 
strategy in the MANOVA analysis (Table 3, Rows 4-8), a 
comparison of means as posited by hypotheses H4 and H5 
did not reveal statistically significant results at the Bonfer-
roni adjusted α = .006 level.  Even though the observed 
differences between High Cohesion and Low Cohesion 
groups under the independent programming strategy 
(refer to Table 4 H4) and the High Coupling and Low 
Coupling groups under the collaborative programming 
strategy (refer to Table 4 H5) are in the hypothesized di-
rections, they are not statistically significant at the more 
conservative level. This indicates that we cannot confirm 
how the impact of structural complexity on performance 
outcomes is influenced by a chosen team strategy by only 
considering one of coupling or cohesion. Rather, there is a 
need to consider the full three-way interaction effects be-
tween coupling, cohesion, and team strategy in order to 
examine how the interplay between these variables im-
pacts maintenance performance. Hypotheses H6 and H7, 
which proposed a three-way interaction between coupl-
ing, cohesion and task strategy, were both strongly sup-
ported (p-value=0.000, refer Table 4 H6, H7).  

Figure 2 visually shows the differences in cell means of 
maintenance effort for all the groups in the research de-
sign (three-way between coupling, cohesion, and team 
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strategy). Figure 2 also includes the sub-division of overall 
maintenance effort into program comprehension, explicit 
coordination, and execution portions. These sub-divisions 
of maintenance effort were derived based on the events 
noted by the experiment observer and was corroborated 
using the screen capture recordings and version control 
system check-in timings. The three-way interaction effects 
between coupling, cohesion, and team strategy on main-
tenance effort are visually represented in Figure 4.  

Both of the perceived ease-of-maintenance hypotheses 
(refer to Table 4,  H8 and H9) were fully supported at the 
Bonferroni adjusted α=.006 level.  As we had expected, the 
perceived ease-of-maintenance level for the collaborative 
programming strategy groups was higher than for the 
independent programming strategy groups. Also, as hy-
pothesized in H9, under the collaborative programming 
strategy highly coupled programs showed lower per-
ceived ease-of-maintenance levels than programs with 
lower levels of coupling. The perceived ease-of-
maintenance levels for the various experimental groups 
are presented in Figure 3. The significant three-way inte-
raction between coupling, cohesion, and task strategy is 
depicted visually in Figure 5.  

 
------Insert Figure 4 and Figure 5 about here ------ 

 
It is interesting to note that, under the independent 

programming team strategy, programmers tended to 
perceive maintenance of highly coupled programs as easi-
er than less coupled programs, even though it takes them 
more effort to complete the maintenance of highly 
coupled programs. We believe that this result is driven by 
their difficulty in establishing an initial common ground 
between collaborating programmers in higher structural 
complexity contexts. This is supported by the observed 
higher levels of program comprehension effort expended 
by the programmers for highly coupled programs (see 
Figure 2).  In Section 6.1 we discuss the implications of 
this type of potential mismatch between what may be 
programmers’ preferred choice and what can be shown to 
be the economically optimal team strategy.   

6 DISCUSSION 

The primary objective of this research was to extend 
the investigations of the relationship between software 
structure and maintenance performance by taking into 
account the team strategies employed by maintenance 
programmers. Supported by the theoretical perspectives 
of the distributed cognition and task interdependence 
frameworks, this study experimentally validated that the 
team strategy employed by maintenance teams, along 
with structural complexity, are important factors in in-
fluencing performance outcomes such as maintenance 
effort and perceived ease-of-maintenance.  

Specific differences in maintenance effort across dif-
ferent levels of structural complexity and team strategies 
can be inferred from Figure 2 and Table 5, which show the 
cell means of all the combinations of the interacting va-
riables. Since the perfective maintenance task (i.e., adding 

a business functionality) across the experiment cells re-
mained constant, the observed differences in maintenance 
effort can be interpreted as productivity differences6  in-
duced due to the congruence (or lack thereof) of team 
strategies and software structure. 

Referring to Figure 2, it can be seen that, other than in 
the high cohesion/low coupling quadrant (lowest struc-
tural complexity), teams using the collaborative pro-
gramming strategy were more productive (required less 
total effort) than teams using the independent program-
ming strategy, ceteris paribus. The largest difference in 
productivity between the collaborative and independent 
programming strategies can be seen in the low cohe-
sion/low coupling quadrant (49.5%), and the smallest 
difference is found in the low cohesion/high coupling 
quadrant (highest structural complexity) (14%). However, 
in the lowest possible structural complexity environment 
of the experiment (high cohesion/low coupling quadrant), 
programmers employing the independent programming 
strategy were 50.2% more productive on average than the 
programmers employing the collaborative team strategy. 
Irrespective of the team strategies employed, maintenance 
of high cohesion programs was 47% more productive than 
maintenance of low cohesion programs. Similarly, it re-
quired on average 80% more effort from programmers to 
finish maintenance tasks in highly coupled programs as 
compared to programs with lower levels of coupling. 

Referring to Figure 4, it can be seen that programmers’ 
ease-of-maintenance perceptions for the team strategies 
were also highly contingent on the structural complexity 
levels that they encountered. Programmers’ perception of 
ease-of-maintenance for modules with high cohesion and 
low coupling were 30% higher than other more complex 
modules, and all else being equal, the collaborative pro-
gramming strategy was perceived to be easier to use (28% 
higher) than the independent programming strategy. 
However, the ease-of-maintenance perception difference 
between collaborative programming and independent 
programming dropped significantly (86%) as coupling 
increased. 

These results provide evidence for the proposition that 
managers should take a contingency view of structural 
complexity when planning maintenance projects. When 
the maintenance activity of teams is viewed as a distri-
buted cognitive system, the impacts of structural complex-
ity are not determined by the structure of the software 
alone, but are contingent on the team strategies that are 
employed by the software maintainers. Referring to Fig-
ures 2 and 3, one can see how the results of the program-
mer team strategy contingency of structural complexity 
provides different maintenance effort levels and perceived 
ease-of-maintenance for different groups of the interac-
tion.  

A variety of descriptive differences in lower order fac-
tors of program comprehension, coordination, and solu-
tion execution effort can also be noticed due to the dy-
namic interactions between software structure and team 
 

6 i.e., the numerator in the equivalent productivity equation (out-
put/input = maintenance task size/effort) remained the same across the 
cells. 
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strategy. Program comprehension and execution effort are 
typically higher in more structurally complex environ-
ments, but the coordination effort needed to complete a 
maintenance task is more dependent on the team strategy 
employed by the collaborators. While coordination effort 
is generally lower for the collaborative programming 
strategy, by employing the independent programming 
strategy in less structurally complex environments, it may 
be possible to exploit the lower effort needed for solution 
execution to boost maintenance performance.  

The programmer team strategy contingency view of 
structural complexity has several implications for both 
research and practice, both of which are discussed below. 

 
6.1 Implications for Research and Practice 

Software engineering research studies that compare 
different processes or techniques (e.g., individual vs. pair 
programming) often view structural complexity as a static 
function and merely control for its effect by including le-
vels of coupling and cohesion (or other similar metrics) in 
their models. Instead, based on the results of this study, a 
more nuanced view of structural complexity is advocated. 
This study shows that when examining higher order fac-
tors, such as productivity, it is necessary to account for 
how maintainers involved in the software activity ap-
proach the inherent software structure and act on it. Our 
study provides a rationale using the distributed cognition 
and task interdependence frameworks to support a con-
tingency view of software complexity, and experimentally 
validated the use of team strategy-coupling-cohesion inte-
ractions as a way to account for effects of software com-
plexity on maintenance performance. Team strategy has 
the benefit of being a controllable manifest dimension of 
team structure, and could be particularly useful when the 
unit of analysis in software research is a team or project, 
rather than an individual. 

An important implication of the contingency view of 
structural complexity for practice is on the way work 
breakdown structures are achieved in a software project.  
This research study shows that there are higher order 
benefits, such as improved maintenance productivity, that 
could be reaped if careful attention is paid to achieve con-
gruence between project task work breakdown structures 
and team strategies employed by programmers. Work 
breakdown structures capture the planned division of 
labor mechanism by managers. Programmer team strate-
gies, on the other hand, determine how the elements of a 
work breakdown structure are further chunked, clustered, 
and performed during the actual task execution. Hence, 
incongruence between the planned work breakdown 
structures and actual team strategies may result in unex-
pected overhead costs, such as unplanned coordination 
and idle time.  

Our study shows significant improvements in main-
tenance performance can be attained if the latent structur-
al properties of object-oriented systems are exploited for 
project planning, deriving work breakdown structures 
and resource allocation. For example, our results would 
predict that managers who allocate maintenance tasks to 
independent or collaborative programming teams de-

pending on the structural complexity of software (e.g., 
high cohesion/low coupling maintenance to independent 
programming teams and more complex tasks to collabora-
tive programming teams) could lower their team’s main-
tenance effort by as much as 70% over managers who use 
a simple uniform resource allocation policy. It is impor-
tant to note, however, that choice of the maintenance team 
strategy might be affected by programmers' willingness to 
employ it, and managers should be aware that program-
mers might prefer a team strategy different than the eco-
nomically optimal one. Thus, in order to deploy an optim-
al resource allocation policy derived from the contingency 
view of structural complexity, additional complementary 
investments in, for example, training programs and team-
building exercises, might be necessary.  

It is possible to discover the latent structural proper-
ties of object-oriented systems at relatively low cost by 
using commercially available object-oriented metrics and 
toolsets. Therefore, this study further suggests the value of 
integrating object-oriented metrics into the early stage 
project planning process. However, getting leading indi-
cators of software structural complexity through object-
oriented metrics can sometimes be challenging in practice, 
due to customer restrictions, or the lack of implementation 
of automated tools. One way to break such a deadlock is 
through local tailoring of processes, and through treating 
team strategy as a response to a given software structure 
that is being discovered concurrently. A more refined, 
metrics-driven strategy of allowing independent pro-
grammers to team program on high cohesion/low 
coupled program elements and collaboratively pairing 
programmers to handle low cohesion/highly coupled 
program elements could result in significant savings in 
total effort expended. 

6.2 Limitations and Future Research 

This research study is based on a controlled experi-
ment. Although high confidence can be placed in the spe-
cific results due to the use of experimental controls, nor-
mal caution has to be exercised on broad generalizations.  
Nevertheless, since the hypotheses of this study are theo-
retically motivated, the procedures can be easily repli-
cated in other empirical settings and the results verified.  

To be able to control the important factors of interest, 
and to keep the sample size feasible given the use of pro-
fessional programmers, some other potentially interesting 
variables observed in field settings were not considered as 
part of the research design. While keeping the research 
model parsimonious (by focusing only on pairs of certi-
fied professional programmers with at least two years of 
experience) helped in maintaining control of the primary 
factors of interest, such designs necessitate trade-offs with 
other potential research questions. For example, this expe-
riment leaves to future research possible manipulation of 
programmer expertise (novices vs. senior programmers) 
or variations in team sizes. Future research could extend 
the findings of this study to corrective and adaptive main-
tenance, and also to study the impact of structural com-
plexity on other potentially relevant response variables, 
such as reuse or conformance quality. 
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The 2x2x2 experiment design we used for the study did 
not lend itself to consider a broad range of refactoring 
techniques available for manipulating structural complex-
ity of software, and unlike other studies [9, 10] we did not 
specifically focus on the effects induced by specific refac-
toring techniques on programmer behavior. This limits 
the development of finer prescriptions on how a system 
with given structural complexity can be altered to suit a 
preferred team strategy of a project team. 

Also, as traditional with software engineering experi-
ments, we acknowledge the limitations of generalizing 
our findings to large maintenance projects that operate for 
extended periods of time (months, even years). Normal 
caution has to be placed on extending laboratory experi-
mental results based on a relatively small perfective main-
tenance task to larger production settings. Replication and 
verification of the results using data from larger and di-
verse production environments is recommended. 

Given that the current study has shown the effect of 
two consistent team strategies, independent and collabor-
ative programming, future research could investigate the 
possible effects of mixed or hybrid task strategy models. 
Finally, the impact of different modes of pairing pro-
grammers in collaborative programming setting (experts-
novices, novices-novices, experts-experts) on the three-
way interaction between team strategy, coupling, and co-
hesion could be examined in future research as well. 

7 CONCLUSION 

This study provides evidence establishing the relation-
ship between the structure of systems and maintenance 
performance by accommodating the nature of work divi-
sion mechanisms employed by maintenance teams.  View-
ing the combination of the system and the system main-
tainers as intertwined components of a single distributed 
cognitive system, a contingency view of structural com-
plexity is established. Using data collected from a con-
trolled lab experiment with professional programmer 
pairs as subjects the contingency view of structural com-
plexity is illuminated by demonstrating the presence of 
interactions between the structural properties (coupling 
and cohesion) of the system and team strategies of the 
actors (independent programming vs. collaborative pro-
gramming). The key finding of the experiment is that the 
latent structural properties of object-oriented systems can 
be exploited to improve maintenance performance by ap-
propriately choosing between independent programming 
and collaborative programming strategies. Maintenance 
effort and perceived ease-of-maintenance of programmers 
are significantly influenced by the complex three-way 
interactions between coupling, cohesion and task strategy. 
This study provides an empirically validated rationale for 
using the coupling-cohesion-team strategy framework for 
planning maintenance projects and for resource allocation. 
The wide availability of object-oriented metrics and tool 
sets provides ample impetus to accomplish this in soft-
ware engineering practice. 
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TABLE 1 

DESCRIPTIVE STATISTICS FOR POTENTIAL COVARIATES 
Covariate Units Min Max Mean Std. Dev 

Age Years 21 26 23.88 1.70 

Java Experience Years 2 4 2.40 0.58 

Programming Career Experience Years 2 8 3.72 1.55 

Number of programming lan-

guages known 

Absolute 

number 

2 5 3 1.17 

Undergraduate GPA Absolute 

number 

3.19 3.9 3.46 0.30 

  
TABLE 2 

CORRELATIONS FOR MAINTENANCE EFFORT AND PERCEIVED EASE-OF-USE WITH POTENTIAL COVARIATES
†
 

Variables Age 
Java  

Experience 

Programming 

Career  

Experience 

Number of  

programming 

languages 

Undergraduate 

GPA 

Maintenance Effort 
0.14 

(0.30) 

-0.04 

(0.79) 

-0.03 

(0.86) 

0.13 

(0.38) 

-0.09 

(0.58) 

Perceived Ease-of-

Maintenance 

0.24 

(0.11) 

0.09 

(0.54) 

-0.13 

(0.41) 

-0.08 

(0.6) 

0.11 

(0.46) 
Note: 

† 
P-Values in parenthesis 

 
TABLE 3 

MANOVA FOR MAINTENANCE EFFORT AND PERCEIVED EASE-OF-MAINTENANCE 

  Pillai's trace statistic# F-statistic p-value 

1 MANOVA Model (Adj. R2 = 0.39; n=45) 1.03 2.95 0.00 

 2 Cohesion 0.28 4.57 0.01 

 3 Coupling 0.24 3.78 0.02 

 4 Cohesion*Coupling 0.18 2.61 0.07 

 5 Team Strategy 0.04 0.5 0.68 

 6 Cohesion*Team Strategy 0.19 2.72 0.06 

 7 Coupling*Team Strategy 0.17 2.36 0.09 

 8 Cohesion*Coupling*Team Strategy 0.21 3.08 0.04 

Note: 
# 
The results of the MANOVA analysis were identical across different test statistics (Pillai’s trace, Wilk’s 

lambda, Roy’s largest root, and Lawley-Hotelling trace. 



12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237 

 

TABLE 4 
HYPOTHESIS TESTS RESULTS 

No. Hypothesis Observed Difference 
Statistically 

Supported? † 

Statistical  

Test Result† 

Maintenance Effort Hypotheses 

H1 
Maintenance effort is lower for the 

more highly cohesive programs. 

High Cohesion 47% less effort 

than Low Cohesion 
Yes 

Chi-squared=11.93, 

P=0.000*** 

H2 
Maintenance effort is higher for the 

more highly coupled programs. 

High Coupling 80% higher effort 

than Low Coupling 
Yes 

Chi-squared=10.43, 

P=0.000*** 

H3 

For the more highly coupled pro-

grams, maintenance effort is lower if 

cohesion levels are high. 

[High Coupling/High Cohesion] 

56% less effort than [High Coupl-

ing/Low Cohesion] 

Yes 
Chi-squared=19.10, 

P=0.000*** 

H4 

For the more highly cohesive pro-

grams, independent programming 

strategy is associated with lower 

maintenance effort. 

Independent programming 11% 

less effort than Collaborative 

programming 

No 
Chi-squared=0.08, 

P=0.77 

H5 

For the more highly coupled pro-

grams, collaborative programming 

strategy is associated with lower 

maintenance effort. 

Collaborative programming 12% 

less effort than Independent pro-

gramming 

No 
Chi-squared=1.02, 

P=0.31 

H6 

Under the collaborative program-

ming strategy, for the more highly 

coupled programs, maintenance ef-

fort is lower if cohesion levels are 

high. 

[High Coupling/High Cohesion] 

63% less effort than [High Coupl-

ing/Low Cohesion] 

Yes 
Chi-squared=40.43, 

P=0.000*** 

H7 

Under the independent program-

ming strategy, for the more highly 

cohesive programs, maintenance ef-

fort is higher if coupling levels are 

high. 

[High Cohesion, High Coupling] 

122% higher effort than [High 

Cohesion/Low Coupling] 

Yes 
Chi-squared=10.94, 

P=0.000*** 

Perceived Ease-of-Maintenance Hypotheses 

H8 

The perceived ease-of-maintenance of 

the collaborative programming task 

strategy will be higher than the per-

ceived ease-of-maintenance of the 

independent programming task 

strategy. 

Collaborative programming 28% 

higher ease of use than Indepen-

dent programming 

Yes 
Chi-squared=8.35, 

P=0.004*** 

 

H9 
The difference in perceived ease-of-

maintenance between the collabora-

tive programming task strategy and 

the independent programming task 

strategy will decrease with an in-

crease in the level of coupling. 

[Collaborative programming – 

Independent programming] for 

High Coupling is 86% lower ease 

of use than [Collaborative pro-

gramming – Independent pro-

gramming] for Low Coupling  

Yes Chi-squared=10.40, 

P=0.000*** 

Note: † All p-values are two-tailed; Bonferroni adjusted p-values are 0.006 for 5% significance (marked as *** in Table 4) 
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Fig. 2 Effects of Coupling, Cohesion, and Task Strategy on Maintenance Effort 

 

 
Fig. 4 Interaction Effects of Coupling, Cohesion, and Task Strategy on Maintenance Effort 

TABLE 5 
EXPERIMENT CELL MEANS DATA – MAINTENANCE EFFORT

†
 

  
Independent  
Programming 

Collaborative 
Programming 

1 Low Cohesion and Low Coupling 41      (2.73) 19.83 (1.32) 

2 Low Cohesion and High Coupling 70.2   (4.68) 61.67 (4.11) 

3 High Cohesion and Low Coupling 15      (0.98) 29.33 (1.96) 

4 High Cohesion and High Coupling 33.23 (2.15) 24.67 (1.64) 

Note: 
† 
Standard deviation in parenthesis; maintenance effort is measured in person-minutes 
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Fig. 3 Effects of Coupling, Cohesion, and Team Strategy on Perceived Ease-of-Maintenance 

 
Fig. 5 Interaction Effects of Coupling, Cohesion, and Team Strategy on Perceived Ease-of-Maintenance 

TABLE 6 
EXPERIMENT CELL MEANS DATA – PERCEIVED EASE-OF-MAINTENANCE

† 

  
Independent  
Programming 

Collaborative 
Programming 

1 Low Cohesion and Low Coupling 2.5   (0.11) 4    (0.17) 

2 Low Cohesion and High Coupling 3      (0.13) 3.7 (0.16) 

3 High Cohesion and Low Coupling 2.25 (0.09) 4.5 (0.19) 

4 High Cohesion and High Coupling 3.7   (0.16) 3.7 (0.14) 

Note: 
† 
Standard deviation in parenthesis; perceived ease-of-maintenance measured on a Likert scale ranging from 1-5(1=hardest to perform 

maintenance, 5=easiest to perform maintenance) 
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