
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237 1

Structural Complexity and Programmer Team
Strategy: An Experimental Test

Narayan Ramasubbu, Chris F. Kemerer (IEEE Computer Society Member), and Jeff Hong

Abstract— This study develops and empirically tests the idea that the impact of structural complexity on perfective

maintenance of object-oriented software is significantly determined by the team strategy of programmers (independent or

collaborative). We analyzed two key dimensions of software structure, coupling and cohesion, with respect to the maintenance

effort and the perceived ease-of-maintenance by pairs of programmers. Hypotheses based on the distributed cognition and task

interdependence theoretical frameworks were tested using data collected from a controlled lab experiment employing

professional programmers. The results show a significant interaction effect between coupling, cohesion, and programmer team

strategy on both maintenance effort and perceived ease-of-maintenance. Highly cohesive and low-coupled programs required

lower maintenance effort and were perceived to be easier to maintain than the low cohesive programs and high-coupled

programs. Further, our results would predict that managers who allocate maintenance tasks to independent or collaborative

programming teams depending on the structural complexity of software could lower their team’s maintenance effort by as much

as 70% over managers who use simple uniform resource allocation policies. These results highlight the importance of achieving

congruence between team strategies employed by collaborating programmers and the structural complexity of software.

Index Terms—Object-Oriented Programming, Complexity Measures, Software Quality, Programming Teams, Maintenance

Process, Management

——————————  ——————————

1 INTRODUCTION

rganizations spend a significant proportion of their
IT budgets on software maintenance with aims to
improve software quality and to prolong system life.

However, a disproportionate allocation of resources to
maintenance activities can potentially reduce the ability of
firms to innovate through new application development, a
phenomenon termed the ―legacy crisis‖ [1].

In response to the challenge of reducing system main-
tenance costs a wide range of techniques has been devel-
oped by the software engineering research community [2-
4]. A fundamental principle often utilized by these tech-
niques is that software maintenance is strongly influenced
by structural complexity, i.e., the manner in which pro-
gram elements are organized within a system [5, 6]. It has
been shown that through better design the interconnec-
tions between the various elements of a system can be
simplified to aid maintainability [5, 7-10]. However, a ma-
jority of the research investigating the relationship be-
tween software structure and maintenance has either been
conducted (a) pertaining to an individual maintainer’s
approach to maintenance (e.g., cognition and program
comprehension studies [11, 12]), or (b) has addressed the
software structure without detailed attention to pro-
grammers’ strategies (e.g., complexity metrics studies [2,
13-15]).

While both of these factors (programmer strategy and
software structure) have influence on the final outcome,
the interactions of these two elements have generally been
neglected and leaves open the possibility that simply bet-
ter matches of programmer strategies and situations may
result in improved performance outcomes. In addition,
there has been a consistent and growing emphasis on
team approaches to software development and mainten-
ance in both commercial software development and in
software engineering education [16-23]. Therefore, there is
a need to study the relationship between systems main-
tenance and system structure in more detail by accommo-
dating the programmer team strategies which influence
the conduct of system maintenance activities in order to
determine if there are complementary team mechanisms
for specific software structures. Expanding the unit of
analysis to include both the software structural elements
and the human factors also presents an opportunity to
bridge the prescriptions offered by both the program
comprehension and the software complexity research
streams, and has the opportunity to positively influence
maintenance management practice. The objective of the
study is to take a step forward in this direction by examin-
ing the joint impact of object-oriented software structure
and programmer team strategies on software mainten-
ance. The study also offers a contribution to the growing
use of experimental design in empirical software engi-
neering research.

Variations in programmer team strategies during
software maintenance are typically caused by the different
ways in which teams achieve their division of labor. Two
widely used team strategies in software projects are
independent team programming and collaborative team
programming [16-23]. Independent team programming

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 N. Ramasubbu is with the Singapore Management University, Singapore,
178902. E-mail: nramasub@ smu.edu.sg.

 C. F. Kemerer is with the Joseph M. Katz Graduate School of Business,
University of Pittsburgh, 276C Mervis Hall, Pittsburgh, PA 15260.
E-mail: ckemerer@ katz.pitt.edu.

 J. Hong is with the Singapore Management University, Singapore, 178902
E-mail: minteck.2010@phdis.smu.edu.sg.

Manuscript received (insert date of submission if desired).

O

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

(hereafter simply ―independent programming‖) refers to a
team strategy where system maintenance tasks are
divided among programmers who work in parallel on
separate parts of the system and coordinate their efforts
[16, 23]. On the other hand, collaborative team programming
(hereafter simply ―collaborative programming‖) refers to
a scheme where two or more programmers work together
on the same piece of software rather than working in
parallel on two different parts of the system [16, 18]. It has
been shown in organizational studies that the efforts
required to achieve mutual understanding of a problem
and to coordinate among team members under alternative
team strategy regimes can be significantly different [25-
27], and therefore the outcomes for independent versus
collaborative programming strategies can be expected to
also differ.

Past research studies examining programmer team
strategies (including pair-programming) have not
explicitly accounted for the possible joint effects of system
complexity and team strategy in their design [16-21, 23]1.
This study investigates maintenance tasks done by pair of
programmers and specifically focuses on the differences
between two different team strategies—independent
programming and collaborative programming employed
by the pairs of programmers, and how the interaction
between the software structure and the team strategy
influences maintenance performance. The central research
question answered by this study is this: What is the effect
of programmer team strategy on software maintenance
performance for different levels of structural complexity?

To answer this research question we conducted a
controlled lab experiment with 45 professional
programmer pairs (90 subjects). We found that
programmers’ maintenance effort levels (in person
minutes) and ease-of-maintenance perceptions for the two
different team strategies were highly contingent upon the
structural complexity levels that they encountered. In the
lowest possible structural complexity environment of the
experiment, programmers employing the independent
programming strategy required 49% less effort than
programmers employing the collaborative programming
strategy. But, in environments with higher structural
complexity levels, teams using the collaborative
programming strategy required a minimum of 12% to a
maximum of 51% less effort than teams using the
independent programming strategy in the same
complexity settings. Further, programmers’ perceptions of
ease-of-maintenance for modules with low structural
complexity were approximately 30% higher than more
structurally complex modules, and all else being equal,
the collaborative programming strategy was perceived to
be easier to use (approximately 28% higher) than the
independent programming strategy. The results of this
study highlight how the programmer team strategies and
the structural complexity of a system can interact to jointly
influence maintenance performance variables such as
maintenance effort and ease-of-maintenance perceptions.

The remainder of this paper is organized as follows:

1 Although see Arisholm et al. [47] for a recent notable exception which
uses control delegation (centralized vs. decentralized) as a complexity
measure. Our study proposes a contingency view of structural complexity
and utilizes standard coupling and cohesion object-oriented metrics to
measure complexity.

the theoretical background on the key constructs of this
study is presented in section 2. Research hypotheses are
developed in section 3. The empirical research design to
test the hypotheses and the experimental procedures are
described in section 4. Section 5 presents the analysis of
the data and the results of the hypothesis tests. Section 6
discusses the results and their limitations, and Section 7
concludes the paper by highlighting the contributions of
this study.

2 THEORETICAL BACKGROUND

We used two main theoretical perspectives for
hypothesis development. We conceptualized the
properties of software maintenance tasks undertaken by
collaborating programmers using the distributed cognition
theoretical framework [28]. And we analyzed the impact of
the team strategy employed by the programmers and its
impacts on maintenance performance using the task
interdependence theoretical framework [25, 27, 29].

2.1 Distributed Cognition Framework

Software maintenance is recognized both as a
cognitive activity dependent on an individual
programmer’s system comprehension, and as a social
activity involving frequent interactions between
programmers working in teams [30, 31]. The distributed
cognition framework posits the study of such cognitive
phenomena by taking into account the social context in
which the actors are situated, and treating the actors, their
interactions with one another, and their environment as a
single distributed cognitive system [28, 32].

Flor and Hutchins [24] were among the pioneers in
the application of the distributed cognition framework to
the study of software maintenance activities. Rogers and
Ellis [33] detailed the theoretical basis of distributed
cognition for studying collaborative activity. Other
researchers have also utilized the distributed cognition
framework to study pair programming teams [34].
Collectively, the stream of literature examining the
application of the distributed cognition framework to
study software maintenance teams recommends the
analysis of the following properties: a) structure and
frequency of tasks, b) team structure and the coordination
mechanisms used, c) tools, documents, and the patterns of
use of these artifacts, and d) development of shared
knowledge. These properties derived from the distributed
cognition framework are utilized for the design of this
study. We treated a pair of programmers and the software
application they worked on as a distributed cognition
system. We then observed the activities of the
programmer pairs, their team strategies (work division
and coordination mechanisms), and performance under
different environments of structural complexity where
appropriate tool usage was experimentally controlled.

2.2 Task Interdependence Framework and Team
Strategies

Task interdependence is the degree to which team
members must rely on each other to perform their tasks
[25, 27, 29]. Prior research in organizational studies and
psychology have shown that increased task

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST

 3

interdependence is associated with increased
requirements for coordination and communication effort
among team members in order to perform their tasks well
[25, 27]. Different modes of task interdependence have
been categorized based on the information and workflow
sequences between team members performing the tasks.
Under reciprocal interdependence, team members perform
different parts of a task in flexible order as per their
specializations, and then coordinate among themselves
using temporally lagged, two-way interactions to
complete the whole task [27, 29]. In contrast, under team
interdependence, team members jointly diagnose, problem
solve, and collaborate to perform a task. Unlike reciprocal
interdependence, team interdependence involves
simultaneous work interactions and requires group
discretion for interactions between team members. In our
study, one pair of programmers performing a
maintenance task had the opportunity to work in parallel
and independently, and this group, referred to as the
independent programming strategy, corresponds to the
theoretical ―reciprocal interdependence‖ classification.
Another group (pair of maintainers) worked jointly to
complete a maintenance task, and is referred to as the
collaborative programming strategy; this group
corresponds to the theoretical ―team interdependence‖
classification2.

By mapping the programmer team strategies to the
theoretical task interdependence classifications, we can
build upon the insights from past psychology and
organization theory research studies which have shown
that the congruence between the nature of a task and the
interdependence of team members can significantly
impact group performance and the perceived
effectiveness of team members, and that the selection of
appropriate team strategies often requires a careful
assessment of the information processing and
coordination demands of team tasks [26, 27, 35, 36]. In
prior research, structural complexity of software has been
used to examine and assess the information processing
and coordination demands placed on team members
working on a maintenance task [5]. In this study, we
extend the analysis by assessing the congruency between
the structural complexity of software and the team
strategy employed by programmers.

2.3 Structural Complexity of Software

There is a rich body of software engineering literature
associating the structural properties of systems with their
maintainability [2, 4-6, 37-39]. Early studies adopted spe-
cific characteristics of programming languages, such as
usage of long jumps, GO TO statements, depth of IF
statement hierarchies, etc., for characterizing structure,
and this early work has been generalized to focus on
coupling and cohesion as the key measurable conceptual
properties of the structural complexity of software.

Coupling represents the interdependencies between

2 In the organizational literature there are other forms of task interde-
pendence. Under pooled interdependence, each team member makes a con-
tribution to team output without the need for any direct interaction with
other team members; sequential task interdependence requires specific beha-
viors to be performed by team members in a predetermined order [27, 29].
These theoretical forms of interdependence are not applicable in our re-
search context, and thus are not considered further here.

software elements in a system, and cohesion captures the
similarities or binding of elements that are grouped to-
gether [5]. Several metrics have been developed for coupl-
ing and cohesion for both procedural and object-oriented
designs, and are described in detail in prior research [40-
45]. Automated tools to gather coupling and cohesion me-
trics from existing software systems are commercially
available as well [46]. A majority of research studies that
have analyzed the impact of coupling and cohesion on
higher order measures of software quality and productivi-
ty have concluded that low coupling and high cohesion
designs generally yield systems of higher quality that are
easier to maintain [5, 47]. Further, maintenance effort has
been shown to be influenced by the interaction between
coupling and cohesion, implying the advantage of consi-
dering coupling and cohesion jointly, not merely inde-
pendently, in software system design decisions [5].

2.4 Maintenance Performance

Similar to prior software maintenance studies [e.g., 5,
13, 48], performance of a team was assessed by measuring
maintenance effort operationalized as the total person
minutes spent by a programming team to complete a
perfective maintenance task. In addition to maintenance
effort programmers’ perceptions of the ease-of-
maintenance using the chosen team strategy were also
captured. People’s subjective beliefs on ―ease of doing‖
have been shown to act as influential behavioral
determinants of accepting technology and processes
irrespective of their inherent objective qualities [49-51].
Therefore, it is important to assess programmers’
perceptions of ease-of-use of maintenance team strategies,
along with other objective measures of performance, such
as maintenance effort, to assess the relevance of different
team strategies while planning resource allocation policies
and project work breakdown structures. Further, an
understanding of the programmer’s perceptions on ease-
of-maintenance under different team strategies can help
managers formulate policies that aid organization-wide
assimilation and acceptance of favorable team strategies.
Similar to perceived ease-of-use measures employed in
prior technology acceptance studies [e.g., 49-51],
perceived ease-of-maintenance is defined as a
programmer’s subjective appraisal (on Likert scales of 1-5
(1=hardest to perform maintenance, 5=easiest to perform
maintenance) of the ease of conducting the maintenance
tasks under specific team strategies that were assigned to
them.

3 HYPOTHESES

3.1 Coupling, Cohesion and Maintenance Effort

The main effects of coupling and cohesion on main-
tenance effort are well documented [e.g., 5], and our first
set of hypotheses is designed to check those results in our
experimental setting and to establish a baseline to com-
pare against later results.

A highly cohesive system binds similar software ele-
ments in a single place, and is expected to aid program
comprehension by minimizing a software maintainer’s
search and exploration tasks. These benefits are expected

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

to translate to higher order gains in the form of lowered
maintenance effort. On the other hand, a highly coupled
system has relatively many interconnections between its
software elements, which hinder program comprehension.
Programmers working on highly coupled systems need to
carefully explore a typically large array of possible inter-
connections when making changes to individual software
elements, necessitating a higher relative maintenance ef-
fort. Further, highly coupled systems are not easy to
―chunk‖ into logical information processing units due to
the large number of interconnections, which hinders the
learning process of maintenance personnel, potentially
leading to higher maintenance effort expenditure [5].

Program comprehension by human actors may de-
pend upon both coupling and cohesion rather than simply
their individual effects. Following Darcy et al. [5], it is also
expected that a significant interaction effect may exist be-
tween coupling and cohesion that impacts maintenance
effort. Thus, the first set of confirmatory hypotheses is:

H1: Maintenance effort is lower for the more highly cohe-
sive programs.

H2: Maintenance effort is higher for the more highly
coupled programs.

H3: For more highly coupled programs, maintenance ef-
fort is lower if cohesion levels are high3.

3.2 Programmer Team Strategy and Maintenance
Effort

Two specific strategies for programmer teamwork,
independent programming and collaborative program-
ming, are considered in this study. Under the indepen-
dent programming strategy, maintenance tasks are ―split
and conquered‖ among team members, enabling parallel
work. But, when looked at from a task interdependence
point of view, independent programming entails addi-
tional effort expenditure on explicit coordination (boun-
dary spanning activities) to synchronize parallel work
among team members [22, 52]. Moreover, additional ef-
fort has to be spent on achieving common ground when
team members deal with errors at the boundary of their
individual work that ripples across in different directions.

On the other hand, under the collaborative program-
ming strategy, team members jointly work on all activities
and do not have to spend as much effort on boundary
spanning activities. However, the savings that stem from
parallel work are not possible under the collaborative
programming strategy. Thus, the final relative perfor-
mance of independent programming and collaborative
programming with regards to maintenance effort is likely
to depend upon other factors that influence coordination
and comprehension effort. For this research we view
maintenance activity as a distributed cognition system,
with the maintainers and the system as intertwined ele-
ments, and therefore posit that the structural complexity
of the software needs to be considered to differentiate the

3 The interaction hypothesis can also be stated in several equivalent al-
ternative ways in terms of characterizing the different levels of coupling
and cohesion. For simplicity we explicitly state only one of the possible
combinations in the two-way interaction between coupling and cohesion.
We thank an anonymous reviewer for raising this clarification.

effects of independent and collaborative programming on
maintenance performance.

Following the logic of the first set of hypotheses main-
tenance effort is expected to be relatively lower in low
coupling/high cohesion environments. As established in
prior research [5], it is expected that, in such low structur-
al complexity regimes, coordination and boundary span-
ning overhead efforts between programmers working on
a maintenance task are lower. Thus, savings arising from
parallel work enabled by the independent programming
strategy would outweigh the costs of overhead efforts
(coordination and boundary spanning) associated with it.
However, such savings are not possible under the colla-
borative programming strategy because it does not facili-
tate parallel work between collaborating programmers.
Therefore, in low structural complexity regimes (high co-
hesion/low coupling), we expect that maintenance effort
of independent programming strategy will be lower than
that of collaborative programming strategy.

In contrast, in high structural complexity environ-
ments (high coupling/low cohesion) where achieving
higher levels of program comprehension is generally
harder, it is expected that the coordination and boundary
spanning overhead costs of independent programming
will outweigh the costs of collaboration programming
(lack of parallel work). Therefore, we expect the mainten-
ance effort of collaborative programming strategy to be
lower in higher structural complexity regimes.

In summary, we expect the levels of cohesion, coupl-
ing and their interactions with the chosen team strategy
(independent or collaborative programming) to signifi-
cantly determine effort spent on a maintenance task. Hy-
potheses related to the three-way interaction between
coupling, cohesion, and team strategy can be stated in any
combination of lower/higher levels of each of the three
interacting variables. For simplicity, we explicitly enume-
rate only the following combinations among the three-
way interaction as our second set of hypotheses4:

H4: For the more highly cohesive programs, the indepen-
dent programming strategy will be associated with
lower relative maintenance effort.

H5: For the more highly coupled programs, the collabora-
tive programming strategy will be associated with
lower relative maintenance effort.

H6: Under the collaborative programming team strategy
for the more highly coupled programs, maintenance
effort will be lower if cohesion levels are high.

H7: Under the independent programming team strategy
for the more highly cohesive programs, maintenance
effort will be higher if coupling levels are high.

3.3 Task Strategy and Perceived Ease

Prior research on antecedents of perceived ease-of-use
shows that individuals use ―anchoring and adjustment‖
heuristics to form their decisions on ease-of-use [53-55].
Initial anchoring might be based on an individual’s prior
knowledge and inherent beliefs, and adjustment to the

4 We thank an anonymous reviewer for the suggestion to include this
clarification on the interaction hypotheses.

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST

 5

initial anchor of perceived ease-of-use is often influenced
by the social contexts of an individual’s task environment.
Formal training, informal learning and knowledge trans-
fer through group interactions serve as important facilitat-
ing conditions for adjustments to initial anchors of percep-
tions on ease of doing a task [53]. Thus, in the context of
software maintenance teamwork, all else held equal, the
ease with which team members are able to interact with
and learn from each other influences programmers’ per-
ceived ease-of-system maintenance.

It is expected that the collaborative programming strat-
egy would be perceived as more easy-to-use than the in-
dependent task strategy because collaborative program-
ming facilitates the development of communal and ―shar-
ing-the-burden perceptions‖ through explicit joint-work
processes. Under the collaborative programming strategy,
programmers jointly conduct diagnosis and problem solv-
ing activities, and can learn from each other. Since such
group interactions in collaborative programming are built
into the regular work process, programmers do not expe-
rience an extra burden for knowledge transfer. In contrast,
under the independent programming strategy, program-
mers encounter an additional burden to coordinate and
exchange knowledge, which could be expected to dampen
the formation of positive ease-of-use perceptions. Thus,
our next hypothesis is:

H8: The perceived ease-of-maintenance of the collabora-
tive programming task strategy will be higher than
the perceived ease-of-maintenance of the indepen-
dent programming task strategy.

Following the logic of interaction effects posited in our
first and second set of hypotheses, it is also likely that per-
ceptions on ease-of-maintenance for independent and col-
laborative programming strategies are varied according to
the structural complexity regimes encountered by the
programmers. Especially, the interdependence between
code elements as represented by coupling can be expected
to influence programmer perceptions on ease-of-
maintenance along with their task interdependence due to
their chosen team strategy. Since coupling acts as a dam-
pening mechanism for easy interactions between collabo-
rating programmers, we can expect the positive ease-of-
maintenance perceptions typically engendered by a colla-
borative programming strategy to decrease in higher
coupling environments. Therefore, our next hypothesis is:

H9: The difference in perceived ease-of-maintenance be-
tween the collaborative programming task strategy
and the independent programming task strategy will
decrease with an increase in the level of coupling.

4 RESEARCH DESIGN AND EXPERIMENT

PROCEDURES

4.1 Experiment Design

A controlled lab experiment method was chosen to col-
lect data for testing the hypotheses. A 2X2X2 between-
subjects experiment design, as shown in Figure 1, was
chosen with the following three factors: a) coupling (low-

high), b) cohesion (low-high), and c) team strategy (inde-
pendent programming and collaborative programming)
which generates 8 (23) possible conditions.

------Insert Figure 1 about here ------

The dependent variables were maintenance effort and

perceived ease-of-maintenance. As described above, main-
tenance effort was measured in person-minutes, and per-
ceived ease-of-maintenance as the average score of a
three-item interview questionnaire with responses sought
on 5-point Likert scales. Responses from the team mem-
bers were sought through an interview on (1) ease of un-
derstanding the business logic of the system while work-
ing the maintenance task, (2) ease of understanding the
technical design and operation of the system while work-
ing on the maintenance task, and (3) overall ease of per-
forming the maintenance task under the assigned team
strategy. Coupling and cohesion were measured using
two CK object-oriented software metrics (coupling using
CBO; cohesion using LCOM) [43]. These specific object-
oriented metrics to measure coupling and cohesion were
chosen as their properties with respect to software main-
tenance are well documented in prior research [5, 15, 43,
46], providing a sound basis for comparing our experi-
mental results with prior published structural complexity
experiments, especially [5].

4.2 Experiment System, Manipulation of Factors,
and Subject Tasks

A stable version of an existing database and reporting
application system written in Java (Java SE 6, update 11)
was chosen as the experiment artifact. The application had
13400 lines of code, 20 database tables, 185 SQL state-
ments, and 85 interfaces among the various classes and
Java Server Pages. In preparation of the experiment arti-
facts an extensive manual walkthrough of the system
source code was conducted, along with an object-oriented
metrics extraction using the CKJM tool [56]. Four different
versions of the system with the same business functionali-
ty, but with varying levels of coupling and cohesion cor-
responding to the experiment design, were developed
from the original application. The refactoring techniques
we used to manipulate coupling and cohesion were moti-
vated by prior published structural complexity experi-
ments [5, 9, 10].

Broadly, coupling was primarily manipulated by
modifying method calls, and cohesion was primarily ma-
nipulated by adjusting the sharing of instance variables
between method pairs. For example, when a method is
used by more features of another class than the class on
which it is defined, we created a new method with a simi-
lar body in the class where it is used most, and we then
either turn the old method into a simple delegation, or
remove it altogether. We also converted local variables to
fields—if the local variable is initialized on creation, then
the refactoring operation moves the initialization to the
new field's declaration or to the class's constructors. These
refactoring manipulations yielded two distinct levels of
cohesion (low, LCOM=45; high, LCOM=10) and coupling

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

(low, CBO=6; high, CBO=12). The manipulations did not
significantly alter the code size (measured in lines of code
(LOC)) of the application (the differences in LOC among
the four versions was less than 1%). Two independent
computer science Ph.D.-holding experts (not the authors)
who were familiar with the system usage and had more
than ten years of object-oriented software development
expertise were provided with the source code of the four
different artifacts corresponding to our experiment design
and were asked to verify and report the equivalence in
business functionality and accuracy of the metrics collec-
tion. The experts confirmed that the four different ver-
sions of the system had the same functionality and de-
picted different structural complexity levels as measured
by the CBO and LCOM coupling and cohesion metrics.
The level of inter-rater reliability as measured by Cohen’s
Kappa of the verification exercise was 0.9, indicating a
high degree of consensus between the raters.

We designed a perfective maintenance task to be
completed by all subjects (pairs of professional program-
mers). The context of the perfective maintenance task was
that the organization using the system had instituted a
new operational location, and a subset of its operational
activities was to be run at the new location. The design of
the perfective maintenance task was motivated by a real
world case drawn from an observation of the develop-
ment requests reported for the system, which improves
the ecological validity of our experiment5. Subjects were
asked to modify the system in order to accommodate the
new user requirement. The same IDE (JEdit), test data and
sample reports were provided to all subjects.

4.3 Pretest and Power Analysis

We pre-tested the experimental system and planned
procedures and conducted a pilot study with two pairs of
professional programmers and four pairs of advanced
university students majoring in Information Systems. We
conducted a power analysis using the data collected from
the pilot study to estimate the sample size required for the
experiment design. Similar to past software engineering
research [48], we chose the desired power for the model as
0.8 where the effect size was based on the task completion
rate, cell means, and standard deviations from the pretest
data, with the alpha set to 0.05. The power analysis indi-
cated that approximately forty pairs, or eighty program-
mers, were needed for the 2X2X2 fixed effect experiment
design to appropriately test all main effects and interac-
tions.

4.4 Subjects

In order for the research results to have substantial
external validity to commercial environments, eligibility
to serve as an experimental subject was limited to profes-
sional programmers with a minimum of two years of Java
programming language experience and possessing an
official ―Java Programmer‖ certification [57]. Volunteer
programmers were solicited through a professional spe-
cial interest group on Java programming in Singapore, the
site of the experiment. Email advertisements for the expe-

5 We thank an anonymous reviewer for raising this clarification.

riment were also sent through the human resources divi-
sions of three leading software services firms located in
Singapore. Ultimately, 45 pairs of programmers, or 90
subjects, participated in the experiment.

4.4 Procedures

Pairing of programmers and subject (pair) allocation to
experimental cells was done randomly. When the subjects
arrived on site they were briefed about the experiment, a
high-level overview of the experimental system was pre-
sented, and two training tasks were given. The training
tasks were different from the main experiment tasks, but
were designed to help the subjects become familiarized
with the different modules of the application. All subjects
received identical training.

Subjects were required to work on laptops provided for
the experiment which had identical hardware configura-
tions and installed applications. For subjects in the inde-
pendent programming strategy group, two laptops were
provided for each pair, whereas only one laptop was pro-
vided for subjects in the collaborative programming
group. The laptops were preloaded with the appropriate
variant of the experiment application, test data and sam-
ple reports, and screen capture recording software. The
screen capture software was used to track the exact timing
of maintenance events. Subjects were required to check-in
their completed code to a version control system. Once
subjects indicated task completion, tests were run on their
final checked-in version to determine the accuracy of their
solution. If errors were found, the subjects were notified
and asked to rectify the errors. Only when the solutions
passed all of the acceptance tests was the solution deemed
complete. The time required for solution validation by the
supervisor was not counted as part of the maintenance
effort. Upon completion of the task, subjects completed a
post experiment interview and were compensated 25 SGD
for their participation in the experiment. All subjects com-
pleted the experiment within the planned two hours, and
there were no dropouts.

Throughout the experiment an observer was present in
the lab along with the subjects. The observer kept track of
the experiment time (start and end of comprehension ac-
tivities, coordination activities, and execution activities),
documented the work division between programmers,
and made non-intrusive general observations of the task
progress. The experiment observations were corroborated
with data from the screen capture videos and check-in,
check-out patterns from the version control system. The
three way check of experiment data from observer notes,
screen capture videos, and the version control system
served to minimize any measurement-related human er-
rors.

5 ANALYSIS AND RESULTS

5.1 Data Analysis

We analyzed the experiment data using version 11 of
the STATA statistical package [58]. In the first stage we
verified the normal distribution of the response variables,
maintenance effort and perceived ease-of-maintenance,

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST

 7

using the Shapiro-Wilk test [59] and through visual in-
spection of QQ plots, skewness and kurtosis graphs [60].
These tests did not reveal any normality-related issues.
An outlier analysis was performed to check for potentially
influential or erroneous outliers. This analysis revealed
two candidate cases. In one of the cases maintenance ef-
fort was lower than the respective cell mean, and in the
other case higher. We checked all data on the two candi-
date cases and found no errors, and therefore we retained
these cases in the dataset (the final results are robust to
both the inclusion and the exclusion of the two candidate
outlier cases).

Descriptive statistics of the potential covariates col-
lected through the post-experiment interview and their
correlations with the response variables are shown in
Tables 1 and 2 respectively. None of the potential cova-
riates was significantly correlated with either maintenance
effort or perceived ease-of-maintenance. We verified the
homogenous distribution of covariates across the eight
experiment cells through a series of Analysis of Variance
(ANOVA) tests with the covariates as dependent va-
riables, and coupling, cohesion, and team strategy as the
independent variables. None of these ANOVA models
was statistically significant, implying homogenous distri-
bution across the experiment cells.

------Insert Table 1, Table 2, and Table 3 about here ------

Since the research model of this study involved two re-

sponse variables (maintenance effort and perceived ease-
of-maintenance), we performed a Multivariate Analysis of
Variance (MANOVA). Table 3 shows the results of this
analysis. The overall model was statistically significant
(Table 3, Row 1, F=2.95, p-value=0), confirming that there
were significant differences in the means of maintenance
effort and perceived ease-of-maintenance across the dif-
ferent experiment cells. Referring to Table 3 it can be seen
that the main effects of cohesion (Table 3, Row 2), and
coupling (Table 3, Row 3) are both highly significant at
usual levels. The two-way interaction between coupling
and cohesion (Table 3, Row 4) is also significant in the
overall model at the p<0.10 level. The independent main
effect of team strategy was not significant at usual levels
(Table 3, Row 5), but the two-way and three-way interac-
tions of team strategy with coupling and cohesion were
found to be statistically significant (Table 3, Rows 4-8),
indicating that the interaction effect of team strategy and
structural complexity of software is a significant driver of
performance outcomes.

We also performed separate univariate Analysis of Va-
riance (ANOVA) analyses for both maintenance effort and
perceived ease-of-maintenance. The univariate models
were statistically significant, and results of these univa-
riate models were similar to the MANOVA analysis
(maintenance effort model: F=5, p-value=0.001, adj. R-
squared=0.39; perceived ease-of-maintenance model:
F=2.9, p-value=0.01, adj. R-squared=0.23).

5.2 Hypotheses Tests

We examined the individual hypotheses developed in

section 2 using post-hoc tests following the MANOVA
analysis. Since all the hypothesis tests comparisons were
done using the same MANOVA results, a Bonferroni ad-
justment was applied to the p-values to minimize Type 1
errors [62], and these results are shown in Table 4. The
observed differences (reported in Table 4, column 3) be-
tween the hypothesized comparison conditions are calcu-
lated using the experiment cell means, which are reported
in Table 5 and Figure 2 for maintenance effort and Table 6
and Figure 3 for perceived ease-of-maintenance.

------Insert Table 4, Table 5, and Table 6 about here ------

------Insert Figure 2 and Figure 3 about here ------

The statistical tests reported in Table 4, column 5, veri-

fy if each of the observed differences are significant at the
Bonferroni adjusted α = .006 level. For example, the value
for H1 in Table 4 is calculated as follows. Total mainten-
ance effort for the low cohesion condition is 192.7 as de-
rived using the cell means of the low cohesion condition
(=41+19.8+70.2+61.7=192.7). Similarly, total maintenance
effort for high cohesion condition is derived as 102.2
(15+29.3+33.2+24.7=102.2). Calculating the ratio [(high
cohesion – low cohesion) / low cohesion] as a percentage
(i.e., [(102.2 – 192.7)/192.7] * 100 = – 46.96), shows that the
highly cohesive programs requires about 47% lower main-
tenance effort than the low cohesive programs. This ob-
served difference is statistically significant as shown by
the Chi-squared statistic in Table 4 H1 (p-value = 0.000).

All of the confirmatory hypotheses for the maintenance
effort (H1, H2, and H3) were supported. Maintenance ef-
fort was lower for highly cohesive programs, higher for
highly coupled programs, and there was a significant inte-
raction effect between coupling and cohesion in determin-
ing maintenance effort.

While we found significant interaction effects for team
strategy in the MANOVA analysis (Table 3, Rows 4-8), a
comparison of means as posited by hypotheses H4 and H5
did not reveal statistically significant results at the Bonfer-
roni adjusted α = .006 level. Even though the observed
differences between High Cohesion and Low Cohesion
groups under the independent programming strategy
(refer to Table 4 H4) and the High Coupling and Low
Coupling groups under the collaborative programming
strategy (refer to Table 4 H5) are in the hypothesized di-
rections, they are not statistically significant at the more
conservative level. This indicates that we cannot confirm
how the impact of structural complexity on performance
outcomes is influenced by a chosen team strategy by only
considering one of coupling or cohesion. Rather, there is a
need to consider the full three-way interaction effects be-
tween coupling, cohesion, and team strategy in order to
examine how the interplay between these variables im-
pacts maintenance performance. Hypotheses H6 and H7,
which proposed a three-way interaction between coupl-
ing, cohesion and task strategy, were both strongly sup-
ported (p-value=0.000, refer Table 4 H6, H7).

Figure 2 visually shows the differences in cell means of
maintenance effort for all the groups in the research de-
sign (three-way between coupling, cohesion, and team

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

strategy). Figure 2 also includes the sub-division of overall
maintenance effort into program comprehension, explicit
coordination, and execution portions. These sub-divisions
of maintenance effort were derived based on the events
noted by the experiment observer and was corroborated
using the screen capture recordings and version control
system check-in timings. The three-way interaction effects
between coupling, cohesion, and team strategy on main-
tenance effort are visually represented in Figure 4.

Both of the perceived ease-of-maintenance hypotheses
(refer to Table 4, H8 and H9) were fully supported at the
Bonferroni adjusted α=.006 level. As we had expected, the
perceived ease-of-maintenance level for the collaborative
programming strategy groups was higher than for the
independent programming strategy groups. Also, as hy-
pothesized in H9, under the collaborative programming
strategy highly coupled programs showed lower per-
ceived ease-of-maintenance levels than programs with
lower levels of coupling. The perceived ease-of-
maintenance levels for the various experimental groups
are presented in Figure 3. The significant three-way inte-
raction between coupling, cohesion, and task strategy is
depicted visually in Figure 5.

------Insert Figure 4 and Figure 5 about here ------

It is interesting to note that, under the independent

programming team strategy, programmers tended to
perceive maintenance of highly coupled programs as easi-
er than less coupled programs, even though it takes them
more effort to complete the maintenance of highly
coupled programs. We believe that this result is driven by
their difficulty in establishing an initial common ground
between collaborating programmers in higher structural
complexity contexts. This is supported by the observed
higher levels of program comprehension effort expended
by the programmers for highly coupled programs (see
Figure 2). In Section 6.1 we discuss the implications of
this type of potential mismatch between what may be
programmers’ preferred choice and what can be shown to
be the economically optimal team strategy.

6 DISCUSSION

The primary objective of this research was to extend
the investigations of the relationship between software
structure and maintenance performance by taking into
account the team strategies employed by maintenance
programmers. Supported by the theoretical perspectives
of the distributed cognition and task interdependence
frameworks, this study experimentally validated that the
team strategy employed by maintenance teams, along
with structural complexity, are important factors in in-
fluencing performance outcomes such as maintenance
effort and perceived ease-of-maintenance.

Specific differences in maintenance effort across dif-
ferent levels of structural complexity and team strategies
can be inferred from Figure 2 and Table 5, which show the
cell means of all the combinations of the interacting va-
riables. Since the perfective maintenance task (i.e., adding

a business functionality) across the experiment cells re-
mained constant, the observed differences in maintenance
effort can be interpreted as productivity differences6 in-
duced due to the congruence (or lack thereof) of team
strategies and software structure.

Referring to Figure 2, it can be seen that, other than in
the high cohesion/low coupling quadrant (lowest struc-
tural complexity), teams using the collaborative pro-
gramming strategy were more productive (required less
total effort) than teams using the independent program-
ming strategy, ceteris paribus. The largest difference in
productivity between the collaborative and independent
programming strategies can be seen in the low cohe-
sion/low coupling quadrant (49.5%), and the smallest
difference is found in the low cohesion/high coupling
quadrant (highest structural complexity) (14%). However,
in the lowest possible structural complexity environment
of the experiment (high cohesion/low coupling quadrant),
programmers employing the independent programming
strategy were 50.2% more productive on average than the
programmers employing the collaborative team strategy.
Irrespective of the team strategies employed, maintenance
of high cohesion programs was 47% more productive than
maintenance of low cohesion programs. Similarly, it re-
quired on average 80% more effort from programmers to
finish maintenance tasks in highly coupled programs as
compared to programs with lower levels of coupling.

Referring to Figure 4, it can be seen that programmers’
ease-of-maintenance perceptions for the team strategies
were also highly contingent on the structural complexity
levels that they encountered. Programmers’ perception of
ease-of-maintenance for modules with high cohesion and
low coupling were 30% higher than other more complex
modules, and all else being equal, the collaborative pro-
gramming strategy was perceived to be easier to use (28%
higher) than the independent programming strategy.
However, the ease-of-maintenance perception difference
between collaborative programming and independent
programming dropped significantly (86%) as coupling
increased.

These results provide evidence for the proposition that
managers should take a contingency view of structural
complexity when planning maintenance projects. When
the maintenance activity of teams is viewed as a distri-
buted cognitive system, the impacts of structural complex-
ity are not determined by the structure of the software
alone, but are contingent on the team strategies that are
employed by the software maintainers. Referring to Fig-
ures 2 and 3, one can see how the results of the program-
mer team strategy contingency of structural complexity
provides different maintenance effort levels and perceived
ease-of-maintenance for different groups of the interac-
tion.

A variety of descriptive differences in lower order fac-
tors of program comprehension, coordination, and solu-
tion execution effort can also be noticed due to the dy-
namic interactions between software structure and team

6 i.e., the numerator in the equivalent productivity equation (out-
put/input = maintenance task size/effort) remained the same across the
cells.

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST

 9

strategy. Program comprehension and execution effort are
typically higher in more structurally complex environ-
ments, but the coordination effort needed to complete a
maintenance task is more dependent on the team strategy
employed by the collaborators. While coordination effort
is generally lower for the collaborative programming
strategy, by employing the independent programming
strategy in less structurally complex environments, it may
be possible to exploit the lower effort needed for solution
execution to boost maintenance performance.

The programmer team strategy contingency view of
structural complexity has several implications for both
research and practice, both of which are discussed below.

6.1 Implications for Research and Practice

Software engineering research studies that compare
different processes or techniques (e.g., individual vs. pair
programming) often view structural complexity as a static
function and merely control for its effect by including le-
vels of coupling and cohesion (or other similar metrics) in
their models. Instead, based on the results of this study, a
more nuanced view of structural complexity is advocated.
This study shows that when examining higher order fac-
tors, such as productivity, it is necessary to account for
how maintainers involved in the software activity ap-
proach the inherent software structure and act on it. Our
study provides a rationale using the distributed cognition
and task interdependence frameworks to support a con-
tingency view of software complexity, and experimentally
validated the use of team strategy-coupling-cohesion inte-
ractions as a way to account for effects of software com-
plexity on maintenance performance. Team strategy has
the benefit of being a controllable manifest dimension of
team structure, and could be particularly useful when the
unit of analysis in software research is a team or project,
rather than an individual.

An important implication of the contingency view of
structural complexity for practice is on the way work
breakdown structures are achieved in a software project.
This research study shows that there are higher order
benefits, such as improved maintenance productivity, that
could be reaped if careful attention is paid to achieve con-
gruence between project task work breakdown structures
and team strategies employed by programmers. Work
breakdown structures capture the planned division of
labor mechanism by managers. Programmer team strate-
gies, on the other hand, determine how the elements of a
work breakdown structure are further chunked, clustered,
and performed during the actual task execution. Hence,
incongruence between the planned work breakdown
structures and actual team strategies may result in unex-
pected overhead costs, such as unplanned coordination
and idle time.

Our study shows significant improvements in main-
tenance performance can be attained if the latent structur-
al properties of object-oriented systems are exploited for
project planning, deriving work breakdown structures
and resource allocation. For example, our results would
predict that managers who allocate maintenance tasks to
independent or collaborative programming teams de-

pending on the structural complexity of software (e.g.,
high cohesion/low coupling maintenance to independent
programming teams and more complex tasks to collabora-
tive programming teams) could lower their team’s main-
tenance effort by as much as 70% over managers who use
a simple uniform resource allocation policy. It is impor-
tant to note, however, that choice of the maintenance team
strategy might be affected by programmers' willingness to
employ it, and managers should be aware that program-
mers might prefer a team strategy different than the eco-
nomically optimal one. Thus, in order to deploy an optim-
al resource allocation policy derived from the contingency
view of structural complexity, additional complementary
investments in, for example, training programs and team-
building exercises, might be necessary.

It is possible to discover the latent structural proper-
ties of object-oriented systems at relatively low cost by
using commercially available object-oriented metrics and
toolsets. Therefore, this study further suggests the value of
integrating object-oriented metrics into the early stage
project planning process. However, getting leading indi-
cators of software structural complexity through object-
oriented metrics can sometimes be challenging in practice,
due to customer restrictions, or the lack of implementation
of automated tools. One way to break such a deadlock is
through local tailoring of processes, and through treating
team strategy as a response to a given software structure
that is being discovered concurrently. A more refined,
metrics-driven strategy of allowing independent pro-
grammers to team program on high cohesion/low
coupled program elements and collaboratively pairing
programmers to handle low cohesion/highly coupled
program elements could result in significant savings in
total effort expended.

6.2 Limitations and Future Research

This research study is based on a controlled experi-
ment. Although high confidence can be placed in the spe-
cific results due to the use of experimental controls, nor-
mal caution has to be exercised on broad generalizations.
Nevertheless, since the hypotheses of this study are theo-
retically motivated, the procedures can be easily repli-
cated in other empirical settings and the results verified.

To be able to control the important factors of interest,
and to keep the sample size feasible given the use of pro-
fessional programmers, some other potentially interesting
variables observed in field settings were not considered as
part of the research design. While keeping the research
model parsimonious (by focusing only on pairs of certi-
fied professional programmers with at least two years of
experience) helped in maintaining control of the primary
factors of interest, such designs necessitate trade-offs with
other potential research questions. For example, this expe-
riment leaves to future research possible manipulation of
programmer expertise (novices vs. senior programmers)
or variations in team sizes. Future research could extend
the findings of this study to corrective and adaptive main-
tenance, and also to study the impact of structural com-
plexity on other potentially relevant response variables,
such as reuse or conformance quality.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

The 2x2x2 experiment design we used for the study did
not lend itself to consider a broad range of refactoring
techniques available for manipulating structural complex-
ity of software, and unlike other studies [9, 10] we did not
specifically focus on the effects induced by specific refac-
toring techniques on programmer behavior. This limits
the development of finer prescriptions on how a system
with given structural complexity can be altered to suit a
preferred team strategy of a project team.

Also, as traditional with software engineering experi-
ments, we acknowledge the limitations of generalizing
our findings to large maintenance projects that operate for
extended periods of time (months, even years). Normal
caution has to be placed on extending laboratory experi-
mental results based on a relatively small perfective main-
tenance task to larger production settings. Replication and
verification of the results using data from larger and di-
verse production environments is recommended.

Given that the current study has shown the effect of
two consistent team strategies, independent and collabor-
ative programming, future research could investigate the
possible effects of mixed or hybrid task strategy models.
Finally, the impact of different modes of pairing pro-
grammers in collaborative programming setting (experts-
novices, novices-novices, experts-experts) on the three-
way interaction between team strategy, coupling, and co-
hesion could be examined in future research as well.

7 CONCLUSION

This study provides evidence establishing the relation-
ship between the structure of systems and maintenance
performance by accommodating the nature of work divi-
sion mechanisms employed by maintenance teams. View-
ing the combination of the system and the system main-
tainers as intertwined components of a single distributed
cognitive system, a contingency view of structural com-
plexity is established. Using data collected from a con-
trolled lab experiment with professional programmer
pairs as subjects the contingency view of structural com-
plexity is illuminated by demonstrating the presence of
interactions between the structural properties (coupling
and cohesion) of the system and team strategies of the
actors (independent programming vs. collaborative pro-
gramming). The key finding of the experiment is that the
latent structural properties of object-oriented systems can
be exploited to improve maintenance performance by ap-
propriately choosing between independent programming
and collaborative programming strategies. Maintenance
effort and perceived ease-of-maintenance of programmers
are significantly influenced by the complex three-way
interactions between coupling, cohesion and task strategy.
This study provides an empirically validated rationale for
using the coupling-cohesion-team strategy framework for
planning maintenance projects and for resource allocation.
The wide availability of object-oriented metrics and tool
sets provides ample impetus to accomplish this in soft-
ware engineering practice.

ACKNOWLEDGMENT

Helpful comments on earlier drafts were received from
Sherae Daniel, David Darcy, Lingxiao Jiang, Sandra
Slaughter, Kevin Steppe, Giri Kumar Tayi, Jason Woo-
dard, the Associate Editor, and three anonymous referees.

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST

 11

 Coupling

Independent pro-
gramming strategy

Cohesion

 Low High

Low Low Coupling /
Low Cohesion

High Coupling /
Low Cohesion

High Low Coupling /
High Cohesion

High Coupling /
High Cohesion

 Coupling

Collaborative pro-
gramming strategy

Cohesion

 Low High

Low Low Coupling /
Low Cohesion

High Coupling /
Low Cohesion

High Low Coupling /
High Cohesion

High Coupling /
High Cohesion

Fig. 1 Experiment Design

TABLE 1

DESCRIPTIVE STATISTICS FOR POTENTIAL COVARIATES
Covariate Units Min Max Mean Std. Dev

Age Years 21 26 23.88 1.70

Java Experience Years 2 4 2.40 0.58

Programming Career Experience Years 2 8 3.72 1.55

Number of programming lan-

guages known

Absolute

number

2 5 3 1.17

Undergraduate GPA Absolute

number

3.19 3.9 3.46 0.30

TABLE 2

CORRELATIONS FOR MAINTENANCE EFFORT AND PERCEIVED EASE-OF-USE WITH POTENTIAL COVARIATES
†

Variables Age
Java

Experience

Programming

Career

Experience

Number of

programming

languages

Undergraduate

GPA

Maintenance Effort
0.14

(0.30)

-0.04

(0.79)

-0.03

(0.86)

0.13

(0.38)

-0.09

(0.58)

Perceived Ease-of-

Maintenance

0.24

(0.11)

0.09

(0.54)

-0.13

(0.41)

-0.08

(0.6)

0.11

(0.46)
Note:

†
P-Values in parenthesis

TABLE 3

MANOVA FOR MAINTENANCE EFFORT AND PERCEIVED EASE-OF-MAINTENANCE

 Pillai's trace statistic# F-statistic p-value

1 MANOVA Model (Adj. R2 = 0.39; n=45) 1.03 2.95 0.00

 2 Cohesion 0.28 4.57 0.01

 3 Coupling 0.24 3.78 0.02

 4 Cohesion*Coupling 0.18 2.61 0.07

 5 Team Strategy 0.04 0.5 0.68

 6 Cohesion*Team Strategy 0.19 2.72 0.06

 7 Coupling*Team Strategy 0.17 2.36 0.09

 8 Cohesion*Coupling*Team Strategy 0.21 3.08 0.04

Note:

The results of the MANOVA analysis were identical across different test statistics (Pillai’s trace, Wilk’s

lambda, Roy’s largest root, and Lawley-Hotelling trace.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

TABLE 4
HYPOTHESIS TESTS RESULTS

No. Hypothesis Observed Difference
Statistically

Supported? †

Statistical

Test Result†

Maintenance Effort Hypotheses

H1
Maintenance effort is lower for the

more highly cohesive programs.

High Cohesion 47% less effort

than Low Cohesion
Yes

Chi-squared=11.93,

P=0.000***

H2
Maintenance effort is higher for the

more highly coupled programs.

High Coupling 80% higher effort

than Low Coupling
Yes

Chi-squared=10.43,

P=0.000***

H3

For the more highly coupled pro-

grams, maintenance effort is lower if

cohesion levels are high.

[High Coupling/High Cohesion]

56% less effort than [High Coupl-

ing/Low Cohesion]

Yes
Chi-squared=19.10,

P=0.000***

H4

For the more highly cohesive pro-

grams, independent programming

strategy is associated with lower

maintenance effort.

Independent programming 11%

less effort than Collaborative

programming

No
Chi-squared=0.08,

P=0.77

H5

For the more highly coupled pro-

grams, collaborative programming

strategy is associated with lower

maintenance effort.

Collaborative programming 12%

less effort than Independent pro-

gramming

No
Chi-squared=1.02,

P=0.31

H6

Under the collaborative program-

ming strategy, for the more highly

coupled programs, maintenance ef-

fort is lower if cohesion levels are

high.

[High Coupling/High Cohesion]

63% less effort than [High Coupl-

ing/Low Cohesion]

Yes
Chi-squared=40.43,

P=0.000***

H7

Under the independent program-

ming strategy, for the more highly

cohesive programs, maintenance ef-

fort is higher if coupling levels are

high.

[High Cohesion, High Coupling]

122% higher effort than [High

Cohesion/Low Coupling]

Yes
Chi-squared=10.94,

P=0.000***

Perceived Ease-of-Maintenance Hypotheses

H8

The perceived ease-of-maintenance of

the collaborative programming task

strategy will be higher than the per-

ceived ease-of-maintenance of the

independent programming task

strategy.

Collaborative programming 28%

higher ease of use than Indepen-

dent programming

Yes
Chi-squared=8.35,

P=0.004***

H9
The difference in perceived ease-of-

maintenance between the collabora-

tive programming task strategy and

the independent programming task

strategy will decrease with an in-

crease in the level of coupling.

[Collaborative programming –

Independent programming] for

High Coupling is 86% lower ease

of use than [Collaborative pro-

gramming – Independent pro-

gramming] for Low Coupling

Yes Chi-squared=10.40,

P=0.000***

Note: † All p-values are two-tailed; Bonferroni adjusted p-values are 0.006 for 5% significance (marked as *** in Table 4)

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST

 13

Fig. 2 Effects of Coupling, Cohesion, and Task Strategy on Maintenance Effort

Fig. 4 Interaction Effects of Coupling, Cohesion, and Task Strategy on Maintenance Effort

TABLE 5
EXPERIMENT CELL MEANS DATA – MAINTENANCE EFFORT

†

Independent
Programming

Collaborative
Programming

1 Low Cohesion and Low Coupling 41 (2.73) 19.83 (1.32)

2 Low Cohesion and High Coupling 70.2 (4.68) 61.67 (4.11)

3 High Cohesion and Low Coupling 15 (0.98) 29.33 (1.96)

4 High Cohesion and High Coupling 33.23 (2.15) 24.67 (1.64)

Note:
†
Standard deviation in parenthesis; maintenance effort is measured in person-minutes

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

Fig. 3 Effects of Coupling, Cohesion, and Team Strategy on Perceived Ease-of-Maintenance

Fig. 5 Interaction Effects of Coupling, Cohesion, and Team Strategy on Perceived Ease-of-Maintenance

TABLE 6
EXPERIMENT CELL MEANS DATA – PERCEIVED EASE-OF-MAINTENANCE

†

Independent
Programming

Collaborative
Programming

1 Low Cohesion and Low Coupling 2.5 (0.11) 4 (0.17)

2 Low Cohesion and High Coupling 3 (0.13) 3.7 (0.16)

3 High Cohesion and Low Coupling 2.25 (0.09) 4.5 (0.19)

4 High Cohesion and High Coupling 3.7 (0.16) 3.7 (0.14)

Note:
†
Standard deviation in parenthesis; perceived ease-of-maintenance measured on a Likert scale ranging from 1-5(1=hardest to perform

maintenance, 5=easiest to perform maintenance)

0

1

2

3

4

5

Independent Programming Collaborative Programming

P
er

ce
iv

ed
 E

as
e

-o
f-

M
ai

n
te

n
an

ce

Low Cohesion & Low Coupling

0

1

2

3

4

5

Independent Programming Collaborative Programming

P
e

rc
e

iv
e

d
 E

a
se

-o
f-

M
a

in
te

n
a

n
ce

Low Cohesion & High Coupling

0

1

2

3

4

5

Independent Programming Collaborative Programming

P
e

rc
e

iv
e

d
 E

a
se

-o
f-

M
a

in
te

n
a

n
ce

High Cohesion & Low Coupling

0

1

2

3

4

5

Independent Programming Collaborative Programming

P
er

ce
iv

ed
 E

as
e

-o
f-

M
ai

n
te

n
an

ce

High Cohesion & High Coupling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

low high

P
e

rc
e

iv
e

d
 E

as
e

-o
f-

M
ai

n
te

n
an

ce

Coupling

Collaborative Programming

low cohesion

high cohesion

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

low high

P
e

rc
e

iv
e

d
 E

as
e

-o
f-

M
ai

n
te

n
an

ce

Coupling

Independent Programming

lowcohesion

highcohesion

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST

 15

REFERENCES

[1] R. C. Seacord, D. Plakosh, and G. A. Lewis, "Modernizing Legacy Sys-
tems," Addison-Wesley, 2003, pp. 1-16.

[2] C. F. Kemerer, "Software Complexity and Software Maintenance: A Sur-
vey of Empirical Research," Annals of Software Engineering, vol. 1, pp. 1-
22, 1995.

[3] J. T. Nosek and P. Palvia, "Software Maintenance Management: Changes
in the Last Decade," Journal of Software Maintenance and Evolution: Re-
search and Practice, vol. 2, pp. 157-174, 2006.

[4] N. F. Schneidewind, "The State of Software Maintenance," IEEE Transac-
tions on Software Engineering, vol. 13, pp. 303-310, 1987.

[5] D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko, "The Struc-
tural Complexity of Software: An Experimental Test," IEEE Transactions
on Software Engineering, vol. 31, pp. 982-995, 2005.

[6] R. S. Sangwan, P. Vercellone-Smith, and P. A. Laplante, "Structural Epochs
in the Complexity of Software over Time," IEEE Software, vol. 25, pp. 66-
73, 2008.

[7] E. Arisholm, "Empirical Assessment of the Impact of Structural Properties
on the Changeability of Object-Oriented Software," Information and
Software Technology, vol. 48, pp. 1046-1055, 2006.

[8] R. D. Banker and S. A. Slaughter, "The Moderating Effects of Structure on
Volatility and Complexity in Software Enhancement," Information Sys-
tems Research, vol. 11, pp. 0219-0240, 2000.

[9] B. Du Bois, S. Demeyer, and J. Verelst, ―Does the ―Refactor to Understand‖
Reverse Engineering Pattern Improve Program Comprehension?,‖ Pro-
ceedings of the Ninth European Conference on Software Maintenance
and Reengineering (CSMR), 2005.

[10] B. Du Bois, S. Demeyer, and J. Verelst, ―Refactoring – Improving Coupl-
ing and Cohesion of Existing Code,‖ Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE), 2004.

[11] M. A. Storey, "Theories, Tools and Research Methods in Program Com-
prehension: Past, Present and Future," Software Quality Journal, vol. 14,
pp. 187-208, 2006.

[12] A. v. Mayrhauser and A. M. Vans, "Identification of Dynamic Compre-
hension Processes During Large Scale Maintenance," IEEE Transactions
on Software Engineering, vol. 22, pp. 424-437, 1996.

[13] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, "Predicting Maintenance
Performance Using Object-Oriented Design Complexity Metrics," IEEE
Transactions on Software Engineering, vol. 29, pp. 77-87, 2003.

[14] F. Fioravanti and P. Nesi, "Estimation and Prediction Metrics for Adap-
tive Maintenance Effort of Object-Oriented Systems," IEEE Transactions
on Software Engineering, vol. 271, pp. 1062-1084, 2001.

[15] R. Subramanyam and M. S. Krishnan, "Empirical Analysis of CK Metrics
for Object-Oriented Design Complexity: Implications for Software De-
fects," IEEE Transactions on Software Engineering, vol. 29, pp. 297-310,
2003.

[16] J. T. Nosek, "The Case for Collaborative Programming," Communications
of the ACM, vol. 41, pp. 105-108, 1998.

[17] A. Parrish, R. Smith, D. Hale, and J. Hale, "A Field Study of Developer
Pairs: Productivity Impacts and Implications," IEEE Software, vol. 21, pp.
76-79, 2004.

[18] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, "Strengthen-
ing the Case for Pair Programming," IEEE Software, vol. 17, pp. 19-25,
2000.

[19] V. Balijepally, R. Mahapatra, S. Nerur, and K. H. Price, "Are Two Heads
Better Than One for Software Development? The Productivity Paradox of
Pair Programming," MIS Quarterly, vol. 33, pp. 91-118, 2009.

[20] N. Salleh, E. Mendes, and J. Grundy, "Empirical Studies of Pair Pro-
gramming for CS/SE Teaching in Higher Education: A Systematic Litera-
ture Review," IEEE Transactions on Software Engineering, vol. Preprint:
ISSN: 0098-5589, 2010.

[21] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, "Pair Program-
ming Improves Student Retention, Confidence, and Program Quality,"
Communications of the ACM, vol. 49, pp. 90-95, 2006.

[22] S. Sawyer, "Software Development Teams," Communications of the
ACM, vol. 47, pp. 95-99, 2004.

[23] K. M. Lui, K. C. C. Chan, and J. Nosek, "The Effect of Pairs in Program
Design Tasks," IEEE Transactions on Software Engineering, vol. 34, pp.
197-211, 2008.

[24] N. V. Flor and H. Edwin L, "Analyzing Distributed Cognition in Software
Teams: A Case Study of Team Programming During Perfective Software
Maintenance," in Empirical Studies of Programmers: Fourth Workshop, J.
Koenemann-Belliveau, Ed., 1991, pp. 36-64.

[25] D. J. Campbell, "Task Complexity: A Review and Analysis," Academy of
Management Review, vol. 13, pp. 40-52, 1988.

[26] R. Wageman, "Interdependence and Group Effectiveness," Administra-
tive Science Quarterly, vol. 40, pp. 145-180, 1995.

[27] R. Saavedra, P. C. Earley, and L. V. Dyne, "Complex Interdependence in
Task-Performing Groups," Journal of Applied psychology, vol. 78, pp. 61-
72, 1993.

[28] J. Hollan, E. Hutchins, and D. Kirsch, "Distributed Cognition: Towards a
New Foundation for Human-Computer Interaction Research," ACM
Transactions on Computer-Human Interaction, vol. 7, pp. 174-196, 2000.

[29] J. D. Thompson, Organizations in Action: Social Science Bases of Admin-
istrative Theory. Piscataway, NJ: Transaction Publishers, 2003.

[30] R. E. Kraut and S. Lynn A, "Coordination in Software Development,"
Communications of the ACM, vol. 38, pp. 69-81, 1995.

[31] C. Bird, D. Pattison, R. D'Souza, V. Filkov, and P. Devanbu, "Latent Social
Structure in Open Source Projects," in 16th ACM SIGSOFT Foundations of
Software Engineering, Atlanta, Georgia, 2008.

[32] E. Hutchins, Cognition in the Wild: MIT Press, 1996.
[33] Y. Rogers and J. Ellis, "Distributed Cognition: An Alternative Framework

for Analysing and Explaining Collaborative Working," Journal of Informa-
tion Technology, vol. 9, pp. 119-128, 1994.

[34] H. Sharp and H. Robinson, "A Distributed Cognition Account of Mature
XP Teams," in Lecture Notes in Computer Science 4044, P. Abrahamsson,
M. Marchesi, and G. Succi, Eds., 2006, pp. 1-10.

[35] J. E. McGrath, Groups: Interaction and Performance. Englewood Cliffs,
NJ: Prentice-Hall, 1984.

[36] P. S. Goodman, "Impact of Task and Technology on Group Performance,"
in Designing Effective Workgroups, ed. P. S. Goodman, San Francisco: Jos-
sey-Bass, 1986, pp. 120-167.

[37] V. R. Gibson and J. A. Senn, "System Structure and Software Maintenance
Performance," Communications of the ACM, vol. 32, pp. 347-358, 1989.

[38] J. Hagemeister, B. Lowther, P. Oman, X. Yu, and W. Zhu, "An Annotated
Bibliography on Software Maintenance," ACM SIGSOFT Software Engi-
neering Notes, vol. 17, pp. 79-84, 1992.

[39] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, "Software Com-
plexity and Maintenance Costs," Communications of the ACM, vol. 36, pp.
81-94, 1993.

[40] N. E. Fenton and A. A. Kaposi, "Metrics and Software Structure," Infor-
mation and Software Technology, vol. 29, pp. 301-320, 1987.

[41] R. Adamov and L. Richter, "A Proposal for Measuring the Structural
Complexity of Programs," Journal of Systems and Software, vol. 12, pp. 55-
70, 1990.

[42] H. Dhama, "Quantitative Models of Cohesion and Coupling in Software,"
Journal of Systems and Software, vol. 29, pp. 65-74, 1995.

[43] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented
Design," IEEE Transactions on Software Engineering, vol. 20, pp. 476-493,
1994.

[44] E. Arisholm, L. C. Briand, and F. Audun, "Dynamic Coupling Measure-
ment for Object-Oriented Software," IEEE Transactions on Software Engi-
neering, vol. 30, pp. 491-506, 2004.

[45] L. C. Briand, J. W. Daly, and J. Wust, "A Unified Framework for Cohesion
Measurement in Object-Oriented Systems," Empirical Software Engineer-
ing, vol. 3, pp. 65-117, 1998.

[46] D. P. Darcy and C. F. Kemerer, "OO Metrics in Practice," IEEE Software,
vol. 22, pp. 17-19, 2005.

[47] E. Arisholm and D. I. K. Sjoberg, "Evaluating the Effect of a Delegated
Versus Centralized Control Style on the Maintainability of Object-Oriented
Software," IEEE Transactions on Software Engineering, vol. 30, pp. 521-534,
2004.

[48] E. Arisholm, H. Gallis, T. Dyba, and D. I. K. Sjoberg, "Evaluating Pair
Programming with Respect to System Complexity and Programmer Ex-
pertise," IEEE Transactions on Software Engineering, vol. 33, pp. 65-86,
2007.

[49] F. D. Davis, "Perceived Usefulness, Perceived Ease-of-Use, and End User
Acceptance of Information Technology," MIS Quarterly, vol. 13, pp. 318-
339, 1989.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, PEER REVIEW DRAFT TSE-2010-07-0237

[50] M. G. Morris and A. Dillon, "How User Perceptions Influence Software
Use," IEEE Software, vol. 14, pp. 58-65, 1997.

[51] C. K. Riemenschneider, B. C. Hardgrave, and F. D. Davis, "Explaining
Software Developer Acceptance of Methodologies: A Comparison of Five
Theoretical Models," IEEE Transactions on Software Engineering, vol. 28,
pp. 1135-1145, 2002.

[52] C. B. Seaman and V. R. Basili, "Communication and Organization: An
Empirical Study of Discussion in Inspection Meetings," IEEE Transactions
on Software Engineering, vol. 24, pp. 559-572, 1998.

[53] V. Venkatesh, "Determinants of Perceived Ease of Use: Integrating Control,
Intrinsic Motivation, and Emotion into the Technology Acceptance Model,"
Information Systems Research, vol. 11, pp. 342-365, 2000.

[54] V. Venkatesh and F. D. Davis, "A Model of the Antecedents of Perceived
Ease of Use: Development and Test," Decision Sciences, vol. 27, pp. 451-481,
1996. .

[55] A. Tversky and D. Kahneman, "Judgment under Uncertainty: Heuristics
and Biases," Science, vol. 185, pp. 1124–1130, 1974.

[56] D. D. Spinellis, http://www.spinellis.gr/sw/ckjm/, accessed on 31-May-
2010.

[57] Sun-Java, http://education.oracle.com/pls/web_prod-plq-
dad/db_pages.getpage?page_id=320, accessed on 31-May-2010.

[58] StataCorp, "Stata Statistical Software: Release 11," College Station, TX:
StataCorp LP, 2009.

[59] S. S. Shapiro and M. B. Wilk, "An Analysis of Variance Test for Normality,"
Biometrika, vol. 52, pp. 591-611, 1965.

[60] X. Chen, P. Ender, M. Mitchell, and C. Wells, "Regression with Stata,"
http://www.ats.ucla.edu/stat/stata/webbooks/reg/default.htm ac-
cessed July 2010.

[61] C. J. Huberty and S. Olejnik, Applied MANOVA and Discriminant Analy-
sis. Hoboken, NJ: Wiley-Interscience, 2006.

[62] J. P. Shaffer, "Multiple Hypothesis Testing," Annual Review of Psychology,
vol. 46, pp. 561-584, 1995.

