
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #MANUSCRIPT DRAFT FOR REVIEW# 1

Integrating Technical Debt Management and
Software Quality Management Processes: A

Normative Framework and Field Tests
Narayan Ramasubbu, Member, IEEE Computer Society

Chris F. Kemerer, Member, IEEE Computer Society

Abstract—Despite the increasing awareness of the importance of managing technical debt in software product development,

systematic processes for implementing technical debt management in software production have not been readily available. In

this paper we report on the development and field tests of a normative process framework that systematically incorporates steps

for managing technical debt in commercial software production. The framework integrates processes required for technical debt

management with existing software quality management processes prescribed by the project management body of knowledge

(PMBOK), and it contributes to the further development of the software-specific extensions to the PMBOK. We partnered with

three software product development firms at different process maturity levels to implement and test the framework in real-world

software production. In terms of impact across the three firms the process framework contributed to an average 19% reduction

in defects, which resulted in a net 43% reduction in technical debt-related failure costs after accounting for the additional

process overhead. Overall, through the adoption and use of the process framework, the firms in the field test were able to

integrate the processes necessary for technical debt management with their existing software quality management processes

and accrue significant economic benefits.

Index Terms—Technical debt, software quality, software maintenance, software engineering economics, cost of quality,

software product development, software process, software extension to PMBOK, field study

——————————  ——————————

1 INTRODUCTION

HE importance of managing technical debt embedded
in software products has been highlighted by several

recent studies in the empirical software engineering liter-
ature [e.g., 1,2,3,4,5,6,7]. Technical debt, defined as the
maintenance obligations arising from shortcuts taken dur-
ing the design, development, and deployment of software
systems [8,9], has been shown to significantly impact the
reliability and long-term evolution of software systems
[1,2,3,10]. Although academic research has moved beyond
using technical debt only as a metaphor, and has com-
piled strong empirical evidence on the economic implica-
tions of technical debt, industry practitioners continue to
find managing technical debt a challenging balancing act
[2,11,12,13]. Both academic scholars and industry consult-
ants have called for the development of normative
frameworks and tools that help practitioners to systemat-
ically identify technical debt and assess the economic con-
sequences of technical debt [14,15,16].

In this paper we respond to the above call and present
a normative process framework for managing technical
debt in commercial software product development. A
salient feature of our framework is that it integrates the
processes proposed for technical debt management with
the well-established and widely-adopted software quality
management process standards prescribed by the Project

Management Body of Knowledge (PMBOK) guide and
the software extension to the PMBOK that was jointly
developed by the Project Management Institute (PMI) and
the IEEE Computer Society. There are three main benefits
from this integrated approach:

1. It enables uncovering of hidden technical debt
embedded in systems. For example, established
quality assurance and control practices such as
orthogonal defect classification [17], cause and
effect mapping [18], Pareto analysis [19,20], and
capture-recapture techniques [21] can all be uti-
lized to effectively associate software defects
with specific design and deployment decisions
made by programmers. Such associations make
technical debt visible to the team and, thereby,
facilitate the quantification of debt-related prin-
cipal and interest [5,9].

2. It helps to bridge the gaps that exist between the
technical and economic assessments of technical
debt, which have been recognized as a key chal-
lenge in managing technical debt [1,9,12,14]. A
tighter integration between technical debt man-
agement steps and established software quality
control and assurance processes would enable
practitioners to more effectively track the costs
and benefits of technical debt akin to the existing
best practices that help to optimize the cost of
software quality [22,23,24,25].

3. It facilitates the wider adoption and continued
use of technical debt management processes by

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 N. Ramasubbu is with the Joseph M. Katz Graduate School of Business,
University of Pittsburgh, Pittsburgh, PA 15260.
E-mail: narayanr@pitt.edu.

 C.F. Kemerer is with the Joseph M. Katz Graduate School of Business,
University of Pittsburgh, Pittsburgh, PA 15260.
E-mail: ckemerer@katz.pitt.edu.

T

mailto:narayanr@pitt.edu
mailto:ckemerer@katz.pitt.edu

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # MANUSCRIPT DRAFT FOR REVIEW #

firms. Software quality management practices
are well established and come under the purview
of widely-adopted standards, such as the IEEE
standard for software quality assurance process-
es (730-2014) and ISO/IEC system and software
quality models (25010:2011). This has enabled
normative quality frameworks to be widely
adopted by industry practitioners, and firms use
them to benchmark their practices and gain rele-
vant certifications and industry-wide recogni-
tions [26,27,28]. Thus, integrating technical debt
management processes with the established qual-
ity frameworks can be expected to help industry
practitioners to more easily adopt the prescribed
steps and institutionalize them within their firms.

To test the effectiveness of the integrated process
framework that we developed for aiding technical debt
management we partnered with three commercial firms
to conduct field tests. The three firms varied in their soft-
ware development process maturity levels, but they all
had a strong interest in better managing the technical
debt embedded in their products.

The results from the field tests showed that our pro-
cess framework helped the firms to reduce technical debt-
related defects by 19% on average over a three-year peri-
od. Although implementing the processes prescribed by
the framework increased the quality appraisal costs at the
firms by 13% on average, the firms reaped benefits that
significantly exceeded those costs. For example, technical
debt-related failure costs at the firms were reduced by
43% on average, and the firms achieved an overall cost
reduction of 14% per product release cycle on average.

In the following sections of the paper we provide the
details of the integrated process framework, its field tests,
and the implications we draw from the results of the field
tests. In Section 2 we present the details of the processes
we propose for technical debt management and their rela-
tionship with established software quality management
processes. In Section 3 we enumerate the field test proce-
dures and describe how they were implemented at the
three research sites. Field study results are discussed in
Section 4, and we conclude the paper in Section 5 with a
discussion of the implications for research and practice as
well as the potential extensions that can be pursued based
on this study.

2 A NORMATIVE PROCESS FRAMEWORK FOR

MANAGING TECHNICAL DEBT

In this section we begin with an overview of the proposed
process framework and then explain how the integration
between technical debt management and quality man-
agement processes is achieved. The different components
of the process framework are discussed to provide an
overarching view, leaving out the specific implementa-
tion details at the research sites, which are fully described
in Section 3.

2.1 Three-Step Process

As shown in Figure 1, we organize the different processes
for technical debt management under three broad steps:

1. Make technical debt visible
2. Perform cost-benefit analysis
3. Control technical debt

To enact each of the above three steps, the framework
considers specific inputs, tools and techniques, and outputs.
This is similar to the organization of the various project
management practices for each knowledge area covered
by the PMBOK.

Step 1: Make Technical Debt Visible. This step in-
volves the processes for identification and continuous
tracking of technical debt. Since information pertaining to
technical debt, including the various shortcuts taken by
teams, the business and technical antecedents to those
decisions, and their causal implications is often not readi-
ly available, or is distributed in complex ways across mul-
tiple artifacts and stakeholders, a systematic approach is
needed to uncover and trace technical debt. While exist-
ing research has mainly focused on technical artifacts,
such as source code, for identifying and measuring tech-
nical debt [3,6,7,29,30], we propose to expand the identifi-
cation strategy to accommodate other organizational as-
sets, including stakeholder views, risk exposure, and
quality control data. This expansion should help teams to
rigorously gather information and then estimate the eco-
nomic implications of their technical decisions related to
technical debt [2, 10]. Thus, as shown in Figure 1, we con-
sider a broad set of inputs for identifying technical debt
beyond only software assets, including information pre-
sent in stakeholder registers, risk registers, defect tracking
databases, and other organizational process assets used in
software production [17,19,22,24,25].

Correspondingly the tools and techniques to assess the
inputs go beyond the source code analyses discussed ex-
tensively in current technical debt research [3,29,30] and
include broader quality and risk management techniques.
This expanded toolkit includes root cause analysis meth-
ods such as cause-and-effect diagrams [10,18], orthogonal
defect classification schemes [17], and fundamental cost
of quality methods such as Pareto analysis [19,20] and
statistical quality control methods [22,23,26].

 The outputs of Step 1 that are related to the traditional
software quality processes are captured as updates to the
existing quality management plans and associated quality
standards and metrics. To capture the technical debt-
specific information identified in Step 1 we introduce a
new artifact, called the technical debt register, which stores,
for each software asset, the outstanding principal and
associated interest estimated for the technical debt em-
bedded in the asset. The technical debt register also stores
the desired control target for each software asset’s tech-
nical debt, which is populated during the cost-benefit
analysis calculations discussed later in Step 2. Figure 2
elaborates the relationship of the new technical debt reg-
ister with existing process assets used in commercial
software production.

RAMASUBBU & KEMERER: TECHNICAL DEBT MANAGEMENT 3

Fig. 1. An overview of the integrated process framework for managing technical debt. Each of the three steps, make technical debt visible,
perform cost-benefit analysis, and control technical debt, are enacted in conjunction with the software quality management processes fol-
lowed in commercial software production. The inputs, tools and techniques, and outputs of the three steps are organized in a way similar to
the process descriptions of the ten knowledge areas covered in PMBOK.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # MANUSCRIPT DRAFT FOR REVIEW #

Figure 2 is a conceptual schema used to illustrate how
the new process registers introduced for the purpose of
technical debt management are integrated with other
commonly used registers for requirements management,
defects management, and risk management in software
production. It should be noted that Figure 2 does not
show the actual entity-relationship diagrams of a process
database, which would vary depending on the implemen-
tations at different research sites.

In commercial software production the requirements reg-
ister holds information on product requirements and links
them to both the business objectives and to specific deliv-
erables that satisfy them, and it helps stakeholders to
have a global view with the ability to trace project objec-
tives [31,32]. As shown in Figure 2, we extend the map-
ping of the business needs, specific software assets and
their business values provided by traditional require-
ments registers to also include the construct of design
moves. In this context a design move is a discrete strategic
action performed on a software asset to, for example, en-
hance its functionality, alter modularity, or refactor with
the goal of reducing technical debt embedded in the soft-
ware asset [10]. Introducing the design move column into
the requirements register helps us to track the impact of
the objectives and actions of a team on software assets at a
fine-grained level that is more suitable to accurately trace
the evolution of technical debt in a system over its lifecy-
cle. For example, the design moves register can help in
keeping track of the changes in a software asset’s degree
of compliance with established design and programming
standards across different product releases. While the
design moves register shown in Figure 2 tracks the accu-
mulation (or, conversely, depreciation) of technical debt
as a result of a team’s actions, the technical debt register
serves to provide a cumulative snapshot of the state of
technical debt per software asset along with the associat-
ed control targets desired by the team. Thus, the technical
debt and design moves registers work together to im-
prove the visibility of technical debt to stakeholders, and
facilitate a process mechanism to measure and keep track
of technical debt at both strategic and operational levels.

Finally, as shown in Figure 2, the technical debt and de-
sign moves registers can be linked to other software engi-
neering process databases such as the defect register and
the risk register for achieving a tighter integration between
data related to the technical debt management and the
quality management processes of a firm. The link be-
tween the technical debt and defect registers enables
teams to assess the quality status of a software asset in a
more reliable and complete manner by taking into ac-
count both the asset’s defects backlog and the technical
debt embedded in the asset. Similarly, the link between
the design moves register, defect register, and risk regis-
ter facilitates the estimation of risks of design actions that
are enacted on software assets. Thus, we expect the pro-
posed integration of different process registers as illus-
trated in Figure 2 to help teams to see the full range of
cost and benefits scenarios as described next.

Step 2: Perform Cost-Benefit Analysis. This step ad-
dresses the need to consider the economic implications of

accumulating or depreciating technical debt. Recent re-
search has highlighted the benefits of considering tech-
nical debt management in software products with long
lifecycles as an optimization problem [1,2], which is also
aligned with practitioners’ perceptions of it as a complex
balancing act [13,14]. While a low technical debt approach
is commonly perceived as superior, accumulating tech-
nical debt under some circumstances could be beneficial,
for example, when software teams desire a quick rollout
of functionality to attract early adopters [1,10]. Similarly,
accumulating technical debt in circumstances where the
risks associated with technical debt could be transferred
to other players in the software product ecosystem also
highlights the potential strategic benefits that stem from
accumulating technical debt [10]. Moreover, depreciating
technical debt with an aim to lower risk exposures may
not be straightforward and/or beneficial [2,10]. Thus,
researchers have prescribed a careful consideration of
both the costs and the benefits of technical debt in order
to adopt a contingency-based approach to manage tech-
nical debt [1,9,10,12,13,14]. To facilitate such a cost-benefit
scenario analysis, our framework considers a range of
inputs, including data from the technical debt register
and other connected process registers described in Step 1.
In addition, any change requests and business require-
ments proposed by stakeholders need to be taken into
account for the scenario analysis. To operationalize the
cost-benefit scenario planning we prescribe a longitudinal
analysis that examines the evolution of the software as-
sets over the planning horizon considered suitable by
stakeholders. Although a longitudinal analysis is more
complex and data intensive, it is essential to rigorously
assess both the short-term and long-term benefits and
costs associated with technical debt. During this analysis
there is a need to extrapolate and forecast future long-
term benefits and costs based on current situations en-
countered by teams. For example, engineering actions
aimed at reducing technical debt of a software product
may not be profitable if a firm decides to prematurely
retire the product due to other business reasons. There-
fore, and akin to prior research, we anticipate the need to
involve multiple stakeholders and employ a combination
of approaches such as expert judgment, heuristics, and
probabilistic analyses [1,2,10,33]. Here we draw motiva-
tion from existing approaches to risk management and
prescribe benchmarking, simulations, and probability
impact analysis as appropriate techniques [34,35]. The
outputs from cost-benefit analysis yield the appropriate
control target for technical debt of the software assets con-
sidered, and, once known, must be incorporated into the
technical debt register. As we consider technical debt as
an integral dimension of the long-term total cost of quali-
ty of software products we recommend that the control
targets for technical debt and software quality be syn-
chronized. Hence, we propose coordinating the updates
to the technical debt register, defect register, and quality
management plans.

Step 3: Control Technical Debt. Once technical debt is
made visible (Step 1) and appropriate targets are estab-
lished for the desired range of technical debt (Step 2),

RAMASUBBU & KEMERER: TECHNICAL DEBT MANAGEMENT 5

Fig. 2. Process registers used to manage technical debt. The relationships shown here form a conceptual schema, used only to situate
the technical debt register in relation to the other widely used process databases in commercial software production. Fig. 2. does not
depict the entity-relationship diagrams of any process registers, which would vary depending on the implementation scenarios.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # MANUSCRIPT DRAFT FOR REVIEW #

teams can start enacting control actions on the identified
technical debt. Restructuring technical debt embedded
in systems often involves a series of system changes that
might involve both architecture-level and module-level
alterations [2,10,14]. As noted before, we term these dis-
crete actions as design moves that collectively help to
bring the total technical debt of software assets within
the targeted control ranges (derived in Step 2). Some
examples of design moves are: refactoring to reduce
software entropy, replacing legacy code, reducing com-
plex coupling instances within subparts of a system,
altering business rules and business logic, and removing
design inconsistencies [10,30]. We conceive controlling
technical debt as a dynamic process involving multiple
design moves over the lifecycle of a system, which is
analogous to a continuous statistical quality control pro-
cess. The overarching goal is to sustainably maintain the
technical debt of software assets involved in product
development within a desired control range. Corrective
actions, in the form of design moves, are enacted on
software assets when the target control ranges are
breached. The control ranges themselves are also period-
ically assessed as outlined in Step 2.

Figure 3 shows how the overall flow of steps in tech-
nical debt management generally relate to the PMBOK
software quality management processes. While there is a
sequential precedence from Step 1 to Step 3, it is possible
to have multiple iterations of the sequence within a prod-
uct release cycle. The precise alignment of schedules be-
tween the technical debt management process cycle, qual-
ity management process cycle, and product release cycle
can vary depending on the business and software devel-
opment context of the sites implementing our integrated
framework. We discuss more on these and other imple-
mentation-specific variations in Section 3.

Typically, software quality management steps are cat-
egorized into assurance-related and control-related process-
es, and the total cost of software quality is split into costs
related to conformance work (prevention, inspection, and
appraisal costs) and costs related to nonconformance work

(rework or failure costs) [22]. In Figure 3 we map those to
our three proposed technical debt management steps:
make technical debt visible, perform cost-benefit analysis,
and control technical debt. Making technical debt visible
and performing cost-benefit analysis steps contribute to
the inspection and appraisal quality costs, respectively.
Controlling technical debt can contribute to either con-
formance or nonconformance costs depending on the na-
ture of design moves enacted. If the design moves enact-
ed to optimize technical debt do not alter user-perceived
software quality, then the costs of enacting the design
moves are categorized as conformance costs [23,24]. In
contrast, if the design moves alter user-perceived soft-
ware quality, their costs are categorized as nonconform-
ance quality costs, which would draw additional scrutiny
from quality control personnel to assess if the design
moves detrimentally alter the overall cost of quality
planned for a product release cycle. Thus, the proposed
framework provides a strong integration between the
established software quality management processes in
commercial software production and our new proposed
steps for managing the technical debt of software assets.

3 RESEARCH SITES AND FIELD TEST

PROCEDURES

To test the real-world usefulness of the proposed
normative framework we partnered with three
independent software organizations to implement the
processes prescribed by the framework in their
commercial software production. Similar to the action
research and contextual approaches adopted by prior
software studies [36,37], we collaborated closely with the
three firms so that the process framework was used in
real-world software production activities by the three
firms. Table 1 provides an overview of these three field
test research sites. The three sites varied in their business
focus, software process maturity level, size, and age, and
this variation provides an appropriate platform to assess
the effectiveness of the normative framework over a

Fig. 3. Relation between technical debt management steps, software quality assurance and software quality control processes, and
cost of software quality. The figure illustrates how the general flows of activities relate to each other; specific schedule-level alignment
between the technical debt management cycle and the quality management cycle would vary depending on product release cycles
and business context.

RAMASUBBU & KEMERER: TECHNICAL DEBT MANAGEMENT 7

range of real-world situations. As would be expected,
implementing the framework did increase process costs at
the field sites, and these additional costs are factored into
the economic results that we present in Section 4. The
timeline of the various implementation steps at the field
sites is shown in Figure 4.

3.1 ServiceCo

ServiceCo is a Fortune-500 technology firm with a diversi-
fied business. In October 2013 we entered into a research
partnership with the banking and insurance business unit
of the firm. The overarching goal of the research collabo-
ration was to improve the business unit’s capabilities to
manage the technical debt embedded in its flagship soft-
ware product that had evolved over 17 years. The busi-
ness unit was assessed as operating at CMMI level 51 pro-
cess maturity and had implemented a comprehensive
statistical quality control regime for its software produc-
tion since 2004. However, the cost of quality metrics con-
sidered by the firm did not explicitly track the technical
debt burden at that time. In 2013, at a workshop conduct-
ed by the software engineering process group (SEPG) of
the firm, we presented insights from our prior research on
technical debt [1,2] along with a preliminary version of
the normative framework (Figure 1). Subsequently, the
firm launched an internal process initiative to develop

1 Capability Maturity Model Integration (CMMI) is a software process
improvement model that is used to appraise the maturity of processes
employed by software firms [38]. Level 5 is the highest level in the model
representing a very high level of maturity that includes capabilities for
causal analysis and resolution of issues as well as superior organizational
performance management. Prior research has shown the benefits of high-
er CMM levels, including a reduction in high severity software defects
[39].

organization-wide policies for managing technical debt.
As a part of this initiative the banking and insurance

business unit of the firm agreed to conduct field tests of
our framework and share data with us for research pur-
poses. With nondisclosure agreements in place, the im-
plementation of the process framework at ServiceCo was
initiated in February 2014. The existing process databases
at the firm already included the requirements, defect, and
risk registers. However, as part of our field test and
framework implementation, those registers had to be
modified and integrated with the newly proposed tech-
nical debt and design moves registers. The introduction
of design move as an important entity in the existing reg-
isters was a complex task as the firm had collected more
than 10 years of software engineering process data in
those registers and chose to port the data covering the
entire lifespan of the banking and insurance software
product into the new registries established for the field
study. The legacy data spanning disparate product re-
lease cycles over ten years was reformulated to fit with
the new schema involving technical debt and design
move registers. Although this task was effort intensive
and slowed down the infrastructure setup, the firm saw
this as an opportunity to learn from its organizational
memory. The exercise was completed after 18 months of
effort in September 2015. Training for the SEPG and de-
velopment personnel overlapped with the registry setup
effort and was completed in October 2015.

With the entire infrastructure in place, ServiceCo
product development teams started using the process
framework proposed by our study for their release cycles
in November 2015. A complete roadmap of the design
moves planned for two product release cycles was pub-

TABLE 1
OVERVIEW OF FIELD RESEARCH SITES

ServiceCoǂ TestCoǂ MediaCoǂ

Business

Environment

Banking and insurance

division of a Fortune

500 technology firm

Telecommunication test

and measurement divi-

sion of an electronic

equipment manufacturer

Digital marketing

product develop-

ment division of a

media firm

Software Process

Maturity
CMMI Level 5 CMMI Level 3 Not assessed

Employees 100,000 4000 100

Revenues US$ 10 Billion US$ 1.25 Billion US$ 3 Million

Product Age 17 years 7 years 2 years

ǂ Names of the firms have been anonymized to adhere to the nondisclosure agreements signed with the companies.

Fig. 4. Field study timeline at the three research sites.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # MANUSCRIPT DRAFT FOR REVIEW #

lished by the firm a month later. To assess the effective-
ness of the framework in aiding technical debt manage-
ment, we utilize the results pertaining to these two release
cycles that occurred during the period between Novem-
ber 2015 and August 2016.

3.2 TestCo

TestCo provides test and measurement solutions for tele-
communication firms and was going through an organi-
zation-wide process revamp when we began collaborat-
ing with them for this study. The firm was in the process
of implementing CMMI level 32 processes for software
product development in February 2015, and we proposed
to integrate the normative framework we had developed
with the new processes being put in place. A product di-
vision within the firm that specialized in near field com-
munication (NFC) technologies agreed to host our field
study, and implemented the required infrastructure com-
ponents by September 2015.

Even before the firm adopted CMMI level 3 processes
individual product teams had a strong quality culture
and followed statistical quality control approaches to con-
tinuously improve their products. However, the firm
lacked a centralized process database as the product
teams worked autonomously on their process initiatives.
As part of the CMMI level 3 initiative at the firm a cen-
tralized process database comprised of the five registers
shown in Figure 2 was set up. Thus, unlike the ServiceCo
case, the infrastructure setup was relatively easy, since
the technical debt and design move registers were insti-
tuted along with the requirements, defect, and risk regis-
ters at the same time, and there was no need to accom-
modate historical data. Another distinguishing feature
was that the TestCo product development teams were
smaller than the ServiceCo teams and utilized a model of
product development that was similar to the Scrum mod-
el [40]. TestCo utilized Scrum masters for process govern-
ance, and product owners managed the releases, custom-
er interaction, and requirements backlogs.

When our field study started in October 2015 the
product offered by the NFC division of TestCo was 7
years old. Despite the high ‘clock speed’ of the test and
measurement industry, the firm expected the market
conditions to be supportive of the ageing product and
wished to pursue active development of the product for
at least another five years. Thus, the product develop-
ment team members, Scrum masters, and product owners
were keen to deploy an effective technical debt manage-
ment framework to help them manage the product’s con-
tinued evolution. We obtained data from four product
release cycles over a twelve month period for testing the
effectiveness of our process framework.

3.3 MediaCo

MediaCo is a startup firm which is a subsidiary of a large
marketing and advertising agency. The firm developed a
digital marketing platform that was in its second year of
evolution after initial release in 2014. We had worked

2 CMMI level 3 deals with a set of process management capabilities
that help a firm to achieve organizational process focus and improve in
areas such as risk management, service continuity, and integration of
work flows, incident resolutions, and performance management.

with the parent firm as part of another research project
[10], and in March 2016 the product owner of the digital
marketing platform invited us to prescribe a framework
for managing technical debt for her new product devel-
opment team. By this time we had already implemented
the necessary infrastructures for the field study at Ser-
viceCo and TestCo, and had arrived at the final versions
of the normative process framework and schema for the
various process registers shown in Figure 1 and Figure 2
respectively. However, implementing the infrastructure
for our field study at MediaCo proved more challenging
than the product owner and we had anticipated. In the
end, though, they were able to successfully implement the
framework, aided by the strong support of the product
owner.

Product development teams at MediaCo followed an
agile development approach and tracked requirements
using disparate spreadsheets owned by individual teams.
Defect reporting and tracking was accomplished through
a web-based portal and discussion forum and, therefore,
was more centralized. While those mechanisms were rela-
tively rudimentary compared to the processes at Ser-
viceCo and TestCo, we were still able to gather the neces-
sary metrics required for our field study from the spread-
sheets and defect-tracking portals. However, gathering
information for the risk register proved to be challenging
as the firm did not typically connect technical and busi-
ness-related assessments of risks in its day-to-day opera-
tions. The process framework we proposed to the firm
and report in this study required identifying the risks for
each design move and quantifying the business impact
associated with those risk events. To be able to enact this
on a day-to-day basis, MediaCo had to reorganize its agile
teams and product development procedures to involve
business development personnel with risk management
expertise in product team meetings. Given the startup
environment, product development teams were initially
less enthusiastic about the change to emphasize risk man-
agement. However, with the continued support of the
product owner the teams agreed to implement the pro-
posed processes as an experiment. All the process regis-
ters shown in Figure 2 became operational at MediaCo in
July 2016, and we were able to utilize data from four
product release cycles lasting until November 2016 for
our analysis.

4 RESULTS

For each of the three field sites we tracked cost of quality
metrics that were related to technical debt at the lowest
practical granularity level, including defects, prevention,
appraisal, and failure costs. [22]. To adjust for size and
scale effects, we used defects per kilo lines of code
(KLOC) for comparison purposes, and all quality costs
were normalized using percentage of overall release
effort3. We performed within and cross-site comparisons

3 Since our analysis involves within-case comparisons of defect density
values before and after implementation of the process framework, varia-
tions in the use of programming languages across the three firms is not a
concern [41]. When performing cross-case analysis, we examine the ex-
tent of benefits realization at each site and draw attention to firm-level

RAMASUBBU & KEMERER: TECHNICAL DEBT MANAGEMENT 9

of those metrics to assess the impact of the adoption and
use of our normative process framework. In all cases, we
assessed the overall economic impact of the process
framework use by measuring and evaluating overall risk
exposure levels and the cost reduction (or increase) per
product release cycle. Similar to prior research [2], risk
exposure due to technical debt is derived using a
probabilistic approach by taking into account both the
business impacts (in USD) of technical debt-induced
software errors and the probabilities of the occurrences of
such errors. Similar to prior research [2,19,20], we utilized
the historical error distribution patterns in the products
we observed, and predicted for each software error type
recorded at our sites the required bug-fixing and rework
effort necessary to address customer-reported issues.
Using those probabilistic predictions, we derived the
business impact of software errors and the corresponding
monetary value of risk exposures (see [2] for a detailed
explanation of these procedures).

4.1 ServiceCo Results

At ServiceCo the cost of quality metrics were available at
module-level granularity. Figures 5-8 present the results
pertaining to the six modules that we observed during the
field study. As Figure 5 shows, appraisal costs at Ser-
viceCo increased, as would normally be expected, which
reflects the cost of performing the additional processes
prescribed by the framework. Statistical tests4 comparing
the before and after framework implementation scenarios
indicate that appraisal costs increased by 8.2% of release
cycle effort because of the framework implementation. In

factors listed in Table 1.

4 All statistical tests reported in the paper use two-tailed mean compar-
isons, checking for statistical significance at p<0.5 level.

contrast, and positively, technical debt-induced errors,
prevention costs, and failure costs decreased after the
implementation of the process framework as shown in
Figures 6, 7, and 8 respectively; these trends reflect the
benefits accrued at ServiceCo. Prevention and failure
costs decreased by 2.8% and 13.1% respectively. Also,
errors related to technical debt decreased by 5 per KLOC.
Overall, the increase in appraisal costs was smaller than
the other benefits accrued, resulting in a net economic
benefit of risk exposure reduction of $367,000, and an
overall net cost reduction of $96,625 per product release.
Thus, we conclude that the benefits of implementing the
normative process framework clearly outweighed its
costs at ServiceCo.

4.2 TestCo Results

During our field study at TestCo the product develop-
ment teams were broadly organized into two groups per-
taining to the two modules we observed (client side and
server side development). We were able to track and
compare the cost of quality metrics at the module level
for both of these development teams. Figures 9-12 present
the results for the two modules. As the figures show,
costs of performing the additional processes prescribed
by the framework are reflected in the increase in appraisal
costs after the framework implementation (Figure 9). The
offsetting benefits are reflected in the decrease of tech-
nical debt-induced errors, prevention costs, and failure
costs after the implementation and use of the process
framework as shown in Figures 10, 11, and 12 respective-
ly. Similar to the tests reported for the ServiceCo case, we
performed statistical tests by comparing the “before” and
“after” framework implementation scenarios. Those tests

Fig. 6. Technical debt-related errors at ServiceCo before and
after process framework adoption and use.

Fig. 7. Prevention costs at ServiceCo before and after pro-
cess framework adoption and use.

Fig. 8. Failure costs at ServiceCo before and after process
framework adoption and use.

Fig. 5. Appraisal costs at ServiceCo before and after process
framework adoption and use.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # MANUSCRIPT DRAFT FOR REVIEW #

indicated that appraisal costs at TestCo increased by 2.7%
of release cycle effort as a result of the framework imple-
mentation. However, the failure costs decreased by 10.9%.
Also, errors related to technical debt decreased by 2.3 per
KLOC on average. The impact on prevention costs at
TestCo was minimal (a 0.3% decrease) and not statistical-

ly significant. Associated with the use of our process
framework TestCo was able to reduce its risk exposure by
$56,657 and achieve a net cost reduction of $14,440 per
product release cycle. Thus, the economic benefits of im-
plementing this process framework at TestCo were again
positive at this second field test site.

4.3 MediaCo Results

At MediaCo the cost of quality metrics were only availa-
ble at the product level. Figures 13-16 show the compari-
son of the before and after scenarios for appraisal costs,
prevention costs, errors per KLOC, and failure costs re-
spectively. As those comparisons reveal, both prevention
and appraisal costs at MediaCo increased as a result of
adopting the process framework. Those increases reflect
the costs of performing the additional processes pre-
scribed by the framework. In contrast, technical debt-
induced errors and failure costs decreased after the im-
plementation of the process framework, which are the
benefits that the firm accrued due to the adoption of our
process framework. Statistical tests comparing the before
and after framework implementation scenarios show that
appraisal costs increased by 12.8% and prevention costs
increased by 3% because of the framework implementa-
tion. However, the benefits of the framework far out-
weighed those cost increases because failure costs de-
creased by a large margin of 43% and errors per KLOC
decreased by 50.2%. Overall, the economic benefits at-
tributed to the adoption and use of our process frame-
work included a net reduction in risk exposure of
$1,112,866 for the entire platform and an overall cost re-
duction of $60,025 per product release cycle. Thus, the
benefits of implementing the normative process frame-
work at MediaCo again outweighed its costs.

4.4 Field Study Results Summary

The empirical results show that all three of the field test
site firms were able to reduce technical debt-related errors
and improve the quality of their software products. These
results were consistent despite the variances in size, age,
business context and software process maturity levels of
the three commercial organizations. Reductions in both
risk exposures and failure costs were the key benefits of
the framework adoption that yielded significant cost sav-
ings. And, the necessary increase in costs due to the addi-
tional process overheads resulting from framework adop-
tion were, on average, only about 8% of overall product

Fig. 11. Prevention costs at TestCo before and after process
framework adoption and use.

Fig. 9. Appraisal costs at TestCo before and after process
framework adoption and use.

Fig. 10. Technical debt-related errors at TestCo before and after
process framework adoption and use.

Fig. 13. Appraisal costs at MediaCo before and after pro-
cess framework adoption and use.

Fig. 12. Failure costs at TestCo before and after process
framework adoption and use.

RAMASUBBU & KEMERER: TECHNICAL DEBT MANAGEMENT 11

release costs, and therefore were much smaller than the
realized benefits. For example, failure costs alone were
reduced by 22% on average. In addition, the firms were
able to significantly reduce both their business risk expo-
sures (on average by $512,714) and the total costs associ-
ated with their product release cycles (on average by
$57,030).

Comparing the benefits realization across the different
sites we see that costs of process overheads due to our
framework were highest (about a 13% increase) at Medi-
aCo, the firm with the lowest process maturity level in
our field study sample. At the same time, MediaCo also
reaped the greatest economic benefit (e.g., more than a
million dollars’ estimated worth of reduction in business
risk exposure) from the framework adoption. This shows
that, even though firms without established risk man-
agement and quality management processes would be
expected to face additional overhead in implementing
technical debt management policies, the benefits from
systematic identification of technical debt and the subse-

quent reduction in risk exposures are likely to outweigh
the costs of the process overhead.

5 DISCUSSION

In this section we discuss the implications of our results
for theory development and research on technical debt
management. Also, we highlight best practices for
achieving an effective alignment between processes for
technical debt management with other organizational
process assets based on our interactions with practitioners
during the field studies. Finally, we conclude by
highlighting research opportunities for expanding the
normative process framework reported in the study.

5.1 Technical Debt Management through the
Theoretical Lens of Cost of Quality

In their call for research on technical debt management,
Brown et al. [9] noted that the economic impacts and risks
of technical debt are inadequately understood, and
highlighted the need for a defined set of processes for
making the technical debt embedded in systems explicit,
and subject to tracking and management. In this study we
responded to this call and took a process view of
managing technical debt. We proposed a normative
framework that integrates the processes necessary for
managing technical debt with established quality
management processes in software production. The
framework underpins a theoretical view that the trade-
offs and economic consequences of actions related to
technical debt can be better understood and managed
using the established principles governing cost of quality
issues in software production [22,23,24,38]. The
development and test of the study’s process framework
thus contributes to theory development by bridging the
existing gaps between the technical debt and software
quality management literatures.

 Viewing technical debt through the cost of quality
theoretical lens provides a new opportunity to develop
models that help shed light on the economic
consequences of both the obligations and options
resulting from technical debt [9,10]. The cost of quality
literature provides a rigorous theoretical foundation for
developing policies for technical debt management. For
example, existing optimization models depicting the
behavior of conformance and nonconformance quality
costs [e.g., 42,43,44] can be utilized to understand the
relationship between maintenance obligations (costs) and
business opportunities (options or benefits) that stem
from technical debt. In addition to making the above
theoretical connection, the framework proposed in this
study provides actionable steps for real-world
implementation and empirical data collection. Thus, we
believe the normative process framework proposed in
this study can serve as a foundation for future studies
aiming to develop and verify policies for managing
technical debt.

Fig. 14. Prevention costs at MediaCo before and after
process framework adoption and use.

Fig. 15. Technical debt-related errors at MediaCo before
and after process framework adoption and use.

Fig. 16. Failure costs at MediaCo before and after pro-
cess framework adoption and use.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # MANUSCRIPT DRAFT FOR REVIEW #

5.2 Aligning Technical Debt Management with
Organizational Process Assets: Best Practices

The process framework proposed in this study highlights
the need for the inclusion of a wide range of organiza-
tional process assets beyond source code for managing
technical debt. Such assets include the business plans,
product requirements and fulfillment roadmaps, histori-
cal defect backlog and resolution data, and risk manage-
ment policies of a software organization. Such assets pro-
vide important inputs to the technical debt management
steps as shown in Figure 1, and we advocate a tight inte-
gration between the process registers holding information
on such assets as illustrated in Figure 2. While the extent
of process assets and their integration typically depends
on the process maturity of a software organization, the
adoption and use of the normative framework proposed
by this study is not predicated on the achievement of any
specific process maturity level. Based on our field study
observations we identified a few practices that assisted in
the implementation and continued use of the framework
at the three research sites involved in the study. Those
practices could be seen as important conditions needed
for the implementation and use of process framework.

1. Engagement between business and engineering stake-
holders: The framework advocates the involvement
of stakeholders from both the business and engi-
neering functions for technical debt management,
and relies on practices to bring together data that
are typically present within those siloes. Examples
of such practices are business-goal driven funding
mechanisms [45,46], value-driven software engi-
neering and quality management [35,47,48], and
better communication between the different stake-
holders [49].

2. Willingness to derive and use policies based on a proba-
bilistic analysis framework: To accommodate the un-
certainties faced by businesses, the process frame-
work embraces a probabilistic approach for esti-
mating the economic impacts of actions related to
technical debt. Thus, there would be a need for
both the business and engineering teams using the
framework to adapt their plans according to the
situations that unfold within a planning horizon,
rather than expect a deterministic policy.

3. Limited process overhead: As seen in our field stud-
ies, adoption of the framework imposes a process
overhead that is reflected as an increase in the ap-
praisal costs faced by the software teams. The
adoption and continued use of the process frame-
work hinges on the ability of firms to be able to lim-
it such a process overhead [50]. Achieving a bal-
ance between the extent of centralized process
compliance imposed on the software teams and the
extent to which they can make appropriate deci-
sions by themselves without the intervention of
centralized quality control units would help in this
regard [36].

5.3 Further Research

We acknowledge the need to conduct additional field

tests using the normative process framework before we
can generalize the results reported in this study. Such a
generalization is possible with further research because
the proposed process framework has been shown here to
be amenable to both large and small software teams, and
those that operate at different process maturity levels.
Additional tests of the framework at different software
organizations will also help to expand the tools and tech-
niques considered for the three steps of technical debt
management prescribed by the framework. Similarly,
examining how the normative framework can be success-
fully implemented in organizations following different
software development models and quality management
standards would also help in future refinements of the
framework.

As mentioned before, another stream of research op-
portunities stems from the integration capabilities of the
proposed normative process framework. Apart from the
potential usage of the cost of quality optimization models
discussed in Section 5.1., there are opportunities to exploit
the integration between the technical debt, design moves,
and risk registers posited in this study (see Figure 2).
Through this integration the maintenance obligations
(principal and interest of technical debt) and options cre-
ated by design actions of developers can be categorized
into threats and opportunities. Then, appropriate pro-
cesses can be defined for such actions as avoiding, accept-
ing, mitigating, exploiting, transferring, or enhancing
these risks. Future research could test the impacts of such
an integrated process approach in influencing the risk-
taking or risk-avoiding behaviors of software teams. This
would help add nuance to the existing taxonomies of de-
veloper actions related to technical debt [9].

Overall, we believe an integrated approach to the
management of technical debt as advocated in this study
provides a strong theoretical and empirical foundation for
continued research efforts to find processes that reduce
the various frictions in software production [51].

REFERENCES

[1] N. Ramasubbu and C.F. Kemerer, “Managing Technical Debt in
Enterprise Software Packages,” IEEE Trans. Software Engineering,
vol. 40, no. 8, pp. 758-772, Aug 2014.

[2] N. Ramasubbu and C.F. Kemerer, “Technical Debt and the Reliability
of Enterprise Software Systems: A Competing Risks Analysis,” Man-
agement Science, vol. 62, no. 5, pp. 1487-1510, May 2016.

[3] A. MacCormack and D. J. Sturtevant, “Technical Debt and System
Architecture: The Impact of Coupling on Defect-Related Activity,”
Journal of Systems and Software, vol. 120, no. 10, pp. 170-182, 2016.

[4] Z. Li, P. Avgeriou, and P. Liang, “A Systematic Mapping Study
on Technical Debt and its Management,” Journal of Systems and
Software, vol. 101, no. 3, pp. 193-220, March 2015.

[5] E. Tom, A. Aurum, R. Vidgen, “An Exploration of Technical
Debt,” Journal of Systems and Software, vol. 86, no. 6, pp. 1498-
1516, June 2013.

[6] N.S. R. Alves, T.S. Mendes, M.G. de Mendonca, R.O. Spinola, F.
Shull, and C. Seaman, “Identification and Management of
Technical Debt: A Systematic Mapping Study,” Information and
Software Technology, vol. 70, no. 2, pp. 100-121, Feb. 2016.

[7] R. Marinescu, “Assessing Technical Debt by Identifying Design
Flaws in Software Systems,” IBM Journal of Research and Devel-
opment, vol. 56, no. 2, pp. 9:1-9:13, Sep./Oct. 2012.

RAMASUBBU & KEMERER: TECHNICAL DEBT MANAGEMENT 13

[8] P. Kruchten, R. L. Nord, I. Ozkaya, D. Falessi, “Technical Debt: To-
wards a Crisper Definition Report,” ACM SIGSOFT Software Engi-
neering Notes, vol. 38, no.5, pp. 51-54, Sep. 2013.

[9] N. Brown, Y. Cai, Y. Guo, R. Kazman, et al., “Managing Tech-

nical Debt in Software-Reliant Systems,” Proc. 2010. FSE/SDP

Workshop on Future of Software Engineering Research, pp. 47-52,

2010.
[10] J. Woodard, N. Ramasubbu, T.F. Tschang, and V. Sambamurthy,

“Design Capital and Design Moves: The Logic of Digital Business
Strategy,” MIS Quarterly, vol. 37, no. 2, pp. 537-564, 2013.

[11] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Meta-
phor to Theory and Practice,” IEEE Software, vol. 29, no. 6, pp. 18-21,
Nov/Dec. 2012.

[12] A. Ampatzoglou, A. Ampatzouglou, A. Chatzigeorgiou, and P.
Avgeriou, “The Financial Aspect of Managing Technical Debt: A Sys-
tematic Literature Review,” Information and Software Technology, vol.
64, no. 8, pp. 52-73, Aug. 2015.

[13] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Soft-
ware Practitioners Have to Say about Technical Debt,” IEEE Software,
vol. 29, no. 6, pp. 22-27, Nov./Dec. 2012.

[14] D. Falessi, M. A. Shaw, F. Shull, K. Mullen, M. S. Keymind, “Practical
Considerations, Challenges, and Requirements of Tool-support for
Managing Technical Debt,” Proc. 4th International Workshop on

Managing Technical Debt, DOI: 10.1109/MTD.2013.6608673, 2013.
[15] D. Falessi, P. Kruchten, R. Nord, and I. Ozkaya, “Technical Debt at

the Crossroads of Research and Practice,” ACM SIGSOFT Software
Engineering Notes, vol. 39, no 2, pp. 1-15, 2014.

[16] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Meas-
ure it? Manage it? Ignore it? Software Practitioners and Technical
Debt,” Proc. 10th Joint Meeting of European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 50-60, 2015.
[17] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus,

B.K. Ray, and M.Y. Wong, “Orthogonal Defect Classification: A Con-
cept for In-Process Measurements,” IEEE Trans. Software Engineering,
vol. 18, no. 11, pp. 943-956, Nov. 1992.

[18] T. Nakajo and H. Kume, “A Case History Analysis of Software Error
Cause-Effect Relationships,” IEEE Trans. Software Engineering, vol. 17,
no. 8, Aug. 1991.

[19] C.Y. Huang, C.S. Kuo, and S.P. Luan, “Evaluation and Application of
Bounded Generalized Pareto Analysis to Fault Distributions in Open
Source Software,” IEEE Trans. Reliability, vol. 63, no. 1, Mar. 2014.

[20] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and I. Turnu, “On the
Distribution of Bugs in the Eclipse System,” IEEE Trans. Software En-
gineering, vol. 37, no. 6, pp. 872-877, Nov./Dec. 2011.

[21] L.C. Briand, K.E. Emam, B.G. Freimut, and O. Laitenberger, “A
Comprehensive Evaluation of Capture-Recapture Models for Esti-
mating Software Defect Content,” IEEE Trans. Software Engineering,
vol. 26, no. 6, pp. 518-540, June 2000.

[22] S.A. Slaughter, D.E. Harter, M.S. Krishnan, “Evaluating the Cost of
Software Quality,” Communications of the ACM, vol. 41, no. 8, pp. 67-
73, Aug. 1998.

[23] A. Poth and A. Sunyaev, “Effective Quality Management: Value- and
Risk-Based Software Quality Management,” IEEE Software, vol. 31,
no. 2, pp. 79-85, Nov./Dec. 2014.

[24] R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi, “Improving
Software Quality as Customers Perceive It,” IEEE Software, vol. 33, no.
4, pp. 40-45, Jul./Aug. 2016.

[25] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A Large-Scale Empirical Study of Just-in-time
Quality Assurance,” IEEE Trans. Software Engineering, vol. 39, no. 6,
pp. 757-773, Nov. 2012.

[26] D.A. Harter and S.A. Slaughter, “Quality Improvement and Infra-
structure Activity Costs in Software Development: A Longitudinal
Analysis,” Management Science, vol. 49, no. 6, pp. 784-800, June 2003.

[27] C.J. Corbett, M.J. Montes-Sancho, and D.A. Kirsch, “The Financial
Impact of ISO 9000 Certification in the United States: An Empirical
Analysis,” Management Science, vol. 51, no. 7, pp. 1046-1059, Jul. 2005.

[28] C.J. Corbett, “Global Diffusion of ISO 9000 Certification Through
Supply Chains,” Manufacturing and Service Operations Management,
vol. 8, no. 4, Oct. 2006.

[29] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, “Comparing Four Approaches for Technical Debt Identifica-
tion,” Software Quality Journal, vol. 22, no. 3, pp. 403-426, Sep. 2014.

[30] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the Principal of
an Application’s Technical Debt,” IEEE Software, vol. 29, no. 2, pp. 34-
42, Nov./Dec. 2012.

[31] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing Conflicts
in Goal-driven Requirements Engineering,” IEEE Trans. Software En-
gineering, vol. 24, no. 2, pp. 908-926, Nov. 1998.

[32] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, “Toward Data-Driven
Requirements Engineering,” IEEE Software, vol. 33, no. 1, pp. 48-54,
Jan./Feb. 2016.

[33] J. Ropponen, and K. Lyytinen, “Components of Software Develop-
ment Risk: How to Address Them? A Project Manager Survey,” IEEE
Trans. Software Engineering, vol. 26, no. 2, pp. 98-112, Feb. 2000.

[34] B.W. Boehm, “Software Risk Management: Principles and Practices,”
IEEE Software, vol. 8, no.1, pp. 32-41, Jan. 1991.

[35] A. Poth and A. Sunyaev, “Effective Quality Management: Value-and
Risk-Based Software Quality Management,” IEEE Software, vol. 31,
no. 6, pp. 79-85, Nov./Dec. 2014.

[36] N. Ramasubbu, “Governing Software Process Improvements in
Globally Distributed Product Development,” IEEE Trans. Software
Engineering, vol. 40, no. 3, pp. 235-250, Mar. 2014.

[37] H.D. Frederiksen and L. Mathiassen, “A Contextual Approach to
Improving Software Metrics Practices,” IEEE Trans. Engineering Man-
agement, vol. 55, no. 4, pp. 602-616, Oct. 2008.

[38] R. Kishore, M. E. Swinarski, E. Jackson, and H. R. Rao, “A Quality-
Distinction Model of IT Capabilities: Conceptualization and Two-
Stage Empirical Validation using CMMi Processes,” IEEE Trans. En-
gineering Management, vol. 59, no. 3, pp. 457-469, Aug. 2012.

[39] D. Harter, C. F. Kemerer and S.A. Slaughter, “Does Software Process
Improvement Reduce the Severity of Defects? A Longitudinal Field

Study”, IEEE Trans. Software Engineering, v. 38, n. 4, pp. 810-827,

July/Aug. 2012.
[40] D. P. Harvie and A. Agah, “Targeted Scrum: Applying Mission

Command to Agile Software Development,” IEEE Trans. Software
Engineering, vol. 42, no. 5, pp. 476-489, May 2016.

[41] C.F. Kemerer, “An Agenda for Research in the Managerial Evalua-
tion of Computer-Aided Software Engineering Tool Impacts”, Pro-
ceedings of the 22nd Hawaii International Conference on System Sci-
ences, v. II, pp. 219-228, Jan. 1989.

[42] C.D. Ittner, “Exploratory Evidence on the Behavior of Quality Costs,”
Operations Research, vol. 44, no. 1, pp. 114-130, Feb. 1996.

[43] P. Nandakumar, S.M. Datar, and R. Akella, “Models for Measuring
and Accounting for Cost of Conformance Quality,” Management Sci-
ence, vol. 39, no. 1, pp. 1-16, Jan. 1993.

[44] G. Li and S. Rajagopalan, “Process Improvement, Quality, and Learn-
ing Effects,” Management Science, vol. 44, no. 11, pp. 1517-1532, Nov.
1998.

[45] M. Denne, and J. Cleland-Huang, “The Incremental Funding Meth-
od: Data-Driven Software,” IEEE Software, vol. 21, no.3, pp. 39-47,
May/June 2004.

[46] P. Clements and L. Bass, “The Business Goals Viewpoint,” IEEE
Software, vol. 27, no. 6, pp. 38-45, Nov./Dec. 2010.

[47] B. Boehm and L.G. Huang, “Value-Based Software Engineering: A
Case Study, IEEE Software, vol. 36, no. 3, pp. 33-41, Mar. 2003.

[48] A. Poth and A. Sunyaev, “Effective Quality Management: Value- and
Risk-Based Software Quality Management,” IEEE Software, vol. 31,
no. 6, pp. 79-85, Nov./Dec. 2014.

[49] J. Schulenklopper and E. Rommes, “Why They Just Don’t Get It:
Communicating about Architecture with Business Stakeholders,”
IEEE Software, vol. 33, no. 3, pp. 13-19, May/June 2016.

[50] C.F. Kemerer, "Progress, Obstacles, and Opportunities in Software

Engineering Economics", Communications of the ACM, v. 41, n. 8,

pp. 63-66, Aug. 1998.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # MANUSCRIPT DRAFT FOR REVIEW #

[51] P. Avgeriou, P. Kruchten, R.L. Nord, I. Ozkaya, and C. Seaman, “Re-
ducing Friction in Software Development,” IEEE Software, vol. 33, no.
1, pp. 66-73, Jan./Feb. 2016.

Narayan Ramasubbu received the bachelor of engineering degree
from Bharathiar University, India, and the PhD degree from the Uni-
versity of Michigan, Ann Arbor, MI. He is an associate professor at
the Katz Graduate School of Business at the University of Pittsburgh.
Prior to his academic career, he was a senior developer at SAP AG
and CGI Inc. His current research interests include software-driven
innovation, software engineering economics with a focus on globally
distributed product development and service delivery, and the de-
sign, implementation, and governance of enterprise information sys-
tems. He is an associate editor at Management Science, and a
member of the IEEE Computer Society.

Chris F. Kemerer received the BS degree from the Wharton School
at the University of Pennsylvania, and the PhD degree from Carne-
gie Mellon University. He is the David M. Roderick Professor of In-
formation Systems at the Katz Graduate School of Business at the
University of Pittsburgh, and an adjunct professor of software engi-
neering in the School of Computer Science at Carnegie Mellon Uni-
versity. Previously, he was an associate professor at MIT. His cur-
rent research interests include management issues in information
systems and software engineering, and the adoption and diffusion of
information technologies. He has served in a number of editorial
positions, including as the editor-in-chief of Information Systems
Research, and is a past associate editor of IEEE Transactions on
Software Engineering. He is an INFORMS Information Systems
Society Distinguished Fellow and an ISI/Thomson Reuters Highly
Cited Researcher in Computer Science. He is a member of the IEEE
Computer Society.

