Transfer Learning for Human Navigation and Triage Strategies
Prediction in a Simulated Urban Search and Rescue Task

Yue Guo', Rohit Jena', Dana Hughes', Michael Lewis?, Katia Sycara'

Abstract— To build an agent providing assistance to human
rescuers in an urban search and rescue task, it is crucial to
understand not only human actions but also human beliefs
that may influence the decision to take these actions. De-
veloping data-driven models to predict a rescuer’s strategies
for navigating the environment and triaging victims requires
costly data collection and training for each new environment
of interest. Transfer learning approaches can be used to
mitigate this challenge, allowing a model trained on a source
environment/task to generalize to a previously unseen target
environment/task with few training examples. In this paper, we
investigate transfer learning (a) from a source environment with
smaller number of types of injured victims to one with larger
number of victim injury classes and (b) from a smaller and
simpler environment to a larger and more complex one for
navigation strategy. Inspired by hierarchical organization of
human spatial cognition, we used graph division to represent
spatial knowledge, and Transfer Learning Diffusion Convo-
lutional Recurrent Neural Network (TL-DCRNN), a spatial
and temporal graph-based recurrent neural network suitable
for transfer learning, to predict navigation. To abstract the
rescue strategy from a rescuer’s field-of-view stream, we used
attention-based LSTM networks. We experimented on various
transfer learning scenarios and evaluated the performance
using mean average error. Results indicated our assistant agent
can improve predictive accuracy and learn target tasks faster
when equipped with transfer learning methods.

I. INTRODUCTION

In an urban search and rescue (USAR) task, human
rescuers may navigate better and rescue more victims with
the help of an artificial agent that observes and predicts
their navigation and rescue activities, and opportunistically
intervenes to give them assistance. Simple assistance and
guidance include reminding rescuers not to revisit an area
already visited, how to efficiently go to desired places, and
whether they are likely to find victims that they would
consider high priority in saving. The utility of an agent’s
advice to rescuers is dependent on the accuracy of agent’s
predictions of the rescuer’s intents; interventions based on
incorrect predictions may be misleading.

Behavior prediction in an USAR task is challenging due
to various factors, including but not limited to (a) incomplete
information about where victims are, (b) changes in environ-
mental and victim conditions, and (c) difficulty in obtaining
data on rescue missions performed by humans. In a natural
disaster scenario, such as after an earthquake, traversability

IThe authors are with School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA. Email: {yueguo, rjena,
danahugh, sycara}@andrew.cmu.edu

2The author is with the University of Pittsburgh, Pittsburgh, Pennsylvania,
USA. Email: m1@sis.pitt.edu

of a building may change due to holes opening in walls or
debris blocking passages, requiring rescuers to form ad-hoc
navigation strategies during exploration.

Rescuers also may be faced with decisions regarding triage
(providing essential medical care to victims) priority. For
example, a rescuer may decide to temporarily disregard
lightly injured victims in order to search for and triage
critical victims first, triaging lightly injured victims later.

In USAR tasks, real data is expensive to obtain, and is
usually associated with unique configurations of the envi-
ronment. This raises the question: how can an agent learn
navigation and victim triage prediction in USAR task that
can efficiently generalize and transfer to more complex
environments and tasks?

Representation and abstraction of spatial recognition in
the humans has been studied widely. The knowledge human
navigation relies on can be primarily characterized by a
labeled graph [1]. Instead of perceiving environments into
a global coordinate system, this cognitive map built from lo-
cal information cannot guarantee geometric consistency [2].
There is a general agreement that people have hierarchical
representations of space [3], [4], [5], [6], and this typically
leads to the wrong answer to trick questions such as “What
direction is Reno from San Diego?” (Answer: Northwest).
Many people know San Diego is in California and Reno
is in Nevada, and the spatial perception on state locations
misleads that on cities.

Similar effects are found on a local scale where people
cluster buildings and other landmarks together into regions.
Distances between locations within a cluster are judged to
be shorter than they actually are, while the distance between
locations in different clusters are judged to be longer.

Simulations of learning and question answering based
on this hypothesized hierarchical organization have been
developed and analyzed in various works [7], [8], [9].

The goal of this paper is to develop transfer learning
methods that provide zero- or few-shot transfer for human
navigation and triage strategies from a source domain to a
more complex farget environment and task. In particular, we
developed effective transfer learning techniques for naviga-
tion prediction from a smaller to a larger indoor environment
and for a larger number of victim injury criticality classes.
In this work, we used the 3D Minecraft platform [10],
[11] as a testbed. Both source and target environments
represented building interior spaces. The two environments
had different room layouts, and we collected human rescuer
navigation trajectories while they performed the simulated
USAR tasks. We augmented the trajectories collected from

human participants with trajectories generated by rule-based
simulated participants, in order to introduce more diversity
to the set of rescue strategies for training.

In this paper, we demonstrate several benefits of our ap-
proach: (1) the agent is able to make good predictions on the
navigation and triage strategy of rescuers, (2) its prediction
accuracy grows fast even with a small input number of
trajectories, (3) the convergence time of training process
is shortened significantly in the target domain while not
affecting the accuracy, and (4) the experiment demonstrates
the potential of transfer learning for USAR missions.

II. RELATED WORK

For the past decade, transfer learning has been studied
extensively [12], [13], [14], [15], [16] . It has been recently
used in reinforcement learning, where multiple tasks are
learnt instead of a single one. Knowledge gained in some
Markov Decision Processes can be leveraged to speed up
the solutions of others [17], [18], [19], In computer vision,
Joint Distribution Adaptation is proposed for robust transfer
learning [20], which jointly adapts the marginal and condi-
tional distribution. Domain invariant features of the source
and target are extracted for visual object recognition [21].

Transfer learning applied to graphs has recently gained
attention. [22] proposes a network transfer learning frame-
work using the adversarial domain and graph convolution.
Although training and test data still require having the same
feature space and distribution, new tasks that share similar
representations can be resolved easier in [23], and this work
transfers the geometric information from source to target.
Graph-based domain mapping is used to identify previously
encountered games, and this provides a good starting place
for learning [24]. With graph based skill acquisition, [23] and
[25] capture community detection from a connectivity graph,
and speed up learning using the transferred knowledge. The
theoretical grounded framework for the transfer learning of
GNNs can be found in [26].

There are works on training an agent to navigate while
adapting to new environments, including [27] where knowl-
edge is transferred from previous navigation tasks using
a successor-feature-based RL algorithm. In [28], the au-
tonomous agent is trained to navigate in diverse city envi-
ronments, while performing transferred tasks of navigating
in target new locations. We build upon our previous work
on the observing and predicting agent [29] by incorporating
a graphical representation of the environment, amenable to
inference using graph embedded Recurrent Neural Network
models and transfer to new domains (i.e., environment lay-
outs). We refer readers to [30] [29] for the data collection
process where rescuers are equipped with Minecraft skills.

Our approach to navigation prediction builds upon the
Transfer Learning Diffusion Convolutional Recurrent Neu-
ral Network (TL-DCRNN) architecture presented in [31]
to infer participant navigation, partitioning each domain’s
map utilizing the concept of a “clique” in a graph (a set
of connected nodes) to form our clique group assignment
for graph division. The original work predicts on traffic

flow based on the Diffusion Convolutional Recurrent Neural
Network (DCRNN) model proposed in [32]. It was able to
predict the traffic flow of one city using the data collected
from another. In our work, instead of using the partition
for cities [33], we partition the graph based on the spatial
recognition of the rescuers when performing the search task.

III. METHODS

The transfer-learning agent we developed is able to predict
the navigation and triage activities of rescuers in the source
task, using training data from human Minecraft players. The
agent divides the space using graph methods and utilizes the
TL-DCRNN to predict navigation when the rescuers search
for victims; it also uses LSTM to predict triage strategies
when the rescuers found victims and made decisions. In
this work, we transfer the prediction model which is trained
with the old scenarios, to predict the navigation and rescue
activities of human rescuers in an unobserved situation. The
implementation code has been released.'

A. USAR Domains

To train agents and evaluate the ability of agents to transfer
to new domains, multiple USAR task domains were devel-
oped using two distinct building layouts (shown in Figure 1):
a smaller map with fewer rooms (referred to as Sparky),
and a larger, more complex map (referred to as Falcon). For
each domain, victims were placed in specific locations of
the environment, and the environment was perturbed with
blockage and holes on the walls, which are not initially
known to rescuers, but are encountered as rescuers navigate
the environment. Blockages in the hallways and rooms might
make certain paths in the map impassable, while holes on the
walls opened other possibilities for navigation. For prediction
of rescuer navigation, a total of four task domains were
created by varying the location of victims and perturbations:
a single variant of the Sparky map, and three variants of
the Falcon map of increasing difficulty (Falcon-easy, Falcon-
medium, Falcon-hard), shown in Figure 2.

For prediction of rescuer triage strategy, we created two
domains using the Falcon environment. The first domain,
Falcon-2victim, contains victims of two severity levels,
which are common to all domains: regular victims require 7
seconds to triage, and critical victims require 15 seconds to
triage, and will expire 5 minutes after the start of the mission.
The second domain, Falcon-3victim, introduces an additional
victim severity level, medium victims, which require 12
seconds to triage and will expire 7 minutes into the mission.

The USAR mission required a human player/rescuer to
work in an indoor environment in a limited time where
victims were scattered. The rescuer is equipped with a
medical kit which enabled them to triage victims in a few
seconds. A device that beeps to report if one or more live
victims were inside a room was utilized, however the human
participant may or may not have understood the significance
of the beeping. Knowledge of the beeping was a condition

Uhttps://github.com/sophieyueguo/tl_navi

N
L4 AL LA LA Lo

L
L s

il
|

=4

(a) Sparky

(b) Falcon

Fig. 1: The Original Maps of Sparky and Falcon. Red stars
indicate start locations.

L
i

an
=T In T
T Lh]
qﬂﬁ
%ahmﬁr

i

L]
i
LG el

alco ed alco

Fig. 2: Map of the three versions of Falcon: easy, medium,
and hard collected in [30]. Grey indicates walls, Magenta
indicates blockages, and Cyan is for openings.

that was varied in different trials, i.e. in some conditions
the participant was told the meaning of the beep at the
beginning of the experiment, whereas in other conditions,
the participant may not have been given this information.

B. Agent Observations

The agent observes a stream of information containing the
following values from the rescuer’s trajectory:

o Rescuer State: The position and orientation of the
rescuer in the environment,

« Field of View Contents: Blocks of interest (e.g.,
victims) that are present in the rescuer’s field of view,

« Victim Interaction Events: Including starting, com-
pleting, and abandoning triage attempts,

« Environment Interaction Events: Including opening
or closing doors, and entering or exiting rooms,

o Victim Location Device: Emitted beep when the
rescuer is near a room containing an untriaged victim.

The Rescuer State and Field of View Contents update at a
rate of 10Hz, all other observations are asynchronous events.

Database

Original Maps

Graph Representation of the
Encountered Environment

Connectivity Pretrained/
Graph Default
Network

Spatial Recognition Clique
Group Subgraph Assignment

Clique Group

TL-DCRNN Prediction

Environment
Perturbation

Sensor

Rescuers’
Current
Locations

The Real-time Graph Feature

Fig. 3: The Architecture of the Navigation Prediction Process

C. Navigation Prediction

The navigation prediction task involves the agent predict-
ing the next room a test (unknown) human will enter next,
predicted at particular time intervals. Figure 3 illustrates
the main components / processes of our architecture (blue
blocks) and data flow between the components (grey blocks).
In addition to the agent’s observation stream listed above, the
agent is provided with a map of the environment and victim
and environmental perturbations (e.g., debris blockages and
openings in walls), from which it generates a graph-based
representation of the environment. The agent updates the
representation based on victims and environment perturba-
tions observed by the rescuer in the agent’s data stream.
Features are extracted from the graph-based representation,
and a TL-DCRNN model is used to forecast future features,
from which room visitation predictions can be made.

1) Graph Representation: The original map of the en-
vironment is converted into an abstract connectivity graph,
G = {V,E}, where each v € V represents a predefined,
semantically meaningful region (room, a segment of hallway,
or intersections), and e(vi,v2) € E indicates connectivity
between the regions v; and v, in the following way. Each
(x,¥,z) location in the original map is manually assigned
to a region; environment perturbations result in edges either
being added (in the case of a wall opening) or removed (in
the case of rubble blockage).

2) Spatial Recognition Clique Group Subgraph Assign-
ment: Given the connectivity graph G = {V,E}, the sub-
graph list {G,} is referred to as “clique group”. A clique is
defined as a set of rooms with a door adjacent to a common
hallway segment. Formally, for a hallway segment, v, € V,
the clique associated with the segment is defined as G" £
{vi|(vi,vp) € E;v; not a hallway segment}. Hallway segment
boundaries are defined by walls or perturbations blocking
passage, as well as intersections with other perpendicular
hallway segments (i.e., T-intersections and corners). Clique

groups are the hallway clique unions that share elements,
defined as G, 2 {Gi’1 U G?z \Gf;” N G?z # ¢}. We hypothesize
that rescuers are likely to explore all rooms within a clique,
and navigate to an adjacent, unexplored clique once the
current clique has been fully explored.

3) Real-time Graph Feature Generation: Graph features
are computed whenever the rescuer enters a new vertex in
the graph representation of the map (i.e., enters a new room
or hallway segment). Graph features are calculated using a
history of the previous T vertices the rescuer occupied. A
single graph feature at time ¢ is a vector denoted as f; €
RF, where k is the number of vertices in the connectiyity
graph. Each element in the feature vector is defined as f,(') =
el i) where 1, is the most recent time step when the rescuer
was located in v;. In essence, the feature vector captures the
region the rescuer currently occupies (indicated with a value
of 1 at the index of the region), and the recent history of the
rescuer’s trajectory (indicated by values less than 1 in the
feature vector, where elements with larger values correspond
to more recently visited regions).

4) TL-DCRNN Navigation Prediction: The future se-
quence of rooms visited by the rescuer is predicted using a
TL-DCRNN model. The model takes as input as sequence of
graph features, F; = {f;_r+1, fi—r+2...fi}, and the subgraph
list {G,}, and predicts the future sequence of graph features,
EXP" = {fi1, fiva... fisr}. The TL-DCRNN model learns
as set of filter weights, Wy and W;, which intuitively
represent the likelihood of the next room visited by the
rescuer (outflow), and the likelihood of the room previously
visited (inflow). After partitioning the graph, the sub-graph
features are passed to a Recurrent Neural Network (RNN),
which outputs the series of predicted graph features. Graph
features are calculated using a diffusion process defined by
the equation WGF = Y5~/ (Wo(D,'A)Y + W (D 'A))F
[31]. Here, K refers to the maximum number of steps taken
for diffusion, A is the adjacency matrix of the graph, Dy and
D; are in-degree and out-degree diagonal matrices of graph
nodes, thus DalA and DflA are transition matrices which
indicate the flow, or transition frequency between regions.
The predicted sequence of rooms visited by the rescuer can
be extracted from the index of the maximum value of the
predicted feature vectors at each time step.

D. Triage Strategy Prediction

In the triage task, the agent predicts over time the next
victim type the human rescuer will triage. We hypothesize
that a rescuer’s triage strategy is agnostic to the location of
the victim, and only depends on the reward that a rescuer gets
in triaging a victim of a particular severity class of injuries.

1) Triage Strategy: We formulate the triage strategy pre-
diction as a classification problem, using a sequence of Field
of View observations (specifically, the location and severity
of victims within the rescuer’s Field of View) and observation
timestamp as input.

Based on the set of victim severity levels, we identify four
categories of strategies a rescuer can employ for triaging
victims:

1) Strict: Rescuer exclusively triages critical victims
during the first 5 minutes, medium victims from 5-—
7 minutes and regular victims from 7-10 minutes. In
the Falcon-2victim domain, the rescuer following this
strategy will triage regular victims from 5-10 minutes.

2) Slack: Rescuer triages critical and medium victims as
they are discovered during the first 7 minutes, then
triage regular from 7-10 minutes.

3) Preemptive: Rescuer triages victims as discovered
regardless of victim severity.

4) Probabilistic: Rescuer triages a discovered victim only
if the expected number of victims that can be triaged in
the remaining time is less than the number of victims
remaining in the environment. The rescuer is made
aware of the total number of victims from each severity
class, and can therefore calculate both the expected and
remaining number of victims.

Note that in the Falcon-2victim domain, the Strict and
Slack strategies are equivalent, and is therefore considered
a single category for this domain.

2) Attention based LSTM: We use a sinusoidal embedding
for the position of the victims and the timestamp, following
the works of [34]. At every timestep, we collect the list
of victims, and use a common feedforward network Ey, to
convert the information into embeddings. To consider the
case of no victims, we also include a “dummy” victim
embedding at each timestep. Let there be N; victims at time
t. Each victim is depicted by a tuple of severity level, r,
and (x,y) locations i.e. v\ = (rf,xt,yt), i€ {l...N;}. This
representation is fed into the feedforward network to get the
victim eﬁbedding e; = Ey(v;). The embeddings are given
by {e}|
embeddiffg. This set of embeddings is passed into a self-
attention network Ag where 6 are the learnable parame-

ters, giving us modified embeddings {f,-}ﬁvz’o =Ay ({e,-}ﬁv’og.

U{eo} where eg is the learned dummy victim

Next, we take the average of these embeddings as the
Nt g
“summary” vector that goes into the LSTM, s, = %

This architecture allows us to account for variable number of
victims at each timestep without making the architecture task
specific. This vector is used as input to the LSTM. The final
triage strategy prediction y; is given by the LSTM equation
y; = softmax(g¢(h;)), hi,¢; = LSTM(s;,h;—1,¢,-1), where
hs,c; are the hidden and context state of the LSTM, and g is
a feedforward network. The recurrent architecture allows the
network to predict the triage strategy by taking into account
the historical behavior of the player in terms of which victims
they triaged (can be inferred from a change of victim state
to “saved”) and which victims are neglected.

IV. EXPERIMENTS

We performed a series of experiments to evaluate the
agent’s ability transfer prediction models trained on a source
domain to a target domain in the USAR domains described
in Section III-A. To train and evaluate the networks, we
used a previously collected set of trajectories generated
by human participants on the Falcon map variants [30],

Test Accuracy wrt Number of Finetuning Trajectories
(Graph Level, Test on 3 Falcon Maps)

Type
—e— TL-DCRNN with finetuning (use pre-trained model with Sparky Data)

Test Accuracy after Convergence

051 —#- TL-DCRNN Trained from Scratch
® -m- ARIMA
0.4+ -#- Rule-based
0 2 4 6 8 10

Number of Finetuning Trajectories
(a) Transfer from Map Sparky to Map Falcon

Test Accuracy wrt Number of Finetuning Trajectories
(Graph Level, Test on Falcon Easy and Hard Maps)

1.0
3 0.9
5 D X % %
2 0.8
f=
o
o
g 0.7+
&
©
>
@ 0.6
E Type
2 —e— With finetuning (use pre-trained model with Falcon Med Data)
g 0514 —m- Trained from Scratch
= ~#- ARIMA

0.4+ -#- Rule-based

0 2 4 6 8 10

Number of Finetuning Trajectories

(c) Transfer from Map Falcon Med to Map Falcon Hard and Easy

Test Accuracy wrt Number of Finetuning Trajectories
(Graph Level, Test on Sparky Map)

1.0

0.9

0.8 q

0.7

0.6 q

051 —e— With finetuning (use pre-trained model with 3 Falcon Map Data)

—#- Trained from Scratch
--#- ARIMA

Test Accuracy after Convergence

0.4

T T T T T T

0 1 2 3 4 5 6
Number of Finetuning Trajectories

(e) Transfer from Map Falcon to Map Sparky

Test Accuracy wrt Training Episodes
(Graph Level, Test on 3 Falcon Maps)

Type
0.95 1 —e— With finetuning (use pre-trained model with Sparky Data)
—%- Trained from Scratch

0 5 10 15 20 25 30 35 40
Training Episodes

Average Test Accuracy (among 1-10 Finetuning Trajectories)

(b) Transfer from Map Sparky to Map Falcon

Test Accuracy wrt Training Episodes
(Graph Level, Test on Falcon Easy and Hard Maps)

Type
0.95 1—e— With finetuning (use pre-trained model with Falcon Med Data)
—#- Trained from Scratch

0 5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0
Training Episodes

(d) Transfer from Map Falcon Med to Map Falcon Hard
and Easy

Average Test Accuracy (among 1-10 Finetuning Trajectories)

Test Accuracy wrt Training Episodes
(Graph Level, Test on Sparky Map)

Type
0.95 1 —e— Wwith finetuning (use pre-trained model with 3 Falcon Map Data)
—#- Trained from Scratch

0 5 10 15 20 25 30 35 40
Training Episodes

Average Test Accuracy (among 1-10 Finetuning Trajectories)

(f) Transfer from Map Falcon to Map Sparky

Fig. 4: Graph Level Transfer Learning on Navigation Prediction among Different Maps and Perturbations

and collected trajectories generated by human participants
on the Sparky map. In each experimental run, a single
human participant navigated a given map and triaged victims,
accumulating score points for each triaged victim. Score
point were allocated in ascending order on seriousness of
injury. Each participant was assigned to only one map or
map variant, in the experiment. In other words no participant
repeated the experiment in two or more maps.

For navigation strategy prediction, there were 8 trajec-
tories of map Sparky for training, 138 trajectories of map
Falcon for training, and 33 trajectories of map Falcon for
test. Trajectories of different map Falcon perturbations were

considered as different trials. For triage strategy prediction,
we used a rule-based agent conditioned on rescue strategy
to generate trajectories in the Falcon map. For domains
for triage prediction (Falcon-2victim, Falcon-3vicim), we
generated 100 trajectories for each triage strategy, resulting in
a total of 300 trajectories for the Falcon-2victim domain and
400 trajectories for the Falcon-3victim domain. To introduce
variation in the trajectories, we introduced perturbations in
victim locations by making the victims do a “random walk”
around their starting locations. Victim severity levels were
also randomized in each training run.

From each rescue strategy, we used up to 70 trajectories

Runtime Taken for Convergence wrt Number of Trajectory Inputs
(Test on Falcon Easy Map)

Type
—8— Graph Level With finetuning (use pre-trained model with Sparky Data)
—#- Graph Level Trained from Scratch
@ Grid Level With finetuning (use pre-trained model with Sparky Data)
4000 Grid Level Trained from Scratch

5000

3000 ST r—
2000

1000

Average Runtime Taken for Convergence (seconds)

Number of Finetuning Trajectories

(a) Compare with Lower Level abstraction

Test Accuracy wrt Training Episodes

10 (Grid Level, Test on Falcon Easy Map)

0.8

0.6

0.4 1

Type
—&— Graph Level With finetuning (use pre-trained model with Sparky Data)
—#- Graph Level Trained from Scratch
-#- Grid Level With finetuning (use pre-trained model with Sparky Data)
Grid Level Trained from Scratch

0.2

0.0 T T T T T T T T
0 5 10 15 20 25 30 35 40
Training Episodes

Average Test Accuracy (among 1-10 Finetuning Trajectories)

(b) Compare with Lower Level abstraction

Fig. 5: Grid Level Transfer Learning on Navigation Prediction from Map Sparky to Map Falcon Easy

for training, 10 for validation, and 20 for testing.

Evaluating the transferability of the prediction models to
new domains involves pre-training a model on trajectories
from a source domain (e.g., Falcon-easy), and evaluating the
performance of the model on predicting trajectories from a
target domain (e.g., Falcon-hard) after performing additional
training on trajectories from the target domain.

A. Evaluation Metrics

For evaluating navigation prediction, we used Mean Av-
erage Error (MAE), as used in [32] and [31],

MAEff i — fil

icQ

where the ground truth is represented by f= fi1, f>...fr, the
predictions are represented by f= £}, f>...fr, and Q referred
to the observed samples.

For triage strategy prediction, we used the mean accuracy
over time (MAT) as our final evaluation metric. In the
initial stages, the prediction can be random due to lack of
rescuer’s behavior data around the victims. Therefore, the
average is taken only after one minute. Given a sequence of
observations O and the ground truth rescue strategy c, the
metric is given by:

MAT(O,c¢) I(y

K Z

where y; is the predicted strategy at timestep ¢. ¢ is one of
the four classes mentioned in Section III-D.

B. Navigation Prediction with Transfer Learning

With the transfer learning experiments, we aim to answer
the following questions regarding the navigation prediction
model: (1) How effective/accurate is a model in the test
domain that has learned to predict with a certain accuracy
in the source domain? Does it achieve zero-shot learning?
(2) How does the performance of the model in the source
domain compared with a model that has been trained from

scratch in the target domain? (3) How does the time required
to train a source model and refine in the target domain with
few-shot learning compare with the time to train a model in
the target domain from scratch? (4) How does the number
of input trajectories affect performance? (5) How do maps
with different room configurations, vs the same map with
different perturbations affect the transfer learning process?
(6) Does the abstraction level of graph affect performance?
1) Baselines: We compare our mechanism with a Rule-
based Navigation Prediction and a traditional time-series pre-
diction method Autoregressive Integrated Moving Average
(ARIMA) Model.
Rule-Based Model. The rule-based agent could make two
levels of prediction on the rescuer’s navigation behavior: (1)
the next clique group, and (2) the next room(s). The rule-
based prediction was dependent on the knowledge condition
of rescuers, i.e. if they knew about what beeping meant,
how long triaging victims would take, and how much reward
they would get after finishing triaging the victims. Generally
the prediction accuracy was higher for rescuers who had the
knowledge of the beep. The rule-based method considers the
following factors to predict next room(s):

o The current location of the rescuer

¢ The rooms not visited in the current clique group

o Whether the rescuer knows about beep

o Whether seriously injured victims are dead

e The rooms connected to the current location with a
hole/internal door

The factors to predict next clique group:

o The current clique group:

o Whether seriously injured victims are dead

o Whether rooms in the current clique group have victims
« Whether there is a new clique group nearby

ARIMA Model. Autoregressive integrated moving average
(ARIMA) was widely used [35] to perform time series
prediction. One of its important variation models is Seasonal
Autoregressive Integrated Moving Average with eXogenous
variables (SARIMAX) [36], which includes a seasonal pat-

tern in the prediction for short-term forecasting. By indexing
the active regions and concatenating trajectories of different
rescuers, we are able to observe a “seasonal” pattern, where
different rescuers might visit same locations in a similar or-
der. This enabled us to implement SARIMAX as a baseline.
However, this extended ARIMA model does not take a graph
structure of the map into consideration, and cannot be trained
with data from other maps or perturbations. It only took in
the training trajectories of the target map and perturbations.

2) From Sparky to Falcon: We compared the accuracy
of the pre-trained model with fine-tuning Sparky trajectories
(in blue), i.e. adding Falcon trajectories to the Sparky pre-
trained model and the accuracy of the model trained on
Falcon from scratch (in red) in Fig. (4a) and (4b). We grad-
vally added a few training and validation trajectories of the
Falcon domains (Falcon-easy, Falcon-medium, Falcon-hard)
to the Sparky model (ranging from 1 to 10 incrementally,
distinguished by different map perturbations respectively and
took the average). We had the following observations on
the converged accuracy and the training process: (a) TL-
DCRNN outperformed ARIMA (in green) and the rule-based
(in brown) baselines. (b) With increasing number of train/val
trajectories, the accuracy after convergence of all models
slightly improved with respect to varying the number of
input Falcon trajectories. (¢) TL-DCRNN with fine-tuning
and TL-DCRNN trained from scratch have similar converged
accuracy, but the one with fine-tuning converged faster.

3) From Falcon-med to Falcon-hard and Falcon-easy:
When using the trajectories of Falcon domains with different
perturbation and victim densities instead of using the ones
of Sparky domain, we obtained the results in Fig. (4c) and
(4d). All the conclusions reported previously still held, and
there was no significant difference in terms of accuracy after
convergence or training process. This indicated that the data
from the same map but with different perturbations was not
necessarily more helpful than data from a different map. With
perturbations, the navigation behavior can be as different as
from another map.

4) From Falcon to Sparky: We reversed the process to
transfer from the Sparky domain to the Falcon domain in
Fig. (4e) and (4f). The Sparky map was relatively easier for
TL-DCRNN to learn from and resulted in a higher accuracy
than the previous comparison, while ARIMA was not able
to improve. The TL-DCRNN also converged faster.

5) Comparison with Grid-Based Representation: We
compared the graph-based representation prediction with
predictions made using a grid representation of the map in
Fig. (5a) and (5b). In the grid representation, each 3 cell by 3
cell region was considered as a graph node; edges connected
adjacent node. The state space was 12.5 times larger. The
denser graph led to a higher accuracy after convergence when
transferring from Sparky domain to Falcon-easy domain.
However, the run-time to convergence increased.

C. Triage Strategy Prediction with Transfer Learning

In this section, we compare the performance of the model
trained on the harder Falcon-3victim domain from scratch,

100

80 1

60 1

50.36%

Accuracy
B
&
»
w
X

401
37.77%
31.38%

30.08%
27.88%

201
—e— With finetuning

Without finetuning
--- Without finetuning (all trajectories)

0 10 20 30 40 50
Number of trajectories for finetuning

Fig. 6: Transfer learning on triage strategy prediction

and transferring a model pre-trained on the easier Falcon-
2victim source domain, and finetuning on few trajectories
from the Falcon-3victim target domain, reducing the required
training data and time. We therefore perform the following
experiments:

1) Models trained on the Falcon-3victim domain from
scratch, i.e. without finetuning, with a varying number
of training trajectories.

2) Models pre-trained on the Falcon-2victim domain as
a source domain with maximum number of training
trajectories, and transferring the model to the Falcon-
3victim as the target domain by finetuning with varying
number of target-domain trajectories.

The results are shown in Figure 6. The dotted plot shows
the test accuracy with 70 training trajectories in the Falcon-
2victim domain. We train with 1, 2, 5, 10, 20 and 50
training trajectories from each strategy. Finetuning improves
generalization performance even given a small number, such
as 2, of finetuning trajectories from target Falcon-3victim.
In our case, the source task does not contain information
about the target task at all (for example, no Falcon-2victim
trajectory contains information about medium severity vic-
tims), so the finetuning indeed improves generalization.
Moreover, using even as few as 30 trajectories for finetuning
the Falcon-2victim source model reaches the performance
of the Falcon-3victim model trained from scratch with all
trajectories (green constant line in the figure) and for more
than 30 finetuning trajectories, it outperforms the Falcon-
3victim model.

V. CONCLUSIONS

We have built an agent that makes predictions on the
navigation and rescue strategies of a human rescuers in
a simulated urban search and rescue mission. We showed
experimentally that: (a) using an abstract representation, i.e
graphs enables efficient navigation strategy transfer from
source to target domains from smaller to large maps with

different victim and perturbation configurations; (b) for triage
strategy, training a source model with smaller number of
victim classes and adding a few finetuning trajectories form
the target domain with larger number of triage victim classes,
is not only high performing and efficient, but surprisingly
outperforms a model trained from scratch in the target
domain, while also converging faster. This is an interesting
finding and we will explore it further in additional domains
in future work. We also plan to study transfer with a team of
rescuers instead of a single one. This is a very challenging
task, not only because of the increase in the number of
humans but also because of the inter-dependency of rescuer
policies since they coordinate as a team.

ACKNOWLEDGMENT

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. HR001120C0036 and by the AFRL/AFOSR award
FA9550-18-1-0251. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA).

REFERENCES

[1]1 E. R. Chrastil and W. H. Warren, “From cognitive maps to cognitive
graphs,” PloS one, vol. 9, no. 11, p. e112544, 2014.

[2] W. H. Warren, “Non-euclidean navigation,” Journal of Experimental
Biology, vol. 222, no. Suppl 1, 2019.

[3] A. Car, G. Taylor, and C. Brunsdon, “An analysis of the performance
of a hierarchical wayfinding computational model using synthetic
graphs,” Computers, environment and urban systems, vol. 25, no. 1,
pp. 69-88, 2001.

[4] S. C. Hirtle and J. Jonides, “Evidence of hierarchies in cognitive
maps,” Memory & cognition, vol. 13, no. 3, pp. 208-217, 1985.

[5] Y. Gong, Y. Liu, J. Yang, and G. Li, “Structural hierarchy of spatial
knowledge based on landmarks and its application in locality de-
scriptions,” in 2010 18th International Conference on Geoinformatics.
IEEE, 2010, pp. 1-5.

[6] A. Tapus, S. Vasudevan, and R. Siegwart, “Towards a multilevel
cognitive probabilistic representation of space,” in Human Vision and
Electronic Imaging X, vol. 5666. International Society for Optics and
Photonics, 2005, pp. 39-48.

[71 E. Remolina, J. A. Fernandez, B. Kuipers, and J. Gonzalez, “For-
malizing regions in the spatial semantic hierarchy: An ah-graphs
implementation approach,” in International Conference on Spatial
Information Theory. Springer, 1999, pp. 109-124.

[8] H. Voicu, “Hierarchical cognitive maps,” Neural Networks, vol. 16,
no. 5-6, pp. 569-576, 2003.

[9] T. Madl, S. Franklin, K. Chen, R. Trappl, and D. Montaldi, “Exploring

the structure of spatial representations,” PloS one, vol. 11, no. 6, p.

e0157343, 2016.

S. C. Duncan, “Minecraft, beyond construction and survival,” 2011.

M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The malmo plat-

form for artificial intelligence experimentation.” in IJCAI. Citeseer,

2016, pp. 4246-4247.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE

Transactions on knowledge and data engineering, vol. 22, no. 10,

pp. 1345-1359, 2009.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and

Q. He, “A comprehensive survey on transfer learning,” Proceedings of

the IEEE, vol. 109, no. 1, pp. 43-76, 2020.

Z.Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement

learning: A survey,” arXiv preprint arXiv:2009.07888, 2020.

M. E. Taylor and P. Stone, “Transfer learning for reinforcement

learning domains: A survey.” Journal of Machine Learning Research,

vol. 10, no. 7, 2009.

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International conference on artificial neural
networks. Springer, 2018, pp. 270-279.

A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel,
D. Mankowitz, A. Zidek, and R. Munos, “Transfer in deep rein-
forcement learning using successor features and generalised policy
improvement,” in International Conference on Machine Learning.
PMLR, 2018, pp. 501-510.

A. Barreto, S. Hou, D. Borsa, D. Silver, and D. Precup, “Fast
reinforcement learning with generalized policy updates,” Proceedings
of the National Academy of Sciences, vol. 117, no. 48, pp. 30079-
30087, 2020.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. Van Has-
selt, and D. Silver, “Successor features for transfer in reinforcement
learning,” arXiv preprint arXiv:1606.05312, 2016.

M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature
learning with joint distribution adaptation,” in Proceedings of the IEEE
international conference on computer vision, 2013, pp. 2200-2207.
M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann,
“Unsupervised domain adaptation by domain invariant projection,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 769-776.

Q. Dai, X. Shen, X.-M. Wu, and D. Wang, “Network transfer learning
via adversarial domain adaptation with graph convolution,” arXiv
preprint arXiv:1909.01541, 2019.

J. Lee, H. Kim, J. Lee, and S. Yoon, “Transfer learning for deep learn-
ing on graph-structured data,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 31, no. 1, 2017.

G. Kuhlmann and P. Stone, “Graph-based domain mapping for transfer
learning in general games,” in European Conference on Machine
Learning. Springer, 2007, pp. 188-200.

F. Shoeleh and M. Asadpour, “Skill based transfer learning with
domain adaptation for continuous reinforcement learning domains,”
Applied Intelligence, vol. 50, no. 2, pp. 502-518, 2020.

Q. Zhu, Y. Xu, H. Wang, C. Zhang, J. Han, and C. Yang, “Transfer
learning of graph neural networks with ego-graph information maxi-
mization,” arXiv preprint arXiv:2009.05204, 2020.

J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2017, pp. 2371-2378.
P. Mirowski, M. K. Grimes, M. Malinowski, K. M. Hermann, K. An-
derson, D. Teplyashin, K. Simonyan, K. Kavukcuoglu, A. Zisserman,
and R. Hadsell, “Learning to navigate in cities without a map,” arXiv
preprint arXiv:1804.00168, 2018.

V. Jain, R. Jena, H. Li, T. Gupta, D. Hughes, M. Lewis, and K. Sycara,
“Predicting human strategies in simulated search and rescue task,”
in Artificial Intelligence for Humanitarian Assistance and Disaster
Response Workshop, NeurIPS, 2020.

L. Huang, J. Freeman, N. Cooke, M. Cohen, X. Yin, J. Clark,
M. Wood, V. Buchanan, C. Carrol, E. Scholcover, A. Mudigonda,
L. Thomas, A. Teo, M. Freiman, J. Colonna-Romano, L. Lapujade,
and K. Tatapudi, “Using humans’ theory of mind to study artificial
social intelligence in minecraft search and rescue,” in (fo be submitted
to the) Journal of Cognitive Science, 2021.

T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, “Transfer
learning with graph neural networks for short-term highway traffic
forecasting,” arXiv preprint arXiv:2004.08038, 2020.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recur-
rent neural network: Data-driven traffic forecasting,” arXiv preprint
arXiv:1707.01926, 2017.

T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, “Graph-
partitioning-based diffusion convolutional recurrent neural network for
large-scale traffic forecasting,” Transportation Research Record, vol.
2674, no. 9, pp. 473488, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in
NIPS, 2017.

N. D. Uri, “Forecasting peak system load using a combined time series
and econometric model,” Applied Energy, vol. 4, no. 3, pp. 219-227,
1978.

N. Liu, V. Babushkin, and A. Afshari, “Short-term forecasting of tem-
perature driven electricity load using time series and neural network
model,” Journal of Clean Energy Technologies, vol. 2, no. 4, pp. 327—
331, 2014.

