Oct. 31, 2007

Chem. 1410

Practice Problem for Hour Exam 2, solution

1) Starting from

$$
\begin{equation*}
v^{e f f}(r)=\frac{1}{2} k\left(r-r_{e}\right)^{2}+\hbar^{2} l(l+1) / 2 \mu r^{2} \tag{A1}
\end{equation*}
$$

The minimum occurs at the position r_{m} such that $d v^{\text {eff }}\left(r_{m}\right) / d r=0$. Thus the equation we need to solve is:

$$
\begin{equation*}
0=k\left(r_{m}-r_{e}\right)-\frac{\hbar^{2} l(l+1)}{\mu r_{m}^{3}} \tag{A2}
\end{equation*}
$$

Making the substitution $r_{m}=r_{e}+x$ and using the small x expansion of $1 / r_{m}^{4}$ provided in the statement of the problem, Eq. A2 becomes:

$$
0=k x-\frac{\hbar^{2} l(l+1)}{\mu r_{e}^{3}}\left(1-\frac{3 x}{r_{e}}\right),
$$

which solves to

[A3]

QED.
Note: we expect $\mathrm{x}>0$ (i.e., $r_{m}>r_{e}$) because of centrifugal distortion (pulling the masses on the spring farther apart as they spin about their common center of mass).
b) For the specified numerical parameters $\left[\hbar^{2} l(l+1)=9, \mu=5, k=1, r_{e}=2\right]$, we evaluate $x=0.168$, an thus $x / r_{e}=0.084 \ll 1$. Thus, we expect a quadratic expansion of $v^{\text {eff }}(r)$ expanded around the (approximate) minimum $r_{m}=r_{e}+x$ (with x given by Eq. A3) to represent the full $v^{\text {eff }}(r)$ accurately in the region near the potential minimum. This is shown graphically in Fig. A1.

Fig. A1. Comparison of exact (anharmonic) $v^{\text {eff }}(r)$ with quadratic expansion $v q(r)$ about the approximate minimum of the potential determined here.

Note: A print-out of the Mathcad module used to generate Fig. A1 is appended, FYI.

