Nov. 262007

Chem. 1410

Problem Set 10, due Dec. 3, 2007

Do the following problems; these are not to be handed in for grading; solutions will be distributed via .pdf.

Engel: P12.5, P12.6, P13.2, P13.5, P13.8

The following two problems are to be handing in for grading:

1) Huckel Theory of π bonding in cyclobutadiene. Engel, Problem P14.15
2) Variational approximation to the ground state energy of the H_{2}^{+}molecule ion. In class we studied the electronic ground state properties of the H_{2}^{+}molecule ion with the two nuclei (denotes as A and B) separated by an internuclear distance R using an un-normalized variational electronic trial function:

$$
\psi_{T}(\vec{r})=c_{A} 1 s_{A}(\vec{r})+c_{B} 1 s_{B}(\vec{r})
$$

Here $1 s_{A, B}(\vec{r})$ is a (normalized) 1 s hydrogen orbital (corresponding to atomic number $\mathrm{Z}=1$) centered at nucleus A, B, and $c_{A, B}$ are variational parameters. Using the Variational Principle with linear variation of parameters, we determined that for the electronic ground state of the molecule, $c_{A}=c_{B}$ (again modulo normalization) at any internuclear separation R , and the ground state energy of the molecule is given (in a.u., i.e. Hartrees) by:

$$
E(R)=-\frac{1}{2}+\frac{J^{\prime}(R)+K^{\prime}(R)}{1+S(R)}
$$

where $S(R), J^{\prime}(R), K^{\prime}(R)$ are precisely defined 3-dimensional integrals which are parametric in R. In fact, these integrals can be performed analytically, yielding:

$$
\begin{aligned}
& S(R)=e^{-R}\left(1+R+R^{2} / 3\right) \\
& J^{\prime}(R)=e^{-2 R}\left(1+\frac{1}{R}\right) \\
& K^{\prime}(R)=\frac{S(R)}{R}-e^{-R}(1+R)
\end{aligned}
$$

where R is measured in a.u. = Bohr radii. [N.B: You do not have to derive these integrals here!]
a) Given the formulae for $S(R), J^{\prime}(R), K^{\prime}(R)$, plot the ground state electronic energy $E(R)$ vs. R. Show (via your graph) that this curve has a minimum. Determine the position of (i.e., the internuclear separation at) the minimum in \AA, and the dissociation energy of the molecule in eV which are predicted from this simple model. [Note: For the purposes of this problem, define dissociation energy as the energy difference between the asymptotic value at E at $R=\infty$ (when the two H atoms are completely separated) and the energy at the equilibrium position of the molecule (i.e., where E is a minimum).]
b) Now, consider a slightly more sophisticated ansatz for the (un-normalized) ground state electronic state wavefunction of H_{2}^{+}, namely:

$$
\begin{equation*}
\psi_{T}(\vec{r})=1 s_{A}(\vec{r} ; \xi)+1 s_{B}(\vec{r} ; \xi) \tag{1}
\end{equation*}
$$

Here $1 s_{A}(\vec{r} ; \xi)$ is a (normalized) 1 s hydrogenic orbital centered on nucleus A and corresponding to effective nuclear charge ξ, and analogously for $1 s_{B}(\vec{r} ; \xi)$. With some effort (which you do not have to repeat here!), it can be shown that the expectation value of the electronic Hamiltonian in the state $\psi_{T}(\vec{r})$ (appropriately normalized) is given by:

$$
E(R ; \xi)=-\frac{\xi^{2}}{2}+\frac{J^{\prime}(R ; \xi)+K^{\prime}(R ; \xi)}{1+S(R ; \xi)}
$$

with:

$$
\begin{aligned}
& S(R ; \xi)=e^{-\xi R}\left[1+\xi R+(\xi R)^{2} / 3\right] \\
& J^{\prime}(R ; \xi)=(\xi-1) \xi+\left(1+\frac{1}{\xi R}\right) e^{-2 \xi R} \\
& K^{\prime}(R ; \xi)=\frac{S(R ; \xi)}{R}+(\xi-2) \xi(1+\xi R) e^{-\xi R}
\end{aligned}
$$

The Variational Principle (using non-linear variation of parameters) then says that for a given value of R, the best estimate of the ground state electronic energy with a trial function of the type given in Eq. 1 is obtained by minimizing $E(R ; \xi)$ vs. ξ. So ...
i) For concreteness, set $R=2$. Plot $E(2 ; \xi)$ vs. ξ. Show that it does have a minimum, at $\xi \cong 1.24$, and that $E(2 ; 1.24) \cong-0.588$ a.u.
ii) Repeat this calculation for the values $\mathrm{R}=1,1.25,1.5 \ldots 3$ (a total of 9 values including the one at $R=2$). Plot the 9 data points (R, E) on the same graph as the function $E(R)$ [based on the choice $\xi=1$] which you plotted in part a). [Hint: You should find that the improved energy curve obtained using the procedure in part b) is lower at every internuclear separation R than the one computed in part a).]
iii) Estimate the position of (i.e., the internuclear separation at) the minimum in \AA, and the dissociation energy of the molecule in eV which are predicted from the improved ("optimized ξ ") model.
iii) Do you expect the experimentally measured dissociation energy of the H_{2}^{+}molecule to be larger or smaller then the value estimated in iii)?

